kern_lwp.c revision 1.255 1 /* $NetBSD: kern_lwp.c,v 1.255 2023/09/23 18:21:11 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020, 2023
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Nathan J. Williams, and Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Overview
35 *
36 * Lightweight processes (LWPs) are the basic unit or thread of
37 * execution within the kernel. The core state of an LWP is described
38 * by "struct lwp", also known as lwp_t.
39 *
40 * Each LWP is contained within a process (described by "struct proc"),
41 * Every process contains at least one LWP, but may contain more. The
42 * process describes attributes shared among all of its LWPs such as a
43 * private address space, global execution state (stopped, active,
44 * zombie, ...), signal disposition and so on. On a multiprocessor
45 * machine, multiple LWPs be executing concurrently in the kernel.
46 *
47 * Execution states
48 *
49 * At any given time, an LWP has overall state that is described by
50 * lwp::l_stat. The states are broken into two sets below. The first
51 * set is guaranteed to represent the absolute, current state of the
52 * LWP:
53 *
54 * LSONPROC
55 *
56 * On processor: the LWP is executing on a CPU, either in the
57 * kernel or in user space.
58 *
59 * LSRUN
60 *
61 * Runnable: the LWP is parked on a run queue, and may soon be
62 * chosen to run by an idle processor, or by a processor that
63 * has been asked to preempt a currently runnning but lower
64 * priority LWP.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed, or
69 * it has ceased executing a unit of work and is waiting to be
70 * started again. This state exists so that the LWP can occupy
71 * a slot in the process & PID table, but without having to
72 * worry about being touched; lookups of the LWP by ID will
73 * fail while in this state. The LWP will become visible for
74 * lookup once its state transitions further. Some special
75 * kernel threads also (ab)use this state to indicate that they
76 * are idle (soft interrupts and idle LWPs).
77 *
78 * LSSUSPENDED:
79 *
80 * Suspended: the LWP has had its execution suspended by
81 * another LWP in the same process using the _lwp_suspend()
82 * system call. User-level LWPs also enter the suspended
83 * state when the system is shutting down.
84 *
85 * The second set represent a "statement of intent" on behalf of the
86 * LWP. The LWP may in fact be executing on a processor, may be
87 * sleeping or idle. It is expected to take the necessary action to
88 * stop executing or become "running" again within a short timeframe.
89 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
90 * Importantly, it indicates that its state is tied to a CPU.
91 *
92 * LSZOMB:
93 *
94 * Dead or dying: the LWP has released most of its resources
95 * and is about to switch away into oblivion, or has already
96 * switched away. When it switches away, its few remaining
97 * resources can be collected.
98 *
99 * LSSLEEP:
100 *
101 * Sleeping: the LWP has entered itself onto a sleep queue, and
102 * has switched away or will switch away shortly to allow other
103 * LWPs to run on the CPU.
104 *
105 * LSSTOP:
106 *
107 * Stopped: the LWP has been stopped as a result of a job
108 * control signal, or as a result of the ptrace() interface.
109 *
110 * Stopped LWPs may run briefly within the kernel to handle
111 * signals that they receive, but will not return to user space
112 * until their process' state is changed away from stopped.
113 *
114 * Single LWPs within a process can not be set stopped
115 * selectively: all actions that can stop or continue LWPs
116 * occur at the process level.
117 *
118 * State transitions
119 *
120 * Note that the LSSTOP state may only be set when returning to
121 * user space in userret(), or when sleeping interruptably. The
122 * LSSUSPENDED state may only be set in userret(). Before setting
123 * those states, we try to ensure that the LWPs will release all
124 * locks that they hold, and at a minimum try to ensure that the
125 * LWP can be set runnable again by a signal.
126 *
127 * LWPs may transition states in the following ways:
128 *
129 * RUN -------> ONPROC ONPROC -----> RUN
130 * > SLEEP
131 * > STOPPED
132 * > SUSPENDED
133 * > ZOMB
134 * > IDL (special cases)
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > ONPROC (special cases)
143 *
144 * Some state transitions are only possible with kernel threads (eg
145 * ONPROC -> IDL) and happen under tightly controlled circumstances
146 * free of unwanted side effects.
147 *
148 * Migration
149 *
150 * Migration of threads from one CPU to another could be performed
151 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
152 * functions. The universal lwp_migrate() function should be used for
153 * any other cases. Subsystems in the kernel must be aware that CPU
154 * of LWP may change, while it is not locked.
155 *
156 * Locking
157 *
158 * The majority of fields in 'struct lwp' are covered by a single,
159 * general spin lock pointed to by lwp::l_mutex. The locks covering
160 * each field are documented in sys/lwp.h.
161 *
162 * State transitions must be made with the LWP's general lock held,
163 * and may cause the LWP's lock pointer to change. Manipulation of
164 * the general lock is not performed directly, but through calls to
165 * lwp_lock(), lwp_unlock() and others. It should be noted that the
166 * adaptive locks are not allowed to be released while the LWP's lock
167 * is being held (unlike for other spin-locks).
168 *
169 * States and their associated locks:
170 *
171 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
172 *
173 * Always covered by spc_lwplock, which protects LWPs not
174 * associated with any other sync object. This is a per-CPU
175 * lock and matches lwp::l_cpu.
176 *
177 * LSRUN:
178 *
179 * Always covered by spc_mutex, which protects the run queues.
180 * This is a per-CPU lock and matches lwp::l_cpu.
181 *
182 * LSSLEEP:
183 *
184 * Covered by a lock associated with the sleep queue (sometimes
185 * a turnstile sleep queue) that the LWP resides on. This can
186 * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
187 *
188 * LSSTOP:
189 *
190 * If the LWP was previously sleeping (l_wchan != NULL), then
191 * l_mutex references the sleep queue lock. If the LWP was
192 * runnable or on the CPU when halted, or has been removed from
193 * the sleep queue since halted, then the lock is spc_lwplock.
194 *
195 * The lock order is as follows:
196 *
197 * sleepq -> turnstile -> spc_lwplock -> spc_mutex
198 *
199 * Each process has a scheduler state lock (proc::p_lock), and a
200 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
201 * so on. When an LWP is to be entered into or removed from one of the
202 * following states, p_lock must be held and the process wide counters
203 * adjusted:
204 *
205 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
206 *
207 * (But not always for kernel threads. There are some special cases
208 * as mentioned above: soft interrupts, and the idle loops.)
209 *
210 * Note that an LWP is considered running or likely to run soon if in
211 * one of the following states. This affects the value of p_nrlwps:
212 *
213 * LSRUN, LSONPROC, LSSLEEP
214 *
215 * p_lock does not need to be held when transitioning among these
216 * three states, hence p_lock is rarely taken for state transitions.
217 */
218
219 #include <sys/cdefs.h>
220 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.255 2023/09/23 18:21:11 ad Exp $");
221
222 #include "opt_ddb.h"
223 #include "opt_lockdebug.h"
224 #include "opt_dtrace.h"
225
226 #define _LWP_API_PRIVATE
227
228 #include <sys/param.h>
229 #include <sys/systm.h>
230 #include <sys/cpu.h>
231 #include <sys/pool.h>
232 #include <sys/proc.h>
233 #include <sys/syscallargs.h>
234 #include <sys/syscall_stats.h>
235 #include <sys/kauth.h>
236 #include <sys/sleepq.h>
237 #include <sys/lockdebug.h>
238 #include <sys/kmem.h>
239 #include <sys/pset.h>
240 #include <sys/intr.h>
241 #include <sys/lwpctl.h>
242 #include <sys/atomic.h>
243 #include <sys/filedesc.h>
244 #include <sys/fstrans.h>
245 #include <sys/dtrace_bsd.h>
246 #include <sys/sdt.h>
247 #include <sys/ptrace.h>
248 #include <sys/xcall.h>
249 #include <sys/uidinfo.h>
250 #include <sys/sysctl.h>
251 #include <sys/psref.h>
252 #include <sys/msan.h>
253 #include <sys/kcov.h>
254 #include <sys/cprng.h>
255 #include <sys/futex.h>
256
257 #include <uvm/uvm_extern.h>
258 #include <uvm/uvm_object.h>
259
260 static pool_cache_t lwp_cache __read_mostly;
261 struct lwplist alllwp __cacheline_aligned;
262
263 static int lwp_ctor(void *, void *, int);
264 static void lwp_dtor(void *, void *);
265
266 /* DTrace proc provider probes */
267 SDT_PROVIDER_DEFINE(proc);
268
269 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
270 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
271 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
272
273 struct turnstile turnstile0 __cacheline_aligned;
274 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
275 #ifdef LWP0_CPU_INFO
276 .l_cpu = LWP0_CPU_INFO,
277 #endif
278 #ifdef LWP0_MD_INITIALIZER
279 .l_md = LWP0_MD_INITIALIZER,
280 #endif
281 .l_proc = &proc0,
282 .l_lid = 0, /* we own proc0's slot in the pid table */
283 .l_flag = LW_SYSTEM,
284 .l_stat = LSONPROC,
285 .l_ts = &turnstile0,
286 .l_syncobj = &sched_syncobj,
287 .l_refcnt = 0,
288 .l_priority = PRI_USER + NPRI_USER - 1,
289 .l_inheritedprio = -1,
290 .l_class = SCHED_OTHER,
291 .l_psid = PS_NONE,
292 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
293 .l_name = __UNCONST("swapper"),
294 .l_fd = &filedesc0,
295 };
296
297 static int
298 lwp_maxlwp(void)
299 {
300 /* Assume 1 LWP per 1MiB. */
301 uint64_t lwps_per = ctob(physmem) / (1024 * 1024);
302
303 return MAX(MIN(MAXMAXLWP, lwps_per), MAXLWP);
304 }
305
306 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
307
308 /*
309 * sysctl helper routine for kern.maxlwp. Ensures that the new
310 * values are not too low or too high.
311 */
312 static int
313 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
314 {
315 int error, nmaxlwp;
316 struct sysctlnode node;
317
318 nmaxlwp = maxlwp;
319 node = *rnode;
320 node.sysctl_data = &nmaxlwp;
321 error = sysctl_lookup(SYSCTLFN_CALL(&node));
322 if (error || newp == NULL)
323 return error;
324
325 if (nmaxlwp < 0 || nmaxlwp >= MAXMAXLWP)
326 return EINVAL;
327 if (nmaxlwp > lwp_maxlwp())
328 return EINVAL;
329 maxlwp = nmaxlwp;
330
331 return 0;
332 }
333
334 static void
335 sysctl_kern_lwp_setup(void)
336 {
337 sysctl_createv(NULL, 0, NULL, NULL,
338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
339 CTLTYPE_INT, "maxlwp",
340 SYSCTL_DESCR("Maximum number of simultaneous threads"),
341 sysctl_kern_maxlwp, 0, NULL, 0,
342 CTL_KERN, CTL_CREATE, CTL_EOL);
343 }
344
345 void
346 lwpinit(void)
347 {
348
349 LIST_INIT(&alllwp);
350 lwpinit_specificdata();
351 /*
352 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
353 * calls will exit before memory of LWPs is returned to the pool, where
354 * KVA of LWP structure might be freed and re-used for other purposes.
355 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
356 * callers, therefore a regular passive serialization barrier will
357 * do the job.
358 */
359 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0,
360 PR_PSERIALIZE, "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL);
361
362 maxlwp = lwp_maxlwp();
363 sysctl_kern_lwp_setup();
364 }
365
366 void
367 lwp0_init(void)
368 {
369 struct lwp *l = &lwp0;
370
371 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
372
373 LIST_INSERT_HEAD(&alllwp, l, l_list);
374
375 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
376 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
377 cv_init(&l->l_sigcv, "sigwait");
378 cv_init(&l->l_waitcv, "vfork");
379
380 kauth_cred_hold(proc0.p_cred);
381 l->l_cred = proc0.p_cred;
382
383 kdtrace_thread_ctor(NULL, l);
384 lwp_initspecific(l);
385
386 SYSCALL_TIME_LWP_INIT(l);
387 }
388
389 /*
390 * Initialize the non-zeroed portion of an lwp_t.
391 */
392 static int
393 lwp_ctor(void *arg, void *obj, int flags)
394 {
395 lwp_t *l = obj;
396
397 l->l_stat = LSIDL;
398 l->l_cpu = curcpu();
399 l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock;
400 l->l_ts = kmem_alloc(sizeof(*l->l_ts), flags == PR_WAITOK ?
401 KM_SLEEP : KM_NOSLEEP);
402
403 if (l->l_ts == NULL) {
404 return ENOMEM;
405 } else {
406 turnstile_ctor(l->l_ts);
407 return 0;
408 }
409 }
410
411 static void
412 lwp_dtor(void *arg, void *obj)
413 {
414 lwp_t *l = obj;
415
416 /*
417 * The value of l->l_cpu must still be valid at this point.
418 */
419 KASSERT(l->l_cpu != NULL);
420
421 /*
422 * We can't return turnstile0 to the pool (it didn't come from it),
423 * so if it comes up just drop it quietly and move on.
424 */
425 if (l->l_ts != &turnstile0)
426 kmem_free(l->l_ts, sizeof(*l->l_ts));
427 }
428
429 /*
430 * Set an LWP suspended.
431 *
432 * Must be called with p_lock held, and the LWP locked. Will unlock the
433 * LWP before return.
434 */
435 int
436 lwp_suspend(struct lwp *curl, struct lwp *t)
437 {
438 int error;
439
440 KASSERT(mutex_owned(t->l_proc->p_lock));
441 KASSERT(lwp_locked(t, NULL));
442
443 KASSERT(curl != t || curl->l_stat == LSONPROC);
444
445 /*
446 * If the current LWP has been told to exit, we must not suspend anyone
447 * else or deadlock could occur. We won't return to userspace.
448 */
449 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
450 lwp_unlock(t);
451 return (EDEADLK);
452 }
453
454 if ((t->l_flag & LW_DBGSUSPEND) != 0) {
455 lwp_unlock(t);
456 return 0;
457 }
458
459 error = 0;
460
461 switch (t->l_stat) {
462 case LSRUN:
463 case LSONPROC:
464 t->l_flag |= LW_WSUSPEND;
465 lwp_need_userret(t);
466 lwp_unlock(t);
467 break;
468
469 case LSSLEEP:
470 t->l_flag |= LW_WSUSPEND;
471
472 /*
473 * Kick the LWP and try to get it to the kernel boundary
474 * so that it will release any locks that it holds.
475 * setrunnable() will release the lock.
476 */
477 if ((t->l_flag & LW_SINTR) != 0)
478 setrunnable(t);
479 else
480 lwp_unlock(t);
481 break;
482
483 case LSSUSPENDED:
484 lwp_unlock(t);
485 break;
486
487 case LSSTOP:
488 t->l_flag |= LW_WSUSPEND;
489 setrunnable(t);
490 break;
491
492 case LSIDL:
493 case LSZOMB:
494 error = EINTR; /* It's what Solaris does..... */
495 lwp_unlock(t);
496 break;
497 }
498
499 return (error);
500 }
501
502 /*
503 * Restart a suspended LWP.
504 *
505 * Must be called with p_lock held, and the LWP locked. Will unlock the
506 * LWP before return.
507 */
508 void
509 lwp_continue(struct lwp *l)
510 {
511
512 KASSERT(mutex_owned(l->l_proc->p_lock));
513 KASSERT(lwp_locked(l, NULL));
514
515 /* If rebooting or not suspended, then just bail out. */
516 if ((l->l_flag & LW_WREBOOT) != 0) {
517 lwp_unlock(l);
518 return;
519 }
520
521 l->l_flag &= ~LW_WSUSPEND;
522
523 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
524 lwp_unlock(l);
525 return;
526 }
527
528 /* setrunnable() will release the lock. */
529 setrunnable(l);
530 }
531
532 /*
533 * Restart a stopped LWP.
534 *
535 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
536 * LWP before return.
537 */
538 void
539 lwp_unstop(struct lwp *l)
540 {
541 struct proc *p = l->l_proc;
542
543 KASSERT(mutex_owned(&proc_lock));
544 KASSERT(mutex_owned(p->p_lock));
545
546 lwp_lock(l);
547
548 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
549
550 /* If not stopped, then just bail out. */
551 if (l->l_stat != LSSTOP) {
552 lwp_unlock(l);
553 return;
554 }
555
556 p->p_stat = SACTIVE;
557 p->p_sflag &= ~PS_STOPPING;
558
559 if (!p->p_waited)
560 p->p_pptr->p_nstopchild--;
561
562 if (l->l_wchan == NULL) {
563 /* setrunnable() will release the lock. */
564 setrunnable(l);
565 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
566 /* setrunnable() so we can receive the signal */
567 setrunnable(l);
568 } else {
569 l->l_stat = LSSLEEP;
570 p->p_nrlwps++;
571 lwp_unlock(l);
572 }
573 }
574
575 /*
576 * Wait for an LWP within the current process to exit. If 'lid' is
577 * non-zero, we are waiting for a specific LWP.
578 *
579 * Must be called with p->p_lock held.
580 */
581 int
582 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
583 {
584 const lwpid_t curlid = l->l_lid;
585 proc_t *p = l->l_proc;
586 lwp_t *l2, *next;
587 int error;
588
589 KASSERT(mutex_owned(p->p_lock));
590
591 p->p_nlwpwait++;
592 l->l_waitingfor = lid;
593
594 for (;;) {
595 int nfound;
596
597 /*
598 * Avoid a race between exit1() and sigexit(): if the
599 * process is dumping core, then we need to bail out: call
600 * into lwp_userret() where we will be suspended until the
601 * deed is done.
602 */
603 if ((p->p_sflag & PS_WCORE) != 0) {
604 mutex_exit(p->p_lock);
605 lwp_userret(l);
606 KASSERT(false);
607 }
608
609 /*
610 * First off, drain any detached LWP that is waiting to be
611 * reaped.
612 */
613 while ((l2 = p->p_zomblwp) != NULL) {
614 p->p_zomblwp = NULL;
615 lwp_free(l2, false, false);/* releases proc mutex */
616 mutex_enter(p->p_lock);
617 }
618
619 /*
620 * Now look for an LWP to collect. If the whole process is
621 * exiting, count detached LWPs as eligible to be collected,
622 * but don't drain them here.
623 */
624 nfound = 0;
625 error = 0;
626
627 /*
628 * If given a specific LID, go via pid_table and make sure
629 * it's not detached.
630 */
631 if (lid != 0) {
632 l2 = proc_find_lwp(p, lid);
633 if (l2 == NULL) {
634 error = ESRCH;
635 break;
636 }
637 KASSERT(l2->l_lid == lid);
638 if ((l2->l_prflag & LPR_DETACHED) != 0) {
639 error = EINVAL;
640 break;
641 }
642 } else {
643 l2 = LIST_FIRST(&p->p_lwps);
644 }
645 for (; l2 != NULL; l2 = next) {
646 next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
647
648 /*
649 * If a specific wait and the target is waiting on
650 * us, then avoid deadlock. This also traps LWPs
651 * that try to wait on themselves.
652 *
653 * Note that this does not handle more complicated
654 * cycles, like: t1 -> t2 -> t3 -> t1. The process
655 * can still be killed so it is not a major problem.
656 */
657 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
658 error = EDEADLK;
659 break;
660 }
661 if (l2 == l)
662 continue;
663 if ((l2->l_prflag & LPR_DETACHED) != 0) {
664 nfound += exiting;
665 continue;
666 }
667 if (lid != 0) {
668 /*
669 * Mark this LWP as the first waiter, if there
670 * is no other.
671 */
672 if (l2->l_waiter == 0)
673 l2->l_waiter = curlid;
674 } else if (l2->l_waiter != 0) {
675 /*
676 * It already has a waiter - so don't
677 * collect it. If the waiter doesn't
678 * grab it we'll get another chance
679 * later.
680 */
681 nfound++;
682 continue;
683 }
684 nfound++;
685
686 /* No need to lock the LWP in order to see LSZOMB. */
687 if (l2->l_stat != LSZOMB)
688 continue;
689
690 /*
691 * We're no longer waiting. Reset the "first waiter"
692 * pointer on the target, in case it was us.
693 */
694 l->l_waitingfor = 0;
695 l2->l_waiter = 0;
696 p->p_nlwpwait--;
697 if (departed)
698 *departed = l2->l_lid;
699 sched_lwp_collect(l2);
700
701 /* lwp_free() releases the proc lock. */
702 lwp_free(l2, false, false);
703 mutex_enter(p->p_lock);
704 return 0;
705 }
706
707 if (error != 0)
708 break;
709 if (nfound == 0) {
710 error = ESRCH;
711 break;
712 }
713
714 /*
715 * Note: since the lock will be dropped, need to restart on
716 * wakeup to run all LWPs again, e.g. there may be new LWPs.
717 */
718 if (exiting) {
719 KASSERT(p->p_nlwps > 1);
720 error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
721 break;
722 }
723
724 /*
725 * Break out if all LWPs are in _lwp_wait(). There are
726 * other ways to hang the process with _lwp_wait(), but the
727 * sleep is interruptable so little point checking for them.
728 */
729 if (p->p_nlwpwait == p->p_nlwps) {
730 error = EDEADLK;
731 break;
732 }
733
734 /*
735 * Sit around and wait for something to happen. We'll be
736 * awoken if any of the conditions examined change: if an
737 * LWP exits, is collected, or is detached.
738 */
739 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
740 break;
741 }
742
743 /*
744 * We didn't find any LWPs to collect, we may have received a
745 * signal, or some other condition has caused us to bail out.
746 *
747 * If waiting on a specific LWP, clear the waiters marker: some
748 * other LWP may want it. Then, kick all the remaining waiters
749 * so that they can re-check for zombies and for deadlock.
750 */
751 if (lid != 0) {
752 l2 = proc_find_lwp(p, lid);
753 KASSERT(l2 == NULL || l2->l_lid == lid);
754
755 if (l2 != NULL && l2->l_waiter == curlid)
756 l2->l_waiter = 0;
757 }
758 p->p_nlwpwait--;
759 l->l_waitingfor = 0;
760 cv_broadcast(&p->p_lwpcv);
761
762 return error;
763 }
764
765 /*
766 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
767 * The new LWP is created in state LSIDL and must be set running,
768 * suspended, or stopped by the caller.
769 */
770 int
771 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
772 void *stack, size_t stacksize, void (*func)(void *), void *arg,
773 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
774 const stack_t *sigstk)
775 {
776 struct lwp *l2;
777
778 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
779
780 /*
781 * Enforce limits, excluding the first lwp and kthreads. We must
782 * use the process credentials here when adjusting the limit, as
783 * they are what's tied to the accounting entity. However for
784 * authorizing the action, we'll use the LWP's credentials.
785 */
786 mutex_enter(p2->p_lock);
787 if (p2->p_nlwps != 0 && p2 != &proc0) {
788 uid_t uid = kauth_cred_getuid(p2->p_cred);
789 int count = chglwpcnt(uid, 1);
790 if (__predict_false(count >
791 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
792 if (kauth_authorize_process(l1->l_cred,
793 KAUTH_PROCESS_RLIMIT, p2,
794 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
795 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
796 != 0) {
797 (void)chglwpcnt(uid, -1);
798 mutex_exit(p2->p_lock);
799 return EAGAIN;
800 }
801 }
802 }
803
804 /*
805 * First off, reap any detached LWP waiting to be collected.
806 * We can re-use its LWP structure and turnstile.
807 */
808 if ((l2 = p2->p_zomblwp) != NULL) {
809 p2->p_zomblwp = NULL;
810 lwp_free(l2, true, false);
811 /* p2 now unlocked by lwp_free() */
812 KASSERT(l2->l_ts != NULL);
813 KASSERT(l2->l_inheritedprio == -1);
814 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
815 memset(&l2->l_startzero, 0, sizeof(*l2) -
816 offsetof(lwp_t, l_startzero));
817 } else {
818 mutex_exit(p2->p_lock);
819 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
820 memset(&l2->l_startzero, 0, sizeof(*l2) -
821 offsetof(lwp_t, l_startzero));
822 SLIST_INIT(&l2->l_pi_lenders);
823 }
824
825 /*
826 * Because of lockless lookup via pid_table, the LWP can be locked
827 * and inspected briefly even after it's freed, so a few fields are
828 * kept stable.
829 */
830 KASSERT(l2->l_stat == LSIDL);
831 KASSERT(l2->l_cpu != NULL);
832 KASSERT(l2->l_ts != NULL);
833 KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock);
834
835 l2->l_proc = p2;
836 l2->l_refcnt = 0;
837 l2->l_class = sclass;
838
839 /*
840 * Allocate a process ID for this LWP. We need to do this now
841 * while we can still unwind if it fails. Because we're marked
842 * as LSIDL, no lookups by the ID will succeed.
843 *
844 * N.B. this will always succeed for the first LWP in a process,
845 * because proc_alloc_lwpid() will usurp the slot. Also note
846 * that l2->l_proc MUST be valid so that lookups of the proc
847 * will succeed, even if the LWP itself is not visible.
848 */
849 if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) {
850 pool_cache_put(lwp_cache, l2);
851 return EAGAIN;
852 }
853
854 /*
855 * If vfork(), we want the LWP to run fast and on the same CPU
856 * as its parent, so that it can reuse the VM context and cache
857 * footprint on the local CPU.
858 */
859 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
860 l2->l_kpribase = PRI_KERNEL;
861 l2->l_priority = l1->l_priority;
862 l2->l_inheritedprio = -1;
863 l2->l_protectprio = -1;
864 l2->l_auxprio = -1;
865 l2->l_flag = 0;
866 l2->l_pflag = LP_MPSAFE;
867 TAILQ_INIT(&l2->l_ld_locks);
868 l2->l_psrefs = 0;
869 kmsan_lwp_alloc(l2);
870
871 /*
872 * For vfork, borrow parent's lwpctl context if it exists.
873 * This also causes us to return via lwp_userret.
874 */
875 if (flags & LWP_VFORK && l1->l_lwpctl) {
876 l2->l_lwpctl = l1->l_lwpctl;
877 l2->l_flag |= LW_LWPCTL;
878 }
879
880 /*
881 * If not the first LWP in the process, grab a reference to the
882 * descriptor table.
883 */
884 l2->l_fd = p2->p_fd;
885 if (p2->p_nlwps != 0) {
886 KASSERT(l1->l_proc == p2);
887 fd_hold(l2);
888 } else {
889 KASSERT(l1->l_proc != p2);
890 }
891
892 if (p2->p_flag & PK_SYSTEM) {
893 /* Mark it as a system LWP. */
894 l2->l_flag |= LW_SYSTEM;
895 }
896
897 kdtrace_thread_ctor(NULL, l2);
898 lwp_initspecific(l2);
899 sched_lwp_fork(l1, l2);
900 lwp_update_creds(l2);
901 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
902 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
903 cv_init(&l2->l_sigcv, "sigwait");
904 cv_init(&l2->l_waitcv, "vfork");
905 l2->l_syncobj = &sched_syncobj;
906 PSREF_DEBUG_INIT_LWP(l2);
907
908 if (rnewlwpp != NULL)
909 *rnewlwpp = l2;
910
911 /*
912 * PCU state needs to be saved before calling uvm_lwp_fork() so that
913 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
914 */
915 pcu_save_all(l1);
916 #if PCU_UNIT_COUNT > 0
917 l2->l_pcu_valid = l1->l_pcu_valid;
918 #endif
919
920 uvm_lwp_setuarea(l2, uaddr);
921 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
922
923 mutex_enter(p2->p_lock);
924 if ((flags & LWP_DETACHED) != 0) {
925 l2->l_prflag = LPR_DETACHED;
926 p2->p_ndlwps++;
927 } else
928 l2->l_prflag = 0;
929
930 if (l1->l_proc == p2) {
931 /*
932 * These flags are set while p_lock is held. Copy with
933 * p_lock held too, so the LWP doesn't sneak into the
934 * process without them being set.
935 */
936 l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
937 } else {
938 /* fork(): pending core/exit doesn't apply to child. */
939 l2->l_flag |= (l1->l_flag & LW_WREBOOT);
940 }
941
942 l2->l_sigstk = *sigstk;
943 l2->l_sigmask = *sigmask;
944 TAILQ_INIT(&l2->l_sigpend.sp_info);
945 sigemptyset(&l2->l_sigpend.sp_set);
946 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
947 p2->p_nlwps++;
948 p2->p_nrlwps++;
949
950 KASSERT(l2->l_affinity == NULL);
951
952 /* Inherit the affinity mask. */
953 if (l1->l_affinity) {
954 /*
955 * Note that we hold the state lock while inheriting
956 * the affinity to avoid race with sched_setaffinity().
957 */
958 lwp_lock(l1);
959 if (l1->l_affinity) {
960 kcpuset_use(l1->l_affinity);
961 l2->l_affinity = l1->l_affinity;
962 }
963 lwp_unlock(l1);
964 }
965
966 /* This marks the end of the "must be atomic" section. */
967 mutex_exit(p2->p_lock);
968
969 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
970
971 mutex_enter(&proc_lock);
972 LIST_INSERT_HEAD(&alllwp, l2, l_list);
973 /* Inherit a processor-set */
974 l2->l_psid = l1->l_psid;
975 mutex_exit(&proc_lock);
976
977 SYSCALL_TIME_LWP_INIT(l2);
978
979 if (p2->p_emul->e_lwp_fork)
980 (*p2->p_emul->e_lwp_fork)(l1, l2);
981
982 return (0);
983 }
984
985 /*
986 * Set a new LWP running. If the process is stopping, then the LWP is
987 * created stopped.
988 */
989 void
990 lwp_start(lwp_t *l, int flags)
991 {
992 proc_t *p = l->l_proc;
993
994 mutex_enter(p->p_lock);
995 lwp_lock(l);
996 KASSERT(l->l_stat == LSIDL);
997 if ((flags & LWP_SUSPENDED) != 0) {
998 /* It'll suspend itself in lwp_userret(). */
999 l->l_flag |= LW_WSUSPEND;
1000 }
1001 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1002 KASSERT(l->l_wchan == NULL);
1003 l->l_stat = LSSTOP;
1004 p->p_nrlwps--;
1005 lwp_unlock(l);
1006 } else {
1007 setrunnable(l);
1008 /* LWP now unlocked */
1009 }
1010 mutex_exit(p->p_lock);
1011 }
1012
1013 /*
1014 * Called by MD code when a new LWP begins execution. Must be called
1015 * with the previous LWP locked (so at splsched), or if there is no
1016 * previous LWP, at splsched.
1017 */
1018 void
1019 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1020 {
1021 kmutex_t *lock;
1022
1023 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1024 KASSERT(kpreempt_disabled());
1025 KASSERT(prev != NULL);
1026 KASSERT((prev->l_pflag & LP_RUNNING) != 0);
1027 KASSERT(curcpu()->ci_mtx_count == -2);
1028
1029 /*
1030 * Immediately mark the previous LWP as no longer running and
1031 * unlock (to keep lock wait times short as possible). If a
1032 * zombie, don't touch after clearing LP_RUNNING as it could be
1033 * reaped by another CPU. Use atomic_store_release to ensure
1034 * this -- matches atomic_load_acquire in lwp_free.
1035 */
1036 lock = prev->l_mutex;
1037 if (__predict_false(prev->l_stat == LSZOMB)) {
1038 atomic_store_release(&prev->l_pflag,
1039 prev->l_pflag & ~LP_RUNNING);
1040 } else {
1041 prev->l_pflag &= ~LP_RUNNING;
1042 }
1043 mutex_spin_exit(lock);
1044
1045 /* Correct spin mutex count after mi_switch(). */
1046 curcpu()->ci_mtx_count = 0;
1047
1048 /* Install new VM context. */
1049 if (__predict_true(new_lwp->l_proc->p_vmspace)) {
1050 pmap_activate(new_lwp);
1051 }
1052
1053 /* We remain at IPL_SCHED from mi_switch() - reset it. */
1054 spl0();
1055
1056 LOCKDEBUG_BARRIER(NULL, 0);
1057 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1058
1059 /* For kthreads, acquire kernel lock if not MPSAFE. */
1060 if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
1061 KERNEL_LOCK(1, new_lwp);
1062 }
1063 }
1064
1065 /*
1066 * Exit an LWP.
1067 *
1068 * *** WARNING *** This can be called with (l != curlwp) in error paths.
1069 */
1070 void
1071 lwp_exit(struct lwp *l)
1072 {
1073 struct proc *p = l->l_proc;
1074 struct lwp *l2;
1075 bool current;
1076
1077 current = (l == curlwp);
1078
1079 KASSERT(current || l->l_stat == LSIDL);
1080 KASSERT(current || l->l_target_cpu == NULL);
1081 KASSERT(p == curproc);
1082
1083 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1084
1085 /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
1086 LOCKDEBUG_BARRIER(NULL, 0);
1087 KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
1088
1089 /*
1090 * If we are the last live LWP in a process, we need to exit the
1091 * entire process. We do so with an exit status of zero, because
1092 * it's a "controlled" exit, and because that's what Solaris does.
1093 *
1094 * We are not quite a zombie yet, but for accounting purposes we
1095 * must increment the count of zombies here.
1096 *
1097 * Note: the last LWP's specificdata will be deleted here.
1098 */
1099 mutex_enter(p->p_lock);
1100 if (p->p_nlwps - p->p_nzlwps == 1) {
1101 KASSERT(current == true);
1102 KASSERT(p != &proc0);
1103 exit1(l, 0, 0);
1104 /* NOTREACHED */
1105 }
1106 p->p_nzlwps++;
1107
1108 /*
1109 * Perform any required thread cleanup. Do this early so
1110 * anyone wanting to look us up with lwp_getref_lwpid() will
1111 * fail to find us before we become a zombie.
1112 *
1113 * N.B. this will unlock p->p_lock on our behalf.
1114 */
1115 lwp_thread_cleanup(l);
1116
1117 if (p->p_emul->e_lwp_exit)
1118 (*p->p_emul->e_lwp_exit)(l);
1119
1120 /* Drop filedesc reference. */
1121 fd_free();
1122
1123 /* Release fstrans private data. */
1124 fstrans_lwp_dtor(l);
1125
1126 /* Delete the specificdata while it's still safe to sleep. */
1127 lwp_finispecific(l);
1128
1129 /*
1130 * Release our cached credentials.
1131 */
1132 kauth_cred_free(l->l_cred);
1133 callout_destroy(&l->l_timeout_ch);
1134
1135 /*
1136 * If traced, report LWP exit event to the debugger.
1137 *
1138 * Remove the LWP from the global list.
1139 * Free its LID from the PID namespace if needed.
1140 */
1141 mutex_enter(&proc_lock);
1142
1143 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1144 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1145 mutex_enter(p->p_lock);
1146 if (ISSET(p->p_sflag, PS_WEXIT)) {
1147 mutex_exit(p->p_lock);
1148 /*
1149 * We are exiting, bail out without informing parent
1150 * about a terminating LWP as it would deadlock.
1151 */
1152 } else {
1153 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1154 mutex_enter(&proc_lock);
1155 }
1156 }
1157
1158 LIST_REMOVE(l, l_list);
1159 mutex_exit(&proc_lock);
1160
1161 /*
1162 * Get rid of all references to the LWP that others (e.g. procfs)
1163 * may have, and mark the LWP as a zombie. If the LWP is detached,
1164 * mark it waiting for collection in the proc structure. Note that
1165 * before we can do that, we need to free any other dead, deatched
1166 * LWP waiting to meet its maker.
1167 *
1168 * All conditions need to be observed upon under the same hold of
1169 * p_lock, because if the lock is dropped any of them can change.
1170 */
1171 mutex_enter(p->p_lock);
1172 for (;;) {
1173 if (lwp_drainrefs(l))
1174 continue;
1175 if ((l->l_prflag & LPR_DETACHED) != 0) {
1176 if ((l2 = p->p_zomblwp) != NULL) {
1177 p->p_zomblwp = NULL;
1178 lwp_free(l2, false, false);
1179 /* proc now unlocked */
1180 mutex_enter(p->p_lock);
1181 continue;
1182 }
1183 p->p_zomblwp = l;
1184 }
1185 break;
1186 }
1187
1188 /*
1189 * If we find a pending signal for the process and we have been
1190 * asked to check for signals, then we lose: arrange to have
1191 * all other LWPs in the process check for signals.
1192 */
1193 if ((l->l_flag & LW_PENDSIG) != 0 &&
1194 firstsig(&p->p_sigpend.sp_set) != 0) {
1195 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1196 lwp_lock(l2);
1197 signotify(l2);
1198 lwp_unlock(l2);
1199 }
1200 }
1201
1202 /*
1203 * Release any PCU resources before becoming a zombie.
1204 */
1205 pcu_discard_all(l);
1206
1207 lwp_lock(l);
1208 l->l_stat = LSZOMB;
1209 if (l->l_name != NULL) {
1210 strcpy(l->l_name, "(zombie)");
1211 }
1212 lwp_unlock(l);
1213 p->p_nrlwps--;
1214 cv_broadcast(&p->p_lwpcv);
1215 if (l->l_lwpctl != NULL)
1216 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1217 mutex_exit(p->p_lock);
1218
1219 /*
1220 * We can no longer block. At this point, lwp_free() may already
1221 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1222 *
1223 * Free MD LWP resources.
1224 */
1225 cpu_lwp_free(l, 0);
1226
1227 if (current) {
1228 /* Switch away into oblivion. */
1229 lwp_lock(l);
1230 spc_lock(l->l_cpu);
1231 mi_switch(l);
1232 panic("lwp_exit");
1233 }
1234 }
1235
1236 /*
1237 * Free a dead LWP's remaining resources.
1238 *
1239 * XXXLWP limits.
1240 */
1241 void
1242 lwp_free(struct lwp *l, bool recycle, bool last)
1243 {
1244 struct proc *p = l->l_proc;
1245 struct rusage *ru;
1246 ksiginfoq_t kq;
1247
1248 KASSERT(l != curlwp);
1249 KASSERT(last || mutex_owned(p->p_lock));
1250
1251 /*
1252 * We use the process credentials instead of the lwp credentials here
1253 * because the lwp credentials maybe cached (just after a setuid call)
1254 * and we don't want pay for syncing, since the lwp is going away
1255 * anyway
1256 */
1257 if (p != &proc0 && p->p_nlwps != 1)
1258 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1259
1260 /*
1261 * In the unlikely event that the LWP is still on the CPU,
1262 * then spin until it has switched away.
1263 *
1264 * atomic_load_acquire matches atomic_store_release in
1265 * lwp_startup and mi_switch.
1266 */
1267 while (__predict_false((atomic_load_acquire(&l->l_pflag) & LP_RUNNING)
1268 != 0)) {
1269 SPINLOCK_BACKOFF_HOOK;
1270 }
1271
1272 /*
1273 * Now that the LWP's known off the CPU, reset its state back to
1274 * LSIDL, which defeats anything that might have gotten a hold on
1275 * the LWP via pid_table before the ID was freed. It's important
1276 * to do this with both the LWP locked and p_lock held.
1277 *
1278 * Also reset the CPU and lock pointer back to curcpu(), since the
1279 * LWP will in all likelyhood be cached with the current CPU in
1280 * lwp_cache when we free it and later allocated from there again
1281 * (avoid incidental lock contention).
1282 */
1283 lwp_lock(l);
1284 l->l_stat = LSIDL;
1285 l->l_cpu = curcpu();
1286 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock);
1287
1288 /*
1289 * If this was not the last LWP in the process, then adjust counters
1290 * and unlock. This is done differently for the last LWP in exit1().
1291 */
1292 if (!last) {
1293 /*
1294 * Add the LWP's run time to the process' base value.
1295 * This needs to co-incide with coming off p_lwps.
1296 */
1297 bintime_add(&p->p_rtime, &l->l_rtime);
1298 p->p_pctcpu += l->l_pctcpu;
1299 ru = &p->p_stats->p_ru;
1300 ruadd(ru, &l->l_ru);
1301 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1302 ru->ru_nivcsw += l->l_nivcsw;
1303 LIST_REMOVE(l, l_sibling);
1304 p->p_nlwps--;
1305 p->p_nzlwps--;
1306 if ((l->l_prflag & LPR_DETACHED) != 0)
1307 p->p_ndlwps--;
1308
1309 /*
1310 * Have any LWPs sleeping in lwp_wait() recheck for
1311 * deadlock.
1312 */
1313 cv_broadcast(&p->p_lwpcv);
1314 mutex_exit(p->p_lock);
1315
1316 /* Free the LWP ID. */
1317 mutex_enter(&proc_lock);
1318 proc_free_lwpid(p, l->l_lid);
1319 mutex_exit(&proc_lock);
1320 }
1321
1322 /*
1323 * Destroy the LWP's remaining signal information.
1324 */
1325 ksiginfo_queue_init(&kq);
1326 sigclear(&l->l_sigpend, NULL, &kq);
1327 ksiginfo_queue_drain(&kq);
1328 cv_destroy(&l->l_sigcv);
1329 cv_destroy(&l->l_waitcv);
1330
1331 /*
1332 * Free lwpctl structure and affinity.
1333 */
1334 if (l->l_lwpctl) {
1335 lwp_ctl_free(l);
1336 }
1337 if (l->l_affinity) {
1338 kcpuset_unuse(l->l_affinity, NULL);
1339 l->l_affinity = NULL;
1340 }
1341
1342 /*
1343 * Free remaining data structures and the LWP itself unless the
1344 * caller wants to recycle.
1345 */
1346 if (l->l_name != NULL)
1347 kmem_free(l->l_name, MAXCOMLEN);
1348
1349 kmsan_lwp_free(l);
1350 kcov_lwp_free(l);
1351 cpu_lwp_free2(l);
1352 uvm_lwp_exit(l);
1353
1354 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1355 KASSERT(l->l_inheritedprio == -1);
1356 KASSERT(l->l_blcnt == 0);
1357 kdtrace_thread_dtor(NULL, l);
1358 if (!recycle)
1359 pool_cache_put(lwp_cache, l);
1360 }
1361
1362 /*
1363 * Migrate the LWP to the another CPU. Unlocks the LWP.
1364 */
1365 void
1366 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1367 {
1368 struct schedstate_percpu *tspc;
1369 int lstat = l->l_stat;
1370
1371 KASSERT(lwp_locked(l, NULL));
1372 KASSERT(tci != NULL);
1373
1374 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1375 if ((l->l_pflag & LP_RUNNING) != 0) {
1376 lstat = LSONPROC;
1377 }
1378
1379 /*
1380 * The destination CPU could be changed while previous migration
1381 * was not finished.
1382 */
1383 if (l->l_target_cpu != NULL) {
1384 l->l_target_cpu = tci;
1385 lwp_unlock(l);
1386 return;
1387 }
1388
1389 /* Nothing to do if trying to migrate to the same CPU */
1390 if (l->l_cpu == tci) {
1391 lwp_unlock(l);
1392 return;
1393 }
1394
1395 KASSERT(l->l_target_cpu == NULL);
1396 tspc = &tci->ci_schedstate;
1397 switch (lstat) {
1398 case LSRUN:
1399 l->l_target_cpu = tci;
1400 break;
1401 case LSSLEEP:
1402 l->l_cpu = tci;
1403 break;
1404 case LSIDL:
1405 case LSSTOP:
1406 case LSSUSPENDED:
1407 l->l_cpu = tci;
1408 if (l->l_wchan == NULL) {
1409 lwp_unlock_to(l, tspc->spc_lwplock);
1410 return;
1411 }
1412 break;
1413 case LSONPROC:
1414 l->l_target_cpu = tci;
1415 spc_lock(l->l_cpu);
1416 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1417 /* spc now unlocked */
1418 break;
1419 }
1420 lwp_unlock(l);
1421 }
1422
1423 #define lwp_find_exclude(l) \
1424 ((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB)
1425
1426 /*
1427 * Find the LWP in the process. Arguments may be zero, in such case,
1428 * the calling process and first LWP in the list will be used.
1429 * On success - returns proc locked.
1430 *
1431 * => pid == 0 -> look in curproc.
1432 * => pid == -1 -> match any proc.
1433 * => otherwise look up the proc.
1434 *
1435 * => lid == 0 -> first LWP in the proc
1436 * => otherwise specific LWP
1437 */
1438 struct lwp *
1439 lwp_find2(pid_t pid, lwpid_t lid)
1440 {
1441 proc_t *p;
1442 lwp_t *l;
1443
1444 /* First LWP of specified proc. */
1445 if (lid == 0) {
1446 switch (pid) {
1447 case -1:
1448 /* No lookup keys. */
1449 return NULL;
1450 case 0:
1451 p = curproc;
1452 mutex_enter(p->p_lock);
1453 break;
1454 default:
1455 mutex_enter(&proc_lock);
1456 p = proc_find(pid);
1457 if (__predict_false(p == NULL)) {
1458 mutex_exit(&proc_lock);
1459 return NULL;
1460 }
1461 mutex_enter(p->p_lock);
1462 mutex_exit(&proc_lock);
1463 break;
1464 }
1465 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1466 if (__predict_true(!lwp_find_exclude(l)))
1467 break;
1468 }
1469 goto out;
1470 }
1471
1472 l = proc_find_lwp_acquire_proc(lid, &p);
1473 if (l == NULL)
1474 return NULL;
1475 KASSERT(p != NULL);
1476 KASSERT(mutex_owned(p->p_lock));
1477
1478 if (__predict_false(lwp_find_exclude(l))) {
1479 l = NULL;
1480 goto out;
1481 }
1482
1483 /* Apply proc filter, if applicable. */
1484 switch (pid) {
1485 case -1:
1486 /* Match anything. */
1487 break;
1488 case 0:
1489 if (p != curproc)
1490 l = NULL;
1491 break;
1492 default:
1493 if (p->p_pid != pid)
1494 l = NULL;
1495 break;
1496 }
1497
1498 out:
1499 if (__predict_false(l == NULL)) {
1500 mutex_exit(p->p_lock);
1501 }
1502 return l;
1503 }
1504
1505 /*
1506 * Look up a live LWP within the specified process.
1507 *
1508 * Must be called with p->p_lock held (as it looks at the radix tree,
1509 * and also wants to exclude idle and zombie LWPs).
1510 */
1511 struct lwp *
1512 lwp_find(struct proc *p, lwpid_t id)
1513 {
1514 struct lwp *l;
1515
1516 KASSERT(mutex_owned(p->p_lock));
1517
1518 l = proc_find_lwp(p, id);
1519 KASSERT(l == NULL || l->l_lid == id);
1520
1521 /*
1522 * No need to lock - all of these conditions will
1523 * be visible with the process level mutex held.
1524 */
1525 if (__predict_false(l != NULL && lwp_find_exclude(l)))
1526 l = NULL;
1527
1528 return l;
1529 }
1530
1531 /*
1532 * Update an LWP's cached credentials to mirror the process' master copy.
1533 *
1534 * This happens early in the syscall path, on user trap, and on LWP
1535 * creation. A long-running LWP can also voluntarily choose to update
1536 * its credentials by calling this routine. This may be called from
1537 * LWP_CACHE_CREDS(), which checks l->l_prflag & LPR_CRMOD beforehand.
1538 */
1539 void
1540 lwp_update_creds(struct lwp *l)
1541 {
1542 kauth_cred_t oc;
1543 struct proc *p;
1544
1545 p = l->l_proc;
1546 oc = l->l_cred;
1547
1548 mutex_enter(p->p_lock);
1549 kauth_cred_hold(p->p_cred);
1550 l->l_cred = p->p_cred;
1551 l->l_prflag &= ~LPR_CRMOD;
1552 mutex_exit(p->p_lock);
1553 if (oc != NULL)
1554 kauth_cred_free(oc);
1555 }
1556
1557 /*
1558 * Verify that an LWP is locked, and optionally verify that the lock matches
1559 * one we specify.
1560 */
1561 int
1562 lwp_locked(struct lwp *l, kmutex_t *mtx)
1563 {
1564 kmutex_t *cur = l->l_mutex;
1565
1566 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1567 }
1568
1569 /*
1570 * Lend a new mutex to an LWP. The old mutex must be held.
1571 */
1572 kmutex_t *
1573 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1574 {
1575 kmutex_t *oldmtx = l->l_mutex;
1576
1577 KASSERT(mutex_owned(oldmtx));
1578
1579 atomic_store_release(&l->l_mutex, mtx);
1580 return oldmtx;
1581 }
1582
1583 /*
1584 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1585 * must be held.
1586 */
1587 void
1588 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1589 {
1590 kmutex_t *old;
1591
1592 KASSERT(lwp_locked(l, NULL));
1593
1594 old = l->l_mutex;
1595 atomic_store_release(&l->l_mutex, mtx);
1596 mutex_spin_exit(old);
1597 }
1598
1599 int
1600 lwp_trylock(struct lwp *l)
1601 {
1602 kmutex_t *old;
1603
1604 for (;;) {
1605 if (!mutex_tryenter(old = atomic_load_consume(&l->l_mutex)))
1606 return 0;
1607 if (__predict_true(atomic_load_relaxed(&l->l_mutex) == old))
1608 return 1;
1609 mutex_spin_exit(old);
1610 }
1611 }
1612
1613 void
1614 lwp_unsleep(lwp_t *l, bool unlock)
1615 {
1616
1617 KASSERT(mutex_owned(l->l_mutex));
1618 (*l->l_syncobj->sobj_unsleep)(l, unlock);
1619 }
1620
1621 /*
1622 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1623 * set.
1624 */
1625 void
1626 lwp_userret(struct lwp *l)
1627 {
1628 struct proc *p;
1629 int sig;
1630
1631 KASSERT(l == curlwp);
1632 KASSERT(l->l_stat == LSONPROC);
1633 p = l->l_proc;
1634
1635 /*
1636 * It is safe to do this read unlocked on a MP system..
1637 */
1638 while ((l->l_flag & LW_USERRET) != 0) {
1639 /*
1640 * Process pending signals first, unless the process
1641 * is dumping core or exiting, where we will instead
1642 * enter the LW_WSUSPEND case below.
1643 */
1644 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1645 LW_PENDSIG) {
1646 mutex_enter(p->p_lock);
1647 while ((sig = issignal(l)) != 0)
1648 postsig(sig);
1649 mutex_exit(p->p_lock);
1650 }
1651
1652 /*
1653 * Core-dump or suspend pending.
1654 *
1655 * In case of core dump, suspend ourselves, so that the kernel
1656 * stack and therefore the userland registers saved in the
1657 * trapframe are around for coredump() to write them out.
1658 * We also need to save any PCU resources that we have so that
1659 * they accessible for coredump(). We issue a wakeup on
1660 * p->p_lwpcv so that sigexit() will write the core file out
1661 * once all other LWPs are suspended.
1662 */
1663 if ((l->l_flag & LW_WSUSPEND) != 0) {
1664 pcu_save_all(l);
1665 mutex_enter(p->p_lock);
1666 p->p_nrlwps--;
1667 cv_broadcast(&p->p_lwpcv);
1668 lwp_lock(l);
1669 l->l_stat = LSSUSPENDED;
1670 lwp_unlock(l);
1671 mutex_exit(p->p_lock);
1672 lwp_lock(l);
1673 spc_lock(l->l_cpu);
1674 mi_switch(l);
1675 }
1676
1677 /* Process is exiting. */
1678 if ((l->l_flag & LW_WEXIT) != 0) {
1679 lwp_exit(l);
1680 KASSERT(0);
1681 /* NOTREACHED */
1682 }
1683
1684 /* update lwpctl processor (for vfork child_return) */
1685 if (l->l_flag & LW_LWPCTL) {
1686 lwp_lock(l);
1687 KASSERT(kpreempt_disabled());
1688 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1689 l->l_lwpctl->lc_pctr++;
1690 l->l_flag &= ~LW_LWPCTL;
1691 lwp_unlock(l);
1692 }
1693 }
1694 }
1695
1696 /*
1697 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1698 */
1699 void
1700 lwp_need_userret(struct lwp *l)
1701 {
1702
1703 KASSERT(!cpu_intr_p());
1704 KASSERT(lwp_locked(l, NULL));
1705
1706 /*
1707 * If the LWP is in any state other than LSONPROC, we know that it
1708 * is executing in-kernel and will hit userret() on the way out.
1709 *
1710 * If the LWP is curlwp, then we know we'll be back out to userspace
1711 * soon (can't be called from a hardware interrupt here).
1712 *
1713 * Otherwise, we can't be sure what the LWP is doing, so first make
1714 * sure the update to l_flag will be globally visible, and then
1715 * force the LWP to take a trip through trap() where it will do
1716 * userret().
1717 */
1718 if (l->l_stat == LSONPROC && l != curlwp) {
1719 membar_producer();
1720 cpu_signotify(l);
1721 }
1722 }
1723
1724 /*
1725 * Add one reference to an LWP. This will prevent the LWP from
1726 * exiting, thus keep the lwp structure and PCB around to inspect.
1727 */
1728 void
1729 lwp_addref(struct lwp *l)
1730 {
1731 KASSERT(mutex_owned(l->l_proc->p_lock));
1732 KASSERT(l->l_stat != LSZOMB);
1733 l->l_refcnt++;
1734 }
1735
1736 /*
1737 * Remove one reference to an LWP. If this is the last reference,
1738 * then we must finalize the LWP's death.
1739 */
1740 void
1741 lwp_delref(struct lwp *l)
1742 {
1743 struct proc *p = l->l_proc;
1744
1745 mutex_enter(p->p_lock);
1746 lwp_delref2(l);
1747 mutex_exit(p->p_lock);
1748 }
1749
1750 /*
1751 * Remove one reference to an LWP. If this is the last reference,
1752 * then we must finalize the LWP's death. The proc mutex is held
1753 * on entry.
1754 */
1755 void
1756 lwp_delref2(struct lwp *l)
1757 {
1758 struct proc *p = l->l_proc;
1759
1760 KASSERT(mutex_owned(p->p_lock));
1761 KASSERT(l->l_stat != LSZOMB);
1762 KASSERT(l->l_refcnt > 0);
1763
1764 if (--l->l_refcnt == 0)
1765 cv_broadcast(&p->p_lwpcv);
1766 }
1767
1768 /*
1769 * Drain all references to the current LWP. Returns true if
1770 * we blocked.
1771 */
1772 bool
1773 lwp_drainrefs(struct lwp *l)
1774 {
1775 struct proc *p = l->l_proc;
1776 bool rv = false;
1777
1778 KASSERT(mutex_owned(p->p_lock));
1779
1780 l->l_prflag |= LPR_DRAINING;
1781
1782 while (l->l_refcnt > 0) {
1783 rv = true;
1784 cv_wait(&p->p_lwpcv, p->p_lock);
1785 }
1786 return rv;
1787 }
1788
1789 /*
1790 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1791 * be held.
1792 */
1793 bool
1794 lwp_alive(lwp_t *l)
1795 {
1796
1797 KASSERT(mutex_owned(l->l_proc->p_lock));
1798
1799 switch (l->l_stat) {
1800 case LSSLEEP:
1801 case LSRUN:
1802 case LSONPROC:
1803 case LSSTOP:
1804 case LSSUSPENDED:
1805 return true;
1806 default:
1807 return false;
1808 }
1809 }
1810
1811 /*
1812 * Return first live LWP in the process.
1813 */
1814 lwp_t *
1815 lwp_find_first(proc_t *p)
1816 {
1817 lwp_t *l;
1818
1819 KASSERT(mutex_owned(p->p_lock));
1820
1821 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1822 if (lwp_alive(l)) {
1823 return l;
1824 }
1825 }
1826
1827 return NULL;
1828 }
1829
1830 /*
1831 * Allocate a new lwpctl structure for a user LWP.
1832 */
1833 int
1834 lwp_ctl_alloc(vaddr_t *uaddr)
1835 {
1836 lcproc_t *lp;
1837 u_int bit, i, offset;
1838 struct uvm_object *uao;
1839 int error;
1840 lcpage_t *lcp;
1841 proc_t *p;
1842 lwp_t *l;
1843
1844 l = curlwp;
1845 p = l->l_proc;
1846
1847 /* don't allow a vforked process to create lwp ctls */
1848 if (p->p_lflag & PL_PPWAIT)
1849 return EBUSY;
1850
1851 if (l->l_lcpage != NULL) {
1852 lcp = l->l_lcpage;
1853 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1854 return 0;
1855 }
1856
1857 /* First time around, allocate header structure for the process. */
1858 if ((lp = p->p_lwpctl) == NULL) {
1859 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1860 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1861 lp->lp_uao = NULL;
1862 TAILQ_INIT(&lp->lp_pages);
1863 mutex_enter(p->p_lock);
1864 if (p->p_lwpctl == NULL) {
1865 p->p_lwpctl = lp;
1866 mutex_exit(p->p_lock);
1867 } else {
1868 mutex_exit(p->p_lock);
1869 mutex_destroy(&lp->lp_lock);
1870 kmem_free(lp, sizeof(*lp));
1871 lp = p->p_lwpctl;
1872 }
1873 }
1874
1875 /*
1876 * Set up an anonymous memory region to hold the shared pages.
1877 * Map them into the process' address space. The user vmspace
1878 * gets the first reference on the UAO.
1879 */
1880 mutex_enter(&lp->lp_lock);
1881 if (lp->lp_uao == NULL) {
1882 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1883 lp->lp_cur = 0;
1884 lp->lp_max = LWPCTL_UAREA_SZ;
1885 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1886 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1887 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1888 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1889 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1890 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1891 if (error != 0) {
1892 uao_detach(lp->lp_uao);
1893 lp->lp_uao = NULL;
1894 mutex_exit(&lp->lp_lock);
1895 return error;
1896 }
1897 }
1898
1899 /* Get a free block and allocate for this LWP. */
1900 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1901 if (lcp->lcp_nfree != 0)
1902 break;
1903 }
1904 if (lcp == NULL) {
1905 /* Nothing available - try to set up a free page. */
1906 if (lp->lp_cur == lp->lp_max) {
1907 mutex_exit(&lp->lp_lock);
1908 return ENOMEM;
1909 }
1910 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1911
1912 /*
1913 * Wire the next page down in kernel space. Since this
1914 * is a new mapping, we must add a reference.
1915 */
1916 uao = lp->lp_uao;
1917 (*uao->pgops->pgo_reference)(uao);
1918 lcp->lcp_kaddr = vm_map_min(kernel_map);
1919 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1920 uao, lp->lp_cur, PAGE_SIZE,
1921 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1922 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1923 if (error != 0) {
1924 mutex_exit(&lp->lp_lock);
1925 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1926 (*uao->pgops->pgo_detach)(uao);
1927 return error;
1928 }
1929 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1930 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1931 if (error != 0) {
1932 mutex_exit(&lp->lp_lock);
1933 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1934 lcp->lcp_kaddr + PAGE_SIZE);
1935 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1936 return error;
1937 }
1938 /* Prepare the page descriptor and link into the list. */
1939 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1940 lp->lp_cur += PAGE_SIZE;
1941 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1942 lcp->lcp_rotor = 0;
1943 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1944 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1945 }
1946 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1947 if (++i >= LWPCTL_BITMAP_ENTRIES)
1948 i = 0;
1949 }
1950 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1951 lcp->lcp_bitmap[i] ^= (1U << bit);
1952 lcp->lcp_rotor = i;
1953 lcp->lcp_nfree--;
1954 l->l_lcpage = lcp;
1955 offset = (i << 5) + bit;
1956 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1957 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1958 mutex_exit(&lp->lp_lock);
1959
1960 KPREEMPT_DISABLE(l);
1961 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
1962 KPREEMPT_ENABLE(l);
1963
1964 return 0;
1965 }
1966
1967 /*
1968 * Free an lwpctl structure back to the per-process list.
1969 */
1970 void
1971 lwp_ctl_free(lwp_t *l)
1972 {
1973 struct proc *p = l->l_proc;
1974 lcproc_t *lp;
1975 lcpage_t *lcp;
1976 u_int map, offset;
1977
1978 /* don't free a lwp context we borrowed for vfork */
1979 if (p->p_lflag & PL_PPWAIT) {
1980 l->l_lwpctl = NULL;
1981 return;
1982 }
1983
1984 lp = p->p_lwpctl;
1985 KASSERT(lp != NULL);
1986
1987 lcp = l->l_lcpage;
1988 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1989 KASSERT(offset < LWPCTL_PER_PAGE);
1990
1991 mutex_enter(&lp->lp_lock);
1992 lcp->lcp_nfree++;
1993 map = offset >> 5;
1994 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
1995 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1996 lcp->lcp_rotor = map;
1997 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1998 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1999 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
2000 }
2001 mutex_exit(&lp->lp_lock);
2002 }
2003
2004 /*
2005 * Process is exiting; tear down lwpctl state. This can only be safely
2006 * called by the last LWP in the process.
2007 */
2008 void
2009 lwp_ctl_exit(void)
2010 {
2011 lcpage_t *lcp, *next;
2012 lcproc_t *lp;
2013 proc_t *p;
2014 lwp_t *l;
2015
2016 l = curlwp;
2017 l->l_lwpctl = NULL;
2018 l->l_lcpage = NULL;
2019 p = l->l_proc;
2020 lp = p->p_lwpctl;
2021
2022 KASSERT(lp != NULL);
2023 KASSERT(p->p_nlwps == 1);
2024
2025 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
2026 next = TAILQ_NEXT(lcp, lcp_chain);
2027 uvm_unmap(kernel_map, lcp->lcp_kaddr,
2028 lcp->lcp_kaddr + PAGE_SIZE);
2029 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
2030 }
2031
2032 if (lp->lp_uao != NULL) {
2033 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
2034 lp->lp_uva + LWPCTL_UAREA_SZ);
2035 }
2036
2037 mutex_destroy(&lp->lp_lock);
2038 kmem_free(lp, sizeof(*lp));
2039 p->p_lwpctl = NULL;
2040 }
2041
2042 /*
2043 * Return the current LWP's "preemption counter". Used to detect
2044 * preemption across operations that can tolerate preemption without
2045 * crashing, but which may generate incorrect results if preempted.
2046 */
2047 uint64_t
2048 lwp_pctr(void)
2049 {
2050
2051 return curlwp->l_ncsw;
2052 }
2053
2054 /*
2055 * Set an LWP's private data pointer.
2056 */
2057 int
2058 lwp_setprivate(struct lwp *l, void *ptr)
2059 {
2060 int error = 0;
2061
2062 l->l_private = ptr;
2063 #ifdef __HAVE_CPU_LWP_SETPRIVATE
2064 error = cpu_lwp_setprivate(l, ptr);
2065 #endif
2066 return error;
2067 }
2068
2069 /*
2070 * Perform any thread-related cleanup on LWP exit.
2071 * N.B. l->l_proc->p_lock must be HELD on entry but will
2072 * be released before returning!
2073 */
2074 void
2075 lwp_thread_cleanup(struct lwp *l)
2076 {
2077
2078 KASSERT(mutex_owned(l->l_proc->p_lock));
2079 mutex_exit(l->l_proc->p_lock);
2080
2081 /*
2082 * If the LWP has robust futexes, release them all
2083 * now.
2084 */
2085 if (__predict_false(l->l_robust_head != 0)) {
2086 futex_release_all_lwp(l);
2087 }
2088 }
2089
2090 #if defined(DDB)
2091 #include <machine/pcb.h>
2092
2093 void
2094 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2095 {
2096 lwp_t *l;
2097
2098 LIST_FOREACH(l, &alllwp, l_list) {
2099 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2100
2101 if (addr < stack || stack + KSTACK_SIZE <= addr) {
2102 continue;
2103 }
2104 (*pr)("%p is %p+%zu, LWP %p's stack\n",
2105 (void *)addr, (void *)stack,
2106 (size_t)(addr - stack), l);
2107 }
2108 }
2109 #endif /* defined(DDB) */
2110