kern_lwp.c revision 1.259 1 /* $NetBSD: kern_lwp.c,v 1.259 2023/10/04 20:42:38 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020, 2023
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Nathan J. Williams, and Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Overview
35 *
36 * Lightweight processes (LWPs) are the basic unit or thread of
37 * execution within the kernel. The core state of an LWP is described
38 * by "struct lwp", also known as lwp_t.
39 *
40 * Each LWP is contained within a process (described by "struct proc"),
41 * Every process contains at least one LWP, but may contain more. The
42 * process describes attributes shared among all of its LWPs such as a
43 * private address space, global execution state (stopped, active,
44 * zombie, ...), signal disposition and so on. On a multiprocessor
45 * machine, multiple LWPs be executing concurrently in the kernel.
46 *
47 * Execution states
48 *
49 * At any given time, an LWP has overall state that is described by
50 * lwp::l_stat. The states are broken into two sets below. The first
51 * set is guaranteed to represent the absolute, current state of the
52 * LWP:
53 *
54 * LSONPROC
55 *
56 * On processor: the LWP is executing on a CPU, either in the
57 * kernel or in user space.
58 *
59 * LSRUN
60 *
61 * Runnable: the LWP is parked on a run queue, and may soon be
62 * chosen to run by an idle processor, or by a processor that
63 * has been asked to preempt a currently runnning but lower
64 * priority LWP.
65 *
66 * LSIDL
67 *
68 * Idle: the LWP has been created but has not yet executed, or
69 * it has ceased executing a unit of work and is waiting to be
70 * started again. This state exists so that the LWP can occupy
71 * a slot in the process & PID table, but without having to
72 * worry about being touched; lookups of the LWP by ID will
73 * fail while in this state. The LWP will become visible for
74 * lookup once its state transitions further. Some special
75 * kernel threads also (ab)use this state to indicate that they
76 * are idle (soft interrupts and idle LWPs).
77 *
78 * LSSUSPENDED:
79 *
80 * Suspended: the LWP has had its execution suspended by
81 * another LWP in the same process using the _lwp_suspend()
82 * system call. User-level LWPs also enter the suspended
83 * state when the system is shutting down.
84 *
85 * The second set represent a "statement of intent" on behalf of the
86 * LWP. The LWP may in fact be executing on a processor, may be
87 * sleeping or idle. It is expected to take the necessary action to
88 * stop executing or become "running" again within a short timeframe.
89 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
90 * Importantly, it indicates that its state is tied to a CPU.
91 *
92 * LSZOMB:
93 *
94 * Dead or dying: the LWP has released most of its resources
95 * and is about to switch away into oblivion, or has already
96 * switched away. When it switches away, its few remaining
97 * resources can be collected.
98 *
99 * LSSLEEP:
100 *
101 * Sleeping: the LWP has entered itself onto a sleep queue, and
102 * has switched away or will switch away shortly to allow other
103 * LWPs to run on the CPU.
104 *
105 * LSSTOP:
106 *
107 * Stopped: the LWP has been stopped as a result of a job
108 * control signal, or as a result of the ptrace() interface.
109 *
110 * Stopped LWPs may run briefly within the kernel to handle
111 * signals that they receive, but will not return to user space
112 * until their process' state is changed away from stopped.
113 *
114 * Single LWPs within a process can not be set stopped
115 * selectively: all actions that can stop or continue LWPs
116 * occur at the process level.
117 *
118 * State transitions
119 *
120 * Note that the LSSTOP state may only be set when returning to
121 * user space in userret(), or when sleeping interruptably. The
122 * LSSUSPENDED state may only be set in userret(). Before setting
123 * those states, we try to ensure that the LWPs will release all
124 * locks that they hold, and at a minimum try to ensure that the
125 * LWP can be set runnable again by a signal.
126 *
127 * LWPs may transition states in the following ways:
128 *
129 * RUN -------> ONPROC ONPROC -----> RUN
130 * > SLEEP
131 * > STOPPED
132 * > SUSPENDED
133 * > ZOMB
134 * > IDL (special cases)
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > ONPROC (special cases)
143 *
144 * Some state transitions are only possible with kernel threads (eg
145 * ONPROC -> IDL) and happen under tightly controlled circumstances
146 * free of unwanted side effects.
147 *
148 * Migration
149 *
150 * Migration of threads from one CPU to another could be performed
151 * internally by the scheduler via sched_takecpu() or sched_catchlwp()
152 * functions. The universal lwp_migrate() function should be used for
153 * any other cases. Subsystems in the kernel must be aware that CPU
154 * of LWP may change, while it is not locked.
155 *
156 * Locking
157 *
158 * The majority of fields in 'struct lwp' are covered by a single,
159 * general spin lock pointed to by lwp::l_mutex. The locks covering
160 * each field are documented in sys/lwp.h.
161 *
162 * State transitions must be made with the LWP's general lock held,
163 * and may cause the LWP's lock pointer to change. Manipulation of
164 * the general lock is not performed directly, but through calls to
165 * lwp_lock(), lwp_unlock() and others. It should be noted that the
166 * adaptive locks are not allowed to be released while the LWP's lock
167 * is being held (unlike for other spin-locks).
168 *
169 * States and their associated locks:
170 *
171 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
172 *
173 * Always covered by spc_lwplock, which protects LWPs not
174 * associated with any other sync object. This is a per-CPU
175 * lock and matches lwp::l_cpu.
176 *
177 * LSRUN:
178 *
179 * Always covered by spc_mutex, which protects the run queues.
180 * This is a per-CPU lock and matches lwp::l_cpu.
181 *
182 * LSSLEEP:
183 *
184 * Covered by a lock associated with the sleep queue (sometimes
185 * a turnstile sleep queue) that the LWP resides on. This can
186 * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
187 *
188 * LSSTOP:
189 *
190 * If the LWP was previously sleeping (l_wchan != NULL), then
191 * l_mutex references the sleep queue lock. If the LWP was
192 * runnable or on the CPU when halted, or has been removed from
193 * the sleep queue since halted, then the lock is spc_lwplock.
194 *
195 * The lock order is as follows:
196 *
197 * sleepq -> turnstile -> spc_lwplock -> spc_mutex
198 *
199 * Each process has a scheduler state lock (proc::p_lock), and a
200 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
201 * so on. When an LWP is to be entered into or removed from one of the
202 * following states, p_lock must be held and the process wide counters
203 * adjusted:
204 *
205 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
206 *
207 * (But not always for kernel threads. There are some special cases
208 * as mentioned above: soft interrupts, and the idle loops.)
209 *
210 * Note that an LWP is considered running or likely to run soon if in
211 * one of the following states. This affects the value of p_nrlwps:
212 *
213 * LSRUN, LSONPROC, LSSLEEP
214 *
215 * p_lock does not need to be held when transitioning among these
216 * three states, hence p_lock is rarely taken for state transitions.
217 */
218
219 #include <sys/cdefs.h>
220 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.259 2023/10/04 20:42:38 ad Exp $");
221
222 #include "opt_ddb.h"
223 #include "opt_lockdebug.h"
224 #include "opt_dtrace.h"
225
226 #define _LWP_API_PRIVATE
227
228 #include <sys/param.h>
229 #include <sys/systm.h>
230 #include <sys/cpu.h>
231 #include <sys/pool.h>
232 #include <sys/proc.h>
233 #include <sys/syscallargs.h>
234 #include <sys/syscall_stats.h>
235 #include <sys/kauth.h>
236 #include <sys/sleepq.h>
237 #include <sys/lockdebug.h>
238 #include <sys/kmem.h>
239 #include <sys/pset.h>
240 #include <sys/intr.h>
241 #include <sys/lwpctl.h>
242 #include <sys/atomic.h>
243 #include <sys/filedesc.h>
244 #include <sys/fstrans.h>
245 #include <sys/dtrace_bsd.h>
246 #include <sys/sdt.h>
247 #include <sys/ptrace.h>
248 #include <sys/xcall.h>
249 #include <sys/uidinfo.h>
250 #include <sys/sysctl.h>
251 #include <sys/psref.h>
252 #include <sys/msan.h>
253 #include <sys/kcov.h>
254 #include <sys/cprng.h>
255 #include <sys/futex.h>
256
257 #include <uvm/uvm_extern.h>
258 #include <uvm/uvm_object.h>
259
260 static pool_cache_t lwp_cache __read_mostly;
261 struct lwplist alllwp __cacheline_aligned;
262
263 static int lwp_ctor(void *, void *, int);
264 static void lwp_dtor(void *, void *);
265
266 /* DTrace proc provider probes */
267 SDT_PROVIDER_DEFINE(proc);
268
269 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
270 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
271 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
272
273 struct turnstile turnstile0 __cacheline_aligned;
274 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
275 #ifdef LWP0_CPU_INFO
276 .l_cpu = LWP0_CPU_INFO,
277 #endif
278 #ifdef LWP0_MD_INITIALIZER
279 .l_md = LWP0_MD_INITIALIZER,
280 #endif
281 .l_proc = &proc0,
282 .l_lid = 0, /* we own proc0's slot in the pid table */
283 .l_flag = LW_SYSTEM,
284 .l_stat = LSONPROC,
285 .l_ts = &turnstile0,
286 .l_syncobj = &sched_syncobj,
287 .l_refcnt = 0,
288 .l_priority = PRI_USER + NPRI_USER - 1,
289 .l_inheritedprio = -1,
290 .l_class = SCHED_OTHER,
291 .l_psid = PS_NONE,
292 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
293 .l_name = __UNCONST("swapper"),
294 .l_fd = &filedesc0,
295 };
296
297 static int
298 lwp_maxlwp(void)
299 {
300 /* Assume 1 LWP per 1MiB. */
301 uint64_t lwps_per = ctob(physmem) / (1024 * 1024);
302
303 return MAX(MIN(MAXMAXLWP, lwps_per), MAXLWP);
304 }
305
306 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
307
308 /*
309 * sysctl helper routine for kern.maxlwp. Ensures that the new
310 * values are not too low or too high.
311 */
312 static int
313 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
314 {
315 int error, nmaxlwp;
316 struct sysctlnode node;
317
318 nmaxlwp = maxlwp;
319 node = *rnode;
320 node.sysctl_data = &nmaxlwp;
321 error = sysctl_lookup(SYSCTLFN_CALL(&node));
322 if (error || newp == NULL)
323 return error;
324
325 if (nmaxlwp < 0 || nmaxlwp >= MAXMAXLWP)
326 return EINVAL;
327 if (nmaxlwp > lwp_maxlwp())
328 return EINVAL;
329 maxlwp = nmaxlwp;
330
331 return 0;
332 }
333
334 static void
335 sysctl_kern_lwp_setup(void)
336 {
337 sysctl_createv(NULL, 0, NULL, NULL,
338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
339 CTLTYPE_INT, "maxlwp",
340 SYSCTL_DESCR("Maximum number of simultaneous threads"),
341 sysctl_kern_maxlwp, 0, NULL, 0,
342 CTL_KERN, CTL_CREATE, CTL_EOL);
343 }
344
345 void
346 lwpinit(void)
347 {
348
349 LIST_INIT(&alllwp);
350 lwpinit_specificdata();
351 /*
352 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
353 * calls will exit before memory of LWPs is returned to the pool, where
354 * KVA of LWP structure might be freed and re-used for other purposes.
355 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
356 * callers, therefore a regular passive serialization barrier will
357 * do the job.
358 */
359 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0,
360 PR_PSERIALIZE, "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL);
361
362 maxlwp = lwp_maxlwp();
363 sysctl_kern_lwp_setup();
364 }
365
366 void
367 lwp0_init(void)
368 {
369 struct lwp *l = &lwp0;
370
371 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
372
373 LIST_INSERT_HEAD(&alllwp, l, l_list);
374
375 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
376 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
377 cv_init(&l->l_sigcv, "sigwait");
378 cv_init(&l->l_waitcv, "vfork");
379
380 kauth_cred_hold(proc0.p_cred);
381 l->l_cred = proc0.p_cred;
382
383 kdtrace_thread_ctor(NULL, l);
384 lwp_initspecific(l);
385
386 SYSCALL_TIME_LWP_INIT(l);
387 }
388
389 /*
390 * Initialize the non-zeroed portion of an lwp_t.
391 */
392 static int
393 lwp_ctor(void *arg, void *obj, int flags)
394 {
395 lwp_t *l = obj;
396
397 l->l_stat = LSIDL;
398 l->l_cpu = curcpu();
399 l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock;
400 l->l_ts = kmem_alloc(sizeof(*l->l_ts), flags == PR_WAITOK ?
401 KM_SLEEP : KM_NOSLEEP);
402
403 if (l->l_ts == NULL) {
404 return ENOMEM;
405 } else {
406 turnstile_ctor(l->l_ts);
407 return 0;
408 }
409 }
410
411 static void
412 lwp_dtor(void *arg, void *obj)
413 {
414 lwp_t *l = obj;
415
416 /*
417 * The value of l->l_cpu must still be valid at this point.
418 */
419 KASSERT(l->l_cpu != NULL);
420
421 /*
422 * We can't return turnstile0 to the pool (it didn't come from it),
423 * so if it comes up just drop it quietly and move on.
424 */
425 if (l->l_ts != &turnstile0)
426 kmem_free(l->l_ts, sizeof(*l->l_ts));
427 }
428
429 /*
430 * Set an LWP suspended.
431 *
432 * Must be called with p_lock held, and the LWP locked. Will unlock the
433 * LWP before return.
434 */
435 int
436 lwp_suspend(struct lwp *curl, struct lwp *t)
437 {
438 int error;
439
440 KASSERT(mutex_owned(t->l_proc->p_lock));
441 KASSERT(lwp_locked(t, NULL));
442
443 KASSERT(curl != t || curl->l_stat == LSONPROC);
444
445 /*
446 * If the current LWP has been told to exit, we must not suspend anyone
447 * else or deadlock could occur. We won't return to userspace.
448 */
449 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
450 lwp_unlock(t);
451 return (EDEADLK);
452 }
453
454 if ((t->l_flag & LW_DBGSUSPEND) != 0) {
455 lwp_unlock(t);
456 return 0;
457 }
458
459 error = 0;
460
461 switch (t->l_stat) {
462 case LSRUN:
463 case LSONPROC:
464 t->l_flag |= LW_WSUSPEND;
465 lwp_need_userret(t);
466 lwp_unlock(t);
467 break;
468
469 case LSSLEEP:
470 t->l_flag |= LW_WSUSPEND;
471 lwp_need_userret(t);
472
473 /*
474 * Kick the LWP and try to get it to the kernel boundary
475 * so that it will release any locks that it holds.
476 * setrunnable() will release the lock.
477 */
478 if ((t->l_flag & LW_SINTR) != 0)
479 setrunnable(t);
480 else
481 lwp_unlock(t);
482 break;
483
484 case LSSUSPENDED:
485 lwp_unlock(t);
486 break;
487
488 case LSSTOP:
489 t->l_flag |= LW_WSUSPEND;
490 lwp_need_userret(t);
491 setrunnable(t);
492 break;
493
494 case LSIDL:
495 case LSZOMB:
496 error = EINTR; /* It's what Solaris does..... */
497 lwp_unlock(t);
498 break;
499 }
500
501 return (error);
502 }
503
504 /*
505 * Restart a suspended LWP.
506 *
507 * Must be called with p_lock held, and the LWP locked. Will unlock the
508 * LWP before return.
509 */
510 void
511 lwp_continue(struct lwp *l)
512 {
513
514 KASSERT(mutex_owned(l->l_proc->p_lock));
515 KASSERT(lwp_locked(l, NULL));
516
517 /* If rebooting or not suspended, then just bail out. */
518 if ((l->l_flag & LW_WREBOOT) != 0) {
519 lwp_unlock(l);
520 return;
521 }
522
523 l->l_flag &= ~LW_WSUSPEND;
524
525 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
526 lwp_unlock(l);
527 return;
528 }
529
530 /* setrunnable() will release the lock. */
531 setrunnable(l);
532 }
533
534 /*
535 * Restart a stopped LWP.
536 *
537 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the
538 * LWP before return.
539 */
540 void
541 lwp_unstop(struct lwp *l)
542 {
543 struct proc *p = l->l_proc;
544
545 KASSERT(mutex_owned(&proc_lock));
546 KASSERT(mutex_owned(p->p_lock));
547
548 lwp_lock(l);
549
550 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
551
552 /* If not stopped, then just bail out. */
553 if (l->l_stat != LSSTOP) {
554 lwp_unlock(l);
555 return;
556 }
557
558 p->p_stat = SACTIVE;
559 p->p_sflag &= ~PS_STOPPING;
560
561 if (!p->p_waited)
562 p->p_pptr->p_nstopchild--;
563
564 if (l->l_wchan == NULL) {
565 /* setrunnable() will release the lock. */
566 setrunnable(l);
567 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
568 /* setrunnable() so we can receive the signal */
569 setrunnable(l);
570 } else {
571 l->l_stat = LSSLEEP;
572 p->p_nrlwps++;
573 lwp_unlock(l);
574 }
575 }
576
577 /*
578 * Wait for an LWP within the current process to exit. If 'lid' is
579 * non-zero, we are waiting for a specific LWP.
580 *
581 * Must be called with p->p_lock held.
582 */
583 int
584 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
585 {
586 const lwpid_t curlid = l->l_lid;
587 proc_t *p = l->l_proc;
588 lwp_t *l2, *next;
589 int error;
590
591 KASSERT(mutex_owned(p->p_lock));
592
593 p->p_nlwpwait++;
594 l->l_waitingfor = lid;
595
596 for (;;) {
597 int nfound;
598
599 /*
600 * Avoid a race between exit1() and sigexit(): if the
601 * process is dumping core, then we need to bail out: call
602 * into lwp_userret() where we will be suspended until the
603 * deed is done.
604 */
605 if ((p->p_sflag & PS_WCORE) != 0) {
606 mutex_exit(p->p_lock);
607 lwp_userret(l);
608 KASSERT(false);
609 }
610
611 /*
612 * First off, drain any detached LWP that is waiting to be
613 * reaped.
614 */
615 while ((l2 = p->p_zomblwp) != NULL) {
616 p->p_zomblwp = NULL;
617 lwp_free(l2, false, false);/* releases proc mutex */
618 mutex_enter(p->p_lock);
619 }
620
621 /*
622 * Now look for an LWP to collect. If the whole process is
623 * exiting, count detached LWPs as eligible to be collected,
624 * but don't drain them here.
625 */
626 nfound = 0;
627 error = 0;
628
629 /*
630 * If given a specific LID, go via pid_table and make sure
631 * it's not detached.
632 */
633 if (lid != 0) {
634 l2 = proc_find_lwp(p, lid);
635 if (l2 == NULL) {
636 error = ESRCH;
637 break;
638 }
639 KASSERT(l2->l_lid == lid);
640 if ((l2->l_prflag & LPR_DETACHED) != 0) {
641 error = EINVAL;
642 break;
643 }
644 } else {
645 l2 = LIST_FIRST(&p->p_lwps);
646 }
647 for (; l2 != NULL; l2 = next) {
648 next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
649
650 /*
651 * If a specific wait and the target is waiting on
652 * us, then avoid deadlock. This also traps LWPs
653 * that try to wait on themselves.
654 *
655 * Note that this does not handle more complicated
656 * cycles, like: t1 -> t2 -> t3 -> t1. The process
657 * can still be killed so it is not a major problem.
658 */
659 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
660 error = EDEADLK;
661 break;
662 }
663 if (l2 == l)
664 continue;
665 if ((l2->l_prflag & LPR_DETACHED) != 0) {
666 nfound += exiting;
667 continue;
668 }
669 if (lid != 0) {
670 /*
671 * Mark this LWP as the first waiter, if there
672 * is no other.
673 */
674 if (l2->l_waiter == 0)
675 l2->l_waiter = curlid;
676 } else if (l2->l_waiter != 0) {
677 /*
678 * It already has a waiter - so don't
679 * collect it. If the waiter doesn't
680 * grab it we'll get another chance
681 * later.
682 */
683 nfound++;
684 continue;
685 }
686 nfound++;
687
688 /* No need to lock the LWP in order to see LSZOMB. */
689 if (l2->l_stat != LSZOMB)
690 continue;
691
692 /*
693 * We're no longer waiting. Reset the "first waiter"
694 * pointer on the target, in case it was us.
695 */
696 l->l_waitingfor = 0;
697 l2->l_waiter = 0;
698 p->p_nlwpwait--;
699 if (departed)
700 *departed = l2->l_lid;
701 sched_lwp_collect(l2);
702
703 /* lwp_free() releases the proc lock. */
704 lwp_free(l2, false, false);
705 mutex_enter(p->p_lock);
706 return 0;
707 }
708
709 if (error != 0)
710 break;
711 if (nfound == 0) {
712 error = ESRCH;
713 break;
714 }
715
716 /*
717 * Note: since the lock will be dropped, need to restart on
718 * wakeup to run all LWPs again, e.g. there may be new LWPs.
719 */
720 if (exiting) {
721 KASSERT(p->p_nlwps > 1);
722 error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
723 break;
724 }
725
726 /*
727 * Break out if all LWPs are in _lwp_wait(). There are
728 * other ways to hang the process with _lwp_wait(), but the
729 * sleep is interruptable so little point checking for them.
730 */
731 if (p->p_nlwpwait == p->p_nlwps) {
732 error = EDEADLK;
733 break;
734 }
735
736 /*
737 * Sit around and wait for something to happen. We'll be
738 * awoken if any of the conditions examined change: if an
739 * LWP exits, is collected, or is detached.
740 */
741 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
742 break;
743 }
744
745 /*
746 * We didn't find any LWPs to collect, we may have received a
747 * signal, or some other condition has caused us to bail out.
748 *
749 * If waiting on a specific LWP, clear the waiters marker: some
750 * other LWP may want it. Then, kick all the remaining waiters
751 * so that they can re-check for zombies and for deadlock.
752 */
753 if (lid != 0) {
754 l2 = proc_find_lwp(p, lid);
755 KASSERT(l2 == NULL || l2->l_lid == lid);
756
757 if (l2 != NULL && l2->l_waiter == curlid)
758 l2->l_waiter = 0;
759 }
760 p->p_nlwpwait--;
761 l->l_waitingfor = 0;
762 cv_broadcast(&p->p_lwpcv);
763
764 return error;
765 }
766
767 /*
768 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
769 * The new LWP is created in state LSIDL and must be set running,
770 * suspended, or stopped by the caller.
771 */
772 int
773 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
774 void *stack, size_t stacksize, void (*func)(void *), void *arg,
775 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
776 const stack_t *sigstk)
777 {
778 struct lwp *l2;
779
780 KASSERT(l1 == curlwp || l1->l_proc == &proc0);
781
782 /*
783 * Enforce limits, excluding the first lwp and kthreads. We must
784 * use the process credentials here when adjusting the limit, as
785 * they are what's tied to the accounting entity. However for
786 * authorizing the action, we'll use the LWP's credentials.
787 */
788 mutex_enter(p2->p_lock);
789 if (p2->p_nlwps != 0 && p2 != &proc0) {
790 uid_t uid = kauth_cred_getuid(p2->p_cred);
791 int count = chglwpcnt(uid, 1);
792 if (__predict_false(count >
793 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
794 if (kauth_authorize_process(l1->l_cred,
795 KAUTH_PROCESS_RLIMIT, p2,
796 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
797 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
798 != 0) {
799 (void)chglwpcnt(uid, -1);
800 mutex_exit(p2->p_lock);
801 return EAGAIN;
802 }
803 }
804 }
805
806 /*
807 * First off, reap any detached LWP waiting to be collected.
808 * We can re-use its LWP structure and turnstile.
809 */
810 if ((l2 = p2->p_zomblwp) != NULL) {
811 p2->p_zomblwp = NULL;
812 lwp_free(l2, true, false);
813 /* p2 now unlocked by lwp_free() */
814 KASSERT(l2->l_ts != NULL);
815 KASSERT(l2->l_inheritedprio == -1);
816 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
817 memset(&l2->l_startzero, 0, sizeof(*l2) -
818 offsetof(lwp_t, l_startzero));
819 } else {
820 mutex_exit(p2->p_lock);
821 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
822 memset(&l2->l_startzero, 0, sizeof(*l2) -
823 offsetof(lwp_t, l_startzero));
824 SLIST_INIT(&l2->l_pi_lenders);
825 }
826
827 /*
828 * Because of lockless lookup via pid_table, the LWP can be locked
829 * and inspected briefly even after it's freed, so a few fields are
830 * kept stable.
831 */
832 KASSERT(l2->l_stat == LSIDL);
833 KASSERT(l2->l_cpu != NULL);
834 KASSERT(l2->l_ts != NULL);
835 KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock);
836
837 l2->l_proc = p2;
838 l2->l_refcnt = 0;
839 l2->l_class = sclass;
840
841 /*
842 * Allocate a process ID for this LWP. We need to do this now
843 * while we can still unwind if it fails. Because we're marked
844 * as LSIDL, no lookups by the ID will succeed.
845 *
846 * N.B. this will always succeed for the first LWP in a process,
847 * because proc_alloc_lwpid() will usurp the slot. Also note
848 * that l2->l_proc MUST be valid so that lookups of the proc
849 * will succeed, even if the LWP itself is not visible.
850 */
851 if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) {
852 pool_cache_put(lwp_cache, l2);
853 return EAGAIN;
854 }
855
856 /*
857 * If vfork(), we want the LWP to run fast and on the same CPU
858 * as its parent, so that it can reuse the VM context and cache
859 * footprint on the local CPU.
860 */
861 l2->l_boostpri = ((flags & LWP_VFORK) ? PRI_KERNEL : PRI_USER);
862 l2->l_priority = l1->l_priority;
863 l2->l_inheritedprio = -1;
864 l2->l_protectprio = -1;
865 l2->l_auxprio = -1;
866 l2->l_flag = 0;
867 l2->l_pflag = LP_MPSAFE;
868 TAILQ_INIT(&l2->l_ld_locks);
869 l2->l_psrefs = 0;
870 kmsan_lwp_alloc(l2);
871
872 /*
873 * For vfork, borrow parent's lwpctl context if it exists.
874 * This also causes us to return via lwp_userret.
875 */
876 if (flags & LWP_VFORK && l1->l_lwpctl) {
877 l2->l_lwpctl = l1->l_lwpctl;
878 l2->l_flag |= LW_LWPCTL;
879 }
880
881 /*
882 * If not the first LWP in the process, grab a reference to the
883 * descriptor table.
884 */
885 l2->l_fd = p2->p_fd;
886 if (p2->p_nlwps != 0) {
887 KASSERT(l1->l_proc == p2);
888 fd_hold(l2);
889 } else {
890 KASSERT(l1->l_proc != p2);
891 }
892
893 if (p2->p_flag & PK_SYSTEM) {
894 /* Mark it as a system LWP. */
895 l2->l_flag |= LW_SYSTEM;
896 }
897
898 kdtrace_thread_ctor(NULL, l2);
899 lwp_initspecific(l2);
900 sched_lwp_fork(l1, l2);
901 lwp_update_creds(l2);
902 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
903 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
904 cv_init(&l2->l_sigcv, "sigwait");
905 cv_init(&l2->l_waitcv, "vfork");
906 l2->l_syncobj = &sched_syncobj;
907 PSREF_DEBUG_INIT_LWP(l2);
908
909 if (rnewlwpp != NULL)
910 *rnewlwpp = l2;
911
912 /*
913 * PCU state needs to be saved before calling uvm_lwp_fork() so that
914 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
915 */
916 pcu_save_all(l1);
917 #if PCU_UNIT_COUNT > 0
918 l2->l_pcu_valid = l1->l_pcu_valid;
919 #endif
920
921 uvm_lwp_setuarea(l2, uaddr);
922 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
923
924 mutex_enter(p2->p_lock);
925 if ((flags & LWP_DETACHED) != 0) {
926 l2->l_prflag = LPR_DETACHED;
927 p2->p_ndlwps++;
928 } else
929 l2->l_prflag = 0;
930
931 if (l1->l_proc == p2) {
932 /*
933 * These flags are set while p_lock is held. Copy with
934 * p_lock held too, so the LWP doesn't sneak into the
935 * process without them being set.
936 */
937 l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
938 } else {
939 /* fork(): pending core/exit doesn't apply to child. */
940 l2->l_flag |= (l1->l_flag & LW_WREBOOT);
941 }
942
943 l2->l_sigstk = *sigstk;
944 l2->l_sigmask = *sigmask;
945 TAILQ_INIT(&l2->l_sigpend.sp_info);
946 sigemptyset(&l2->l_sigpend.sp_set);
947 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
948 p2->p_nlwps++;
949 p2->p_nrlwps++;
950
951 KASSERT(l2->l_affinity == NULL);
952
953 /* Inherit the affinity mask. */
954 if (l1->l_affinity) {
955 /*
956 * Note that we hold the state lock while inheriting
957 * the affinity to avoid race with sched_setaffinity().
958 */
959 lwp_lock(l1);
960 if (l1->l_affinity) {
961 kcpuset_use(l1->l_affinity);
962 l2->l_affinity = l1->l_affinity;
963 }
964 lwp_unlock(l1);
965 }
966
967 /* Ensure a trip through lwp_userret() if needed. */
968 if ((l2->l_flag & LW_USERRET) != 0) {
969 lwp_need_userret(l2);
970 }
971
972 /* This marks the end of the "must be atomic" section. */
973 mutex_exit(p2->p_lock);
974
975 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
976
977 mutex_enter(&proc_lock);
978 LIST_INSERT_HEAD(&alllwp, l2, l_list);
979 /* Inherit a processor-set */
980 l2->l_psid = l1->l_psid;
981 mutex_exit(&proc_lock);
982
983 SYSCALL_TIME_LWP_INIT(l2);
984
985 if (p2->p_emul->e_lwp_fork)
986 (*p2->p_emul->e_lwp_fork)(l1, l2);
987
988 return (0);
989 }
990
991 /*
992 * Set a new LWP running. If the process is stopping, then the LWP is
993 * created stopped.
994 */
995 void
996 lwp_start(lwp_t *l, int flags)
997 {
998 proc_t *p = l->l_proc;
999
1000 mutex_enter(p->p_lock);
1001 lwp_lock(l);
1002 KASSERT(l->l_stat == LSIDL);
1003 if ((flags & LWP_SUSPENDED) != 0) {
1004 /* It'll suspend itself in lwp_userret(). */
1005 l->l_flag |= LW_WSUSPEND;
1006 }
1007 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
1008 KASSERT(l->l_wchan == NULL);
1009 l->l_stat = LSSTOP;
1010 p->p_nrlwps--;
1011 lwp_unlock(l);
1012 } else {
1013 setrunnable(l);
1014 /* LWP now unlocked */
1015 }
1016 mutex_exit(p->p_lock);
1017 }
1018
1019 /*
1020 * Called by MD code when a new LWP begins execution. Must be called
1021 * with the previous LWP locked (so at splsched), or if there is no
1022 * previous LWP, at splsched.
1023 */
1024 void
1025 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
1026 {
1027 kmutex_t *lock;
1028
1029 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
1030 KASSERT(kpreempt_disabled());
1031 KASSERT(prev != NULL);
1032 KASSERT((prev->l_pflag & LP_RUNNING) != 0);
1033 KASSERT(curcpu()->ci_mtx_count == -2);
1034
1035 /*
1036 * Immediately mark the previous LWP as no longer running and
1037 * unlock (to keep lock wait times short as possible). If a
1038 * zombie, don't touch after clearing LP_RUNNING as it could be
1039 * reaped by another CPU. Use atomic_store_release to ensure
1040 * this -- matches atomic_load_acquire in lwp_free.
1041 */
1042 lock = prev->l_mutex;
1043 if (__predict_false(prev->l_stat == LSZOMB)) {
1044 atomic_store_release(&prev->l_pflag,
1045 prev->l_pflag & ~LP_RUNNING);
1046 } else {
1047 prev->l_pflag &= ~LP_RUNNING;
1048 }
1049 mutex_spin_exit(lock);
1050
1051 /* Correct spin mutex count after mi_switch(). */
1052 curcpu()->ci_mtx_count = 0;
1053
1054 /* Install new VM context. */
1055 if (__predict_true(new_lwp->l_proc->p_vmspace)) {
1056 pmap_activate(new_lwp);
1057 }
1058
1059 /* We remain at IPL_SCHED from mi_switch() - reset it. */
1060 spl0();
1061
1062 LOCKDEBUG_BARRIER(NULL, 0);
1063 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
1064
1065 /* For kthreads, acquire kernel lock if not MPSAFE. */
1066 if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
1067 KERNEL_LOCK(1, new_lwp);
1068 }
1069 }
1070
1071 /*
1072 * Exit an LWP.
1073 *
1074 * *** WARNING *** This can be called with (l != curlwp) in error paths.
1075 */
1076 void
1077 lwp_exit(struct lwp *l)
1078 {
1079 struct proc *p = l->l_proc;
1080 struct lwp *l2;
1081 bool current;
1082
1083 current = (l == curlwp);
1084
1085 KASSERT(current || l->l_stat == LSIDL);
1086 KASSERT(current || l->l_target_cpu == NULL);
1087 KASSERT(p == curproc);
1088
1089 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1090
1091 /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
1092 LOCKDEBUG_BARRIER(NULL, 0);
1093 KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
1094
1095 /*
1096 * If we are the last live LWP in a process, we need to exit the
1097 * entire process. We do so with an exit status of zero, because
1098 * it's a "controlled" exit, and because that's what Solaris does.
1099 *
1100 * We are not quite a zombie yet, but for accounting purposes we
1101 * must increment the count of zombies here.
1102 *
1103 * Note: the last LWP's specificdata will be deleted here.
1104 */
1105 mutex_enter(p->p_lock);
1106 if (p->p_nlwps - p->p_nzlwps == 1) {
1107 KASSERT(current == true);
1108 KASSERT(p != &proc0);
1109 exit1(l, 0, 0);
1110 /* NOTREACHED */
1111 }
1112 p->p_nzlwps++;
1113
1114 /*
1115 * Perform any required thread cleanup. Do this early so
1116 * anyone wanting to look us up with lwp_getref_lwpid() will
1117 * fail to find us before we become a zombie.
1118 *
1119 * N.B. this will unlock p->p_lock on our behalf.
1120 */
1121 lwp_thread_cleanup(l);
1122
1123 if (p->p_emul->e_lwp_exit)
1124 (*p->p_emul->e_lwp_exit)(l);
1125
1126 /* Drop filedesc reference. */
1127 fd_free();
1128
1129 /* Release fstrans private data. */
1130 fstrans_lwp_dtor(l);
1131
1132 /* Delete the specificdata while it's still safe to sleep. */
1133 lwp_finispecific(l);
1134
1135 /*
1136 * Release our cached credentials.
1137 */
1138 kauth_cred_free(l->l_cred);
1139 callout_destroy(&l->l_timeout_ch);
1140
1141 /*
1142 * If traced, report LWP exit event to the debugger.
1143 *
1144 * Remove the LWP from the global list.
1145 * Free its LID from the PID namespace if needed.
1146 */
1147 mutex_enter(&proc_lock);
1148
1149 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
1150 (PSL_TRACED|PSL_TRACELWP_EXIT)) {
1151 mutex_enter(p->p_lock);
1152 if (ISSET(p->p_sflag, PS_WEXIT)) {
1153 mutex_exit(p->p_lock);
1154 /*
1155 * We are exiting, bail out without informing parent
1156 * about a terminating LWP as it would deadlock.
1157 */
1158 } else {
1159 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
1160 mutex_enter(&proc_lock);
1161 }
1162 }
1163
1164 LIST_REMOVE(l, l_list);
1165 mutex_exit(&proc_lock);
1166
1167 /*
1168 * Get rid of all references to the LWP that others (e.g. procfs)
1169 * may have, and mark the LWP as a zombie. If the LWP is detached,
1170 * mark it waiting for collection in the proc structure. Note that
1171 * before we can do that, we need to free any other dead, deatched
1172 * LWP waiting to meet its maker.
1173 *
1174 * All conditions need to be observed upon under the same hold of
1175 * p_lock, because if the lock is dropped any of them can change.
1176 */
1177 mutex_enter(p->p_lock);
1178 for (;;) {
1179 if (lwp_drainrefs(l))
1180 continue;
1181 if ((l->l_prflag & LPR_DETACHED) != 0) {
1182 if ((l2 = p->p_zomblwp) != NULL) {
1183 p->p_zomblwp = NULL;
1184 lwp_free(l2, false, false);
1185 /* proc now unlocked */
1186 mutex_enter(p->p_lock);
1187 continue;
1188 }
1189 p->p_zomblwp = l;
1190 }
1191 break;
1192 }
1193
1194 /*
1195 * If we find a pending signal for the process and we have been
1196 * asked to check for signals, then we lose: arrange to have
1197 * all other LWPs in the process check for signals.
1198 */
1199 if ((l->l_flag & LW_PENDSIG) != 0 &&
1200 firstsig(&p->p_sigpend.sp_set) != 0) {
1201 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1202 lwp_lock(l2);
1203 signotify(l2);
1204 lwp_unlock(l2);
1205 }
1206 }
1207
1208 /*
1209 * Release any PCU resources before becoming a zombie.
1210 */
1211 pcu_discard_all(l);
1212
1213 lwp_lock(l);
1214 l->l_stat = LSZOMB;
1215 if (l->l_name != NULL) {
1216 strcpy(l->l_name, "(zombie)");
1217 }
1218 lwp_unlock(l);
1219 p->p_nrlwps--;
1220 cv_broadcast(&p->p_lwpcv);
1221 if (l->l_lwpctl != NULL)
1222 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1223 mutex_exit(p->p_lock);
1224
1225 /*
1226 * We can no longer block. At this point, lwp_free() may already
1227 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
1228 *
1229 * Free MD LWP resources.
1230 */
1231 cpu_lwp_free(l, 0);
1232
1233 if (current) {
1234 /* Switch away into oblivion. */
1235 lwp_lock(l);
1236 spc_lock(l->l_cpu);
1237 mi_switch(l);
1238 panic("lwp_exit");
1239 }
1240 }
1241
1242 /*
1243 * Free a dead LWP's remaining resources.
1244 *
1245 * XXXLWP limits.
1246 */
1247 void
1248 lwp_free(struct lwp *l, bool recycle, bool last)
1249 {
1250 struct proc *p = l->l_proc;
1251 struct rusage *ru;
1252 ksiginfoq_t kq;
1253
1254 KASSERT(l != curlwp);
1255 KASSERT(last || mutex_owned(p->p_lock));
1256
1257 /*
1258 * We use the process credentials instead of the lwp credentials here
1259 * because the lwp credentials maybe cached (just after a setuid call)
1260 * and we don't want pay for syncing, since the lwp is going away
1261 * anyway
1262 */
1263 if (p != &proc0 && p->p_nlwps != 1)
1264 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1265
1266 /*
1267 * In the unlikely event that the LWP is still on the CPU,
1268 * then spin until it has switched away.
1269 *
1270 * atomic_load_acquire matches atomic_store_release in
1271 * lwp_startup and mi_switch.
1272 */
1273 while (__predict_false((atomic_load_acquire(&l->l_pflag) & LP_RUNNING)
1274 != 0)) {
1275 SPINLOCK_BACKOFF_HOOK;
1276 }
1277
1278 /*
1279 * Now that the LWP's known off the CPU, reset its state back to
1280 * LSIDL, which defeats anything that might have gotten a hold on
1281 * the LWP via pid_table before the ID was freed. It's important
1282 * to do this with both the LWP locked and p_lock held.
1283 *
1284 * Also reset the CPU and lock pointer back to curcpu(), since the
1285 * LWP will in all likelyhood be cached with the current CPU in
1286 * lwp_cache when we free it and later allocated from there again
1287 * (avoid incidental lock contention).
1288 */
1289 lwp_lock(l);
1290 l->l_stat = LSIDL;
1291 l->l_cpu = curcpu();
1292 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock);
1293
1294 /*
1295 * If this was not the last LWP in the process, then adjust counters
1296 * and unlock. This is done differently for the last LWP in exit1().
1297 */
1298 if (!last) {
1299 /*
1300 * Add the LWP's run time to the process' base value.
1301 * This needs to co-incide with coming off p_lwps.
1302 */
1303 bintime_add(&p->p_rtime, &l->l_rtime);
1304 p->p_pctcpu += l->l_pctcpu;
1305 ru = &p->p_stats->p_ru;
1306 ruadd(ru, &l->l_ru);
1307 LIST_REMOVE(l, l_sibling);
1308 p->p_nlwps--;
1309 p->p_nzlwps--;
1310 if ((l->l_prflag & LPR_DETACHED) != 0)
1311 p->p_ndlwps--;
1312
1313 /*
1314 * Have any LWPs sleeping in lwp_wait() recheck for
1315 * deadlock.
1316 */
1317 cv_broadcast(&p->p_lwpcv);
1318 mutex_exit(p->p_lock);
1319
1320 /* Free the LWP ID. */
1321 mutex_enter(&proc_lock);
1322 proc_free_lwpid(p, l->l_lid);
1323 mutex_exit(&proc_lock);
1324 }
1325
1326 /*
1327 * Destroy the LWP's remaining signal information.
1328 */
1329 ksiginfo_queue_init(&kq);
1330 sigclear(&l->l_sigpend, NULL, &kq);
1331 ksiginfo_queue_drain(&kq);
1332 cv_destroy(&l->l_sigcv);
1333 cv_destroy(&l->l_waitcv);
1334
1335 /*
1336 * Free lwpctl structure and affinity.
1337 */
1338 if (l->l_lwpctl) {
1339 lwp_ctl_free(l);
1340 }
1341 if (l->l_affinity) {
1342 kcpuset_unuse(l->l_affinity, NULL);
1343 l->l_affinity = NULL;
1344 }
1345
1346 /*
1347 * Free remaining data structures and the LWP itself unless the
1348 * caller wants to recycle.
1349 */
1350 if (l->l_name != NULL)
1351 kmem_free(l->l_name, MAXCOMLEN);
1352
1353 kmsan_lwp_free(l);
1354 kcov_lwp_free(l);
1355 cpu_lwp_free2(l);
1356 uvm_lwp_exit(l);
1357
1358 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1359 KASSERT(l->l_inheritedprio == -1);
1360 KASSERT(l->l_blcnt == 0);
1361 kdtrace_thread_dtor(NULL, l);
1362 if (!recycle)
1363 pool_cache_put(lwp_cache, l);
1364 }
1365
1366 /*
1367 * Migrate the LWP to the another CPU. Unlocks the LWP.
1368 */
1369 void
1370 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1371 {
1372 struct schedstate_percpu *tspc;
1373 int lstat = l->l_stat;
1374
1375 KASSERT(lwp_locked(l, NULL));
1376 KASSERT(tci != NULL);
1377
1378 /* If LWP is still on the CPU, it must be handled like LSONPROC */
1379 if ((l->l_pflag & LP_RUNNING) != 0) {
1380 lstat = LSONPROC;
1381 }
1382
1383 /*
1384 * The destination CPU could be changed while previous migration
1385 * was not finished.
1386 */
1387 if (l->l_target_cpu != NULL) {
1388 l->l_target_cpu = tci;
1389 lwp_unlock(l);
1390 return;
1391 }
1392
1393 /* Nothing to do if trying to migrate to the same CPU */
1394 if (l->l_cpu == tci) {
1395 lwp_unlock(l);
1396 return;
1397 }
1398
1399 KASSERT(l->l_target_cpu == NULL);
1400 tspc = &tci->ci_schedstate;
1401 switch (lstat) {
1402 case LSRUN:
1403 l->l_target_cpu = tci;
1404 break;
1405 case LSSLEEP:
1406 l->l_cpu = tci;
1407 break;
1408 case LSIDL:
1409 case LSSTOP:
1410 case LSSUSPENDED:
1411 l->l_cpu = tci;
1412 if (l->l_wchan == NULL) {
1413 lwp_unlock_to(l, tspc->spc_lwplock);
1414 return;
1415 }
1416 break;
1417 case LSONPROC:
1418 l->l_target_cpu = tci;
1419 spc_lock(l->l_cpu);
1420 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
1421 /* spc now unlocked */
1422 break;
1423 }
1424 lwp_unlock(l);
1425 }
1426
1427 #define lwp_find_exclude(l) \
1428 ((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB)
1429
1430 /*
1431 * Find the LWP in the process. Arguments may be zero, in such case,
1432 * the calling process and first LWP in the list will be used.
1433 * On success - returns proc locked.
1434 *
1435 * => pid == 0 -> look in curproc.
1436 * => pid == -1 -> match any proc.
1437 * => otherwise look up the proc.
1438 *
1439 * => lid == 0 -> first LWP in the proc
1440 * => otherwise specific LWP
1441 */
1442 struct lwp *
1443 lwp_find2(pid_t pid, lwpid_t lid)
1444 {
1445 proc_t *p;
1446 lwp_t *l;
1447
1448 /* First LWP of specified proc. */
1449 if (lid == 0) {
1450 switch (pid) {
1451 case -1:
1452 /* No lookup keys. */
1453 return NULL;
1454 case 0:
1455 p = curproc;
1456 mutex_enter(p->p_lock);
1457 break;
1458 default:
1459 mutex_enter(&proc_lock);
1460 p = proc_find(pid);
1461 if (__predict_false(p == NULL)) {
1462 mutex_exit(&proc_lock);
1463 return NULL;
1464 }
1465 mutex_enter(p->p_lock);
1466 mutex_exit(&proc_lock);
1467 break;
1468 }
1469 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1470 if (__predict_true(!lwp_find_exclude(l)))
1471 break;
1472 }
1473 goto out;
1474 }
1475
1476 l = proc_find_lwp_acquire_proc(lid, &p);
1477 if (l == NULL)
1478 return NULL;
1479 KASSERT(p != NULL);
1480 KASSERT(mutex_owned(p->p_lock));
1481
1482 if (__predict_false(lwp_find_exclude(l))) {
1483 l = NULL;
1484 goto out;
1485 }
1486
1487 /* Apply proc filter, if applicable. */
1488 switch (pid) {
1489 case -1:
1490 /* Match anything. */
1491 break;
1492 case 0:
1493 if (p != curproc)
1494 l = NULL;
1495 break;
1496 default:
1497 if (p->p_pid != pid)
1498 l = NULL;
1499 break;
1500 }
1501
1502 out:
1503 if (__predict_false(l == NULL)) {
1504 mutex_exit(p->p_lock);
1505 }
1506 return l;
1507 }
1508
1509 /*
1510 * Look up a live LWP within the specified process.
1511 *
1512 * Must be called with p->p_lock held (as it looks at the radix tree,
1513 * and also wants to exclude idle and zombie LWPs).
1514 */
1515 struct lwp *
1516 lwp_find(struct proc *p, lwpid_t id)
1517 {
1518 struct lwp *l;
1519
1520 KASSERT(mutex_owned(p->p_lock));
1521
1522 l = proc_find_lwp(p, id);
1523 KASSERT(l == NULL || l->l_lid == id);
1524
1525 /*
1526 * No need to lock - all of these conditions will
1527 * be visible with the process level mutex held.
1528 */
1529 if (__predict_false(l != NULL && lwp_find_exclude(l)))
1530 l = NULL;
1531
1532 return l;
1533 }
1534
1535 /*
1536 * Update an LWP's cached credentials to mirror the process' master copy.
1537 *
1538 * This happens early in the syscall path, on user trap, and on LWP
1539 * creation. A long-running LWP can also voluntarily choose to update
1540 * its credentials by calling this routine. This may be called from
1541 * LWP_CACHE_CREDS(), which checks l->l_prflag & LPR_CRMOD beforehand.
1542 */
1543 void
1544 lwp_update_creds(struct lwp *l)
1545 {
1546 kauth_cred_t oc;
1547 struct proc *p;
1548
1549 p = l->l_proc;
1550 oc = l->l_cred;
1551
1552 mutex_enter(p->p_lock);
1553 kauth_cred_hold(p->p_cred);
1554 l->l_cred = p->p_cred;
1555 l->l_prflag &= ~LPR_CRMOD;
1556 mutex_exit(p->p_lock);
1557 if (oc != NULL)
1558 kauth_cred_free(oc);
1559 }
1560
1561 /*
1562 * Verify that an LWP is locked, and optionally verify that the lock matches
1563 * one we specify.
1564 */
1565 int
1566 lwp_locked(struct lwp *l, kmutex_t *mtx)
1567 {
1568 kmutex_t *cur = l->l_mutex;
1569
1570 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1571 }
1572
1573 /*
1574 * Lend a new mutex to an LWP. The old mutex must be held.
1575 */
1576 kmutex_t *
1577 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1578 {
1579 kmutex_t *oldmtx = l->l_mutex;
1580
1581 KASSERT(mutex_owned(oldmtx));
1582
1583 atomic_store_release(&l->l_mutex, mtx);
1584 return oldmtx;
1585 }
1586
1587 /*
1588 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1589 * must be held.
1590 */
1591 void
1592 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1593 {
1594 kmutex_t *old;
1595
1596 KASSERT(lwp_locked(l, NULL));
1597
1598 old = l->l_mutex;
1599 atomic_store_release(&l->l_mutex, mtx);
1600 mutex_spin_exit(old);
1601 }
1602
1603 int
1604 lwp_trylock(struct lwp *l)
1605 {
1606 kmutex_t *old;
1607
1608 for (;;) {
1609 if (!mutex_tryenter(old = atomic_load_consume(&l->l_mutex)))
1610 return 0;
1611 if (__predict_true(atomic_load_relaxed(&l->l_mutex) == old))
1612 return 1;
1613 mutex_spin_exit(old);
1614 }
1615 }
1616
1617 void
1618 lwp_unsleep(lwp_t *l, bool unlock)
1619 {
1620
1621 KASSERT(mutex_owned(l->l_mutex));
1622 (*l->l_syncobj->sobj_unsleep)(l, unlock);
1623 }
1624
1625 /*
1626 * Lock an LWP.
1627 */
1628 void
1629 lwp_lock(lwp_t *l)
1630 {
1631 kmutex_t *old = atomic_load_consume(&l->l_mutex);
1632
1633 /*
1634 * Note: mutex_spin_enter() will have posted a read barrier.
1635 * Re-test l->l_mutex. If it has changed, we need to try again.
1636 */
1637 mutex_spin_enter(old);
1638 while (__predict_false(atomic_load_relaxed(&l->l_mutex) != old)) {
1639 mutex_spin_exit(old);
1640 old = atomic_load_consume(&l->l_mutex);
1641 mutex_spin_enter(old);
1642 }
1643 }
1644
1645 /*
1646 * Unlock an LWP.
1647 */
1648 void
1649 lwp_unlock(lwp_t *l)
1650 {
1651
1652 mutex_spin_exit(l->l_mutex);
1653 }
1654
1655 void
1656 lwp_changepri(lwp_t *l, pri_t pri)
1657 {
1658
1659 KASSERT(mutex_owned(l->l_mutex));
1660
1661 if (l->l_priority == pri)
1662 return;
1663
1664 (*l->l_syncobj->sobj_changepri)(l, pri);
1665 KASSERT(l->l_priority == pri);
1666 }
1667
1668 void
1669 lwp_lendpri(lwp_t *l, pri_t pri)
1670 {
1671 KASSERT(mutex_owned(l->l_mutex));
1672
1673 (*l->l_syncobj->sobj_lendpri)(l, pri);
1674 KASSERT(l->l_inheritedprio == pri);
1675 }
1676
1677 pri_t
1678 lwp_eprio(lwp_t *l)
1679 {
1680 pri_t pri = l->l_priority;
1681
1682 KASSERT(mutex_owned(l->l_mutex));
1683
1684 /*
1685 * Timeshared/user LWPs get a temporary priority boost for blocking
1686 * in kernel. This is key to good interactive response on a loaded
1687 * system: without it, things will seem very sluggish to the user.
1688 *
1689 * The function of the boost is to get the LWP onto a CPU and
1690 * running quickly. Once that happens the LWP loses the priority
1691 * boost and could be preempted very quickly by another LWP but that
1692 * won't happen often enough to be a annoyance.
1693 */
1694 if (pri <= MAXPRI_USER && l->l_boostpri > MAXPRI_USER)
1695 pri = (pri >> 1) + l->l_boostpri;
1696
1697 return MAX(l->l_auxprio, pri);
1698 }
1699
1700 /*
1701 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1702 * set or a preemption is required.
1703 */
1704 void
1705 lwp_userret(struct lwp *l)
1706 {
1707 struct proc *p;
1708 int sig, f;
1709
1710 KASSERT(l == curlwp);
1711 KASSERT(l->l_stat == LSONPROC);
1712 p = l->l_proc;
1713
1714 for (;;) {
1715 /*
1716 * This is the main location that user preemptions are
1717 * processed.
1718 */
1719 preempt_point();
1720
1721 /*
1722 * It is safe to do this unlocked and without raised SPL,
1723 * since whenever a flag of interest is added to l_flag the
1724 * LWP will take an AST and come down this path again. If a
1725 * remote CPU posts the AST, it will be done with an IPI
1726 * (strongly synchronising).
1727 */
1728 if ((f = atomic_load_relaxed(&l->l_flag) & LW_USERRET) == 0) {
1729 return;
1730 }
1731
1732 /*
1733 * Process pending signals first, unless the process
1734 * is dumping core or exiting, where we will instead
1735 * enter the LW_WSUSPEND case below.
1736 */
1737 if ((f & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == LW_PENDSIG) {
1738 mutex_enter(p->p_lock);
1739 while ((sig = issignal(l)) != 0)
1740 postsig(sig);
1741 mutex_exit(p->p_lock);
1742 continue;
1743 }
1744
1745 /*
1746 * Core-dump or suspend pending.
1747 *
1748 * In case of core dump, suspend ourselves, so that the kernel
1749 * stack and therefore the userland registers saved in the
1750 * trapframe are around for coredump() to write them out.
1751 * We also need to save any PCU resources that we have so that
1752 * they accessible for coredump(). We issue a wakeup on
1753 * p->p_lwpcv so that sigexit() will write the core file out
1754 * once all other LWPs are suspended.
1755 */
1756 if ((f & LW_WSUSPEND) != 0) {
1757 pcu_save_all(l);
1758 mutex_enter(p->p_lock);
1759 p->p_nrlwps--;
1760 cv_broadcast(&p->p_lwpcv);
1761 lwp_lock(l);
1762 l->l_stat = LSSUSPENDED;
1763 lwp_unlock(l);
1764 mutex_exit(p->p_lock);
1765 lwp_lock(l);
1766 spc_lock(l->l_cpu);
1767 mi_switch(l);
1768 continue;
1769 }
1770
1771 /*
1772 * Process is exiting. The core dump and signal cases must
1773 * be handled first.
1774 */
1775 if ((f & LW_WEXIT) != 0) {
1776 lwp_exit(l);
1777 KASSERT(0);
1778 /* NOTREACHED */
1779 }
1780
1781 /*
1782 * Update lwpctl processor (for vfork child_return).
1783 */
1784 if ((f & LW_LWPCTL) != 0) {
1785 lwp_lock(l);
1786 KASSERT(kpreempt_disabled());
1787 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1788 l->l_lwpctl->lc_pctr++;
1789 l->l_flag &= ~LW_LWPCTL;
1790 lwp_unlock(l);
1791 continue;
1792 }
1793 }
1794 }
1795
1796 /*
1797 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1798 */
1799 void
1800 lwp_need_userret(struct lwp *l)
1801 {
1802
1803 KASSERT(!cpu_intr_p());
1804 KASSERT(lwp_locked(l, NULL) || l->l_stat == LSIDL);
1805
1806 /*
1807 * If the LWP is in any state other than LSONPROC, we know that it
1808 * is executing in-kernel and will hit userret() on the way out.
1809 *
1810 * If the LWP is curlwp, then we know we'll be back out to userspace
1811 * soon (can't be called from a hardware interrupt here).
1812 *
1813 * Otherwise, we can't be sure what the LWP is doing, so first make
1814 * sure the update to l_flag will be globally visible, and then
1815 * force the LWP to take a trip through trap() where it will do
1816 * userret().
1817 */
1818 if (l->l_stat == LSONPROC && l != curlwp) {
1819 membar_producer();
1820 cpu_signotify(l);
1821 }
1822 }
1823
1824 /*
1825 * Add one reference to an LWP. This will prevent the LWP from
1826 * exiting, thus keep the lwp structure and PCB around to inspect.
1827 */
1828 void
1829 lwp_addref(struct lwp *l)
1830 {
1831 KASSERT(mutex_owned(l->l_proc->p_lock));
1832 KASSERT(l->l_stat != LSZOMB);
1833 l->l_refcnt++;
1834 }
1835
1836 /*
1837 * Remove one reference to an LWP. If this is the last reference,
1838 * then we must finalize the LWP's death.
1839 */
1840 void
1841 lwp_delref(struct lwp *l)
1842 {
1843 struct proc *p = l->l_proc;
1844
1845 mutex_enter(p->p_lock);
1846 lwp_delref2(l);
1847 mutex_exit(p->p_lock);
1848 }
1849
1850 /*
1851 * Remove one reference to an LWP. If this is the last reference,
1852 * then we must finalize the LWP's death. The proc mutex is held
1853 * on entry.
1854 */
1855 void
1856 lwp_delref2(struct lwp *l)
1857 {
1858 struct proc *p = l->l_proc;
1859
1860 KASSERT(mutex_owned(p->p_lock));
1861 KASSERT(l->l_stat != LSZOMB);
1862 KASSERT(l->l_refcnt > 0);
1863
1864 if (--l->l_refcnt == 0)
1865 cv_broadcast(&p->p_lwpcv);
1866 }
1867
1868 /*
1869 * Drain all references to the current LWP. Returns true if
1870 * we blocked.
1871 */
1872 bool
1873 lwp_drainrefs(struct lwp *l)
1874 {
1875 struct proc *p = l->l_proc;
1876 bool rv = false;
1877
1878 KASSERT(mutex_owned(p->p_lock));
1879
1880 l->l_prflag |= LPR_DRAINING;
1881
1882 while (l->l_refcnt > 0) {
1883 rv = true;
1884 cv_wait(&p->p_lwpcv, p->p_lock);
1885 }
1886 return rv;
1887 }
1888
1889 /*
1890 * Return true if the specified LWP is 'alive'. Only p->p_lock need
1891 * be held.
1892 */
1893 bool
1894 lwp_alive(lwp_t *l)
1895 {
1896
1897 KASSERT(mutex_owned(l->l_proc->p_lock));
1898
1899 switch (l->l_stat) {
1900 case LSSLEEP:
1901 case LSRUN:
1902 case LSONPROC:
1903 case LSSTOP:
1904 case LSSUSPENDED:
1905 return true;
1906 default:
1907 return false;
1908 }
1909 }
1910
1911 /*
1912 * Return first live LWP in the process.
1913 */
1914 lwp_t *
1915 lwp_find_first(proc_t *p)
1916 {
1917 lwp_t *l;
1918
1919 KASSERT(mutex_owned(p->p_lock));
1920
1921 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1922 if (lwp_alive(l)) {
1923 return l;
1924 }
1925 }
1926
1927 return NULL;
1928 }
1929
1930 /*
1931 * Allocate a new lwpctl structure for a user LWP.
1932 */
1933 int
1934 lwp_ctl_alloc(vaddr_t *uaddr)
1935 {
1936 lcproc_t *lp;
1937 u_int bit, i, offset;
1938 struct uvm_object *uao;
1939 int error;
1940 lcpage_t *lcp;
1941 proc_t *p;
1942 lwp_t *l;
1943
1944 l = curlwp;
1945 p = l->l_proc;
1946
1947 /* don't allow a vforked process to create lwp ctls */
1948 if (p->p_lflag & PL_PPWAIT)
1949 return EBUSY;
1950
1951 if (l->l_lcpage != NULL) {
1952 lcp = l->l_lcpage;
1953 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1954 return 0;
1955 }
1956
1957 /* First time around, allocate header structure for the process. */
1958 if ((lp = p->p_lwpctl) == NULL) {
1959 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1960 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1961 lp->lp_uao = NULL;
1962 TAILQ_INIT(&lp->lp_pages);
1963 mutex_enter(p->p_lock);
1964 if (p->p_lwpctl == NULL) {
1965 p->p_lwpctl = lp;
1966 mutex_exit(p->p_lock);
1967 } else {
1968 mutex_exit(p->p_lock);
1969 mutex_destroy(&lp->lp_lock);
1970 kmem_free(lp, sizeof(*lp));
1971 lp = p->p_lwpctl;
1972 }
1973 }
1974
1975 /*
1976 * Set up an anonymous memory region to hold the shared pages.
1977 * Map them into the process' address space. The user vmspace
1978 * gets the first reference on the UAO.
1979 */
1980 mutex_enter(&lp->lp_lock);
1981 if (lp->lp_uao == NULL) {
1982 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1983 lp->lp_cur = 0;
1984 lp->lp_max = LWPCTL_UAREA_SZ;
1985 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1986 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1987 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1988 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1989 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1990 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1991 if (error != 0) {
1992 uao_detach(lp->lp_uao);
1993 lp->lp_uao = NULL;
1994 mutex_exit(&lp->lp_lock);
1995 return error;
1996 }
1997 }
1998
1999 /* Get a free block and allocate for this LWP. */
2000 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
2001 if (lcp->lcp_nfree != 0)
2002 break;
2003 }
2004 if (lcp == NULL) {
2005 /* Nothing available - try to set up a free page. */
2006 if (lp->lp_cur == lp->lp_max) {
2007 mutex_exit(&lp->lp_lock);
2008 return ENOMEM;
2009 }
2010 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
2011
2012 /*
2013 * Wire the next page down in kernel space. Since this
2014 * is a new mapping, we must add a reference.
2015 */
2016 uao = lp->lp_uao;
2017 (*uao->pgops->pgo_reference)(uao);
2018 lcp->lcp_kaddr = vm_map_min(kernel_map);
2019 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
2020 uao, lp->lp_cur, PAGE_SIZE,
2021 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
2022 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
2023 if (error != 0) {
2024 mutex_exit(&lp->lp_lock);
2025 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
2026 (*uao->pgops->pgo_detach)(uao);
2027 return error;
2028 }
2029 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
2030 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
2031 if (error != 0) {
2032 mutex_exit(&lp->lp_lock);
2033 uvm_unmap(kernel_map, lcp->lcp_kaddr,
2034 lcp->lcp_kaddr + PAGE_SIZE);
2035 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
2036 return error;
2037 }
2038 /* Prepare the page descriptor and link into the list. */
2039 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
2040 lp->lp_cur += PAGE_SIZE;
2041 lcp->lcp_nfree = LWPCTL_PER_PAGE;
2042 lcp->lcp_rotor = 0;
2043 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
2044 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
2045 }
2046 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
2047 if (++i >= LWPCTL_BITMAP_ENTRIES)
2048 i = 0;
2049 }
2050 bit = ffs(lcp->lcp_bitmap[i]) - 1;
2051 lcp->lcp_bitmap[i] ^= (1U << bit);
2052 lcp->lcp_rotor = i;
2053 lcp->lcp_nfree--;
2054 l->l_lcpage = lcp;
2055 offset = (i << 5) + bit;
2056 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
2057 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
2058 mutex_exit(&lp->lp_lock);
2059
2060 KPREEMPT_DISABLE(l);
2061 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
2062 KPREEMPT_ENABLE(l);
2063
2064 return 0;
2065 }
2066
2067 /*
2068 * Free an lwpctl structure back to the per-process list.
2069 */
2070 void
2071 lwp_ctl_free(lwp_t *l)
2072 {
2073 struct proc *p = l->l_proc;
2074 lcproc_t *lp;
2075 lcpage_t *lcp;
2076 u_int map, offset;
2077
2078 /* don't free a lwp context we borrowed for vfork */
2079 if (p->p_lflag & PL_PPWAIT) {
2080 l->l_lwpctl = NULL;
2081 return;
2082 }
2083
2084 lp = p->p_lwpctl;
2085 KASSERT(lp != NULL);
2086
2087 lcp = l->l_lcpage;
2088 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
2089 KASSERT(offset < LWPCTL_PER_PAGE);
2090
2091 mutex_enter(&lp->lp_lock);
2092 lcp->lcp_nfree++;
2093 map = offset >> 5;
2094 lcp->lcp_bitmap[map] |= (1U << (offset & 31));
2095 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
2096 lcp->lcp_rotor = map;
2097 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
2098 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
2099 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
2100 }
2101 mutex_exit(&lp->lp_lock);
2102 }
2103
2104 /*
2105 * Process is exiting; tear down lwpctl state. This can only be safely
2106 * called by the last LWP in the process.
2107 */
2108 void
2109 lwp_ctl_exit(void)
2110 {
2111 lcpage_t *lcp, *next;
2112 lcproc_t *lp;
2113 proc_t *p;
2114 lwp_t *l;
2115
2116 l = curlwp;
2117 l->l_lwpctl = NULL;
2118 l->l_lcpage = NULL;
2119 p = l->l_proc;
2120 lp = p->p_lwpctl;
2121
2122 KASSERT(lp != NULL);
2123 KASSERT(p->p_nlwps == 1);
2124
2125 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
2126 next = TAILQ_NEXT(lcp, lcp_chain);
2127 uvm_unmap(kernel_map, lcp->lcp_kaddr,
2128 lcp->lcp_kaddr + PAGE_SIZE);
2129 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
2130 }
2131
2132 if (lp->lp_uao != NULL) {
2133 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
2134 lp->lp_uva + LWPCTL_UAREA_SZ);
2135 }
2136
2137 mutex_destroy(&lp->lp_lock);
2138 kmem_free(lp, sizeof(*lp));
2139 p->p_lwpctl = NULL;
2140 }
2141
2142 /*
2143 * Return the current LWP's "preemption counter". Used to detect
2144 * preemption across operations that can tolerate preemption without
2145 * crashing, but which may generate incorrect results if preempted.
2146 */
2147 long
2148 lwp_pctr(void)
2149 {
2150
2151 return curlwp->l_ru.ru_nvcsw + curlwp->l_ru.ru_nivcsw;
2152 }
2153
2154 /*
2155 * Set an LWP's private data pointer.
2156 */
2157 int
2158 lwp_setprivate(struct lwp *l, void *ptr)
2159 {
2160 int error = 0;
2161
2162 l->l_private = ptr;
2163 #ifdef __HAVE_CPU_LWP_SETPRIVATE
2164 error = cpu_lwp_setprivate(l, ptr);
2165 #endif
2166 return error;
2167 }
2168
2169 /*
2170 * Perform any thread-related cleanup on LWP exit.
2171 * N.B. l->l_proc->p_lock must be HELD on entry but will
2172 * be released before returning!
2173 */
2174 void
2175 lwp_thread_cleanup(struct lwp *l)
2176 {
2177
2178 KASSERT(mutex_owned(l->l_proc->p_lock));
2179 mutex_exit(l->l_proc->p_lock);
2180
2181 /*
2182 * If the LWP has robust futexes, release them all
2183 * now.
2184 */
2185 if (__predict_false(l->l_robust_head != 0)) {
2186 futex_release_all_lwp(l);
2187 }
2188 }
2189
2190 #if defined(DDB)
2191 #include <machine/pcb.h>
2192
2193 void
2194 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
2195 {
2196 lwp_t *l;
2197
2198 LIST_FOREACH(l, &alllwp, l_list) {
2199 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
2200
2201 if (addr < stack || stack + KSTACK_SIZE <= addr) {
2202 continue;
2203 }
2204 (*pr)("%p is %p+%zu, LWP %p's stack\n",
2205 (void *)addr, (void *)stack,
2206 (size_t)(addr - stack), l);
2207 }
2208 }
2209 #endif /* defined(DDB) */
2210