kern_lwp.c revision 1.29.6.10 1 /* $NetBSD: kern_lwp.c,v 1.29.6.10 2008/02/27 08:36:55 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit or thread of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp", also known as lwp_t.
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing concurrently in the kernel.
52 *
53 * Execution states
54 *
55 * At any given time, an LWP has overall state that is described by
56 * lwp::l_stat. The states are broken into two sets below. The first
57 * set is guaranteed to represent the absolute, current state of the
58 * LWP:
59 *
60 * LSONPROC
61 *
62 * On processor: the LWP is executing on a CPU, either in the
63 * kernel or in user space.
64 *
65 * LSRUN
66 *
67 * Runnable: the LWP is parked on a run queue, and may soon be
68 * chosen to run by a idle processor, or by a processor that
69 * has been asked to preempt a currently runnning but lower
70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 * then the LWP is not on a run queue, but may be soon.
72 *
73 * LSIDL
74 *
75 * Idle: the LWP has been created but has not yet executed,
76 * or it has ceased executing a unit of work and is waiting
77 * to be started again.
78 *
79 * LSSUSPENDED:
80 *
81 * Suspended: the LWP has had its execution suspended by
82 * another LWP in the same process using the _lwp_suspend()
83 * system call. User-level LWPs also enter the suspended
84 * state when the system is shutting down.
85 *
86 * The second set represent a "statement of intent" on behalf of the
87 * LWP. The LWP may in fact be executing on a processor, may be
88 * sleeping or idle. It is expected to take the necessary action to
89 * stop executing or become "running" again within a short timeframe.
90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91 * Importantly, in indicates that its state is tied to a CPU.
92 *
93 * LSZOMB:
94 *
95 * Dead or dying: the LWP has released most of its resources
96 * and is a) about to switch away into oblivion b) has already
97 * switched away. When it switches away, its few remaining
98 * resources can be collected.
99 *
100 * LSSLEEP:
101 *
102 * Sleeping: the LWP has entered itself onto a sleep queue, and
103 * has switched away or will switch away shortly to allow other
104 * LWPs to run on the CPU.
105 *
106 * LSSTOP:
107 *
108 * Stopped: the LWP has been stopped as a result of a job
109 * control signal, or as a result of the ptrace() interface.
110 *
111 * Stopped LWPs may run briefly within the kernel to handle
112 * signals that they receive, but will not return to user space
113 * until their process' state is changed away from stopped.
114 *
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP state may only be set when returning to
122 * user space in userret(), or when sleeping interruptably. The
123 * LSSUSPENDED state may only be set in userret(). Before setting
124 * those states, we try to ensure that the LWPs will release all
125 * locks that they hold, and at a minimum try to ensure that the
126 * LWP can be set runnable again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Other state transitions are possible with kernel threads (eg
145 * ONPROC -> IDL), but only happen under tightly controlled
146 * circumstances the side effects are understood.
147 *
148 * Locking
149 *
150 * The majority of fields in 'struct lwp' are covered by a single,
151 * general spin lock pointed to by lwp::l_mutex. The locks covering
152 * each field are documented in sys/lwp.h.
153 *
154 * State transitions must be made with the LWP's general lock held,
155 * and may cause the LWP's lock pointer to change. Manipulation of
156 * the general lock is not performed directly, but through calls to
157 * lwp_lock(), lwp_relock() and similar.
158 *
159 * States and their associated locks:
160 *
161 * LSONPROC, LSZOMB:
162 *
163 * Always covered by spc_lwplock, which protects running LWPs.
164 * This is a per-CPU lock.
165 *
166 * LSIDL, LSRUN:
167 *
168 * Always covered by spc_mutex, which protects the run queues.
169 * This may be a per-CPU lock, depending on the scheduler.
170 *
171 * LSSLEEP:
172 *
173 * Covered by a lock associated with the sleep queue that the
174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175 *
176 * LSSTOP, LSSUSPENDED:
177 *
178 * If the LWP was previously sleeping (l_wchan != NULL), then
179 * l_mutex references the sleep queue lock. If the LWP was
180 * runnable or on the CPU when halted, or has been removed from
181 * the sleep queue since halted, then the lock is spc_lwplock.
182 *
183 * The lock order is as follows:
184 *
185 * spc::spc_lwplock ->
186 * sleepq_t::sq_mutex ->
187 * tschain_t::tc_mutex ->
188 * spc::spc_mutex
189 *
190 * Each process has an scheduler state lock (proc::p_smutex), and a
191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192 * so on. When an LWP is to be entered into or removed from one of the
193 * following states, p_mutex must be held and the process wide counters
194 * adjusted:
195 *
196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197 *
198 * Note that an LWP is considered running or likely to run soon if in
199 * one of the following states. This affects the value of p_nrlwps:
200 *
201 * LSRUN, LSONPROC, LSSLEEP
202 *
203 * p_smutex does not need to be held when transitioning among these
204 * three states.
205 */
206
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.29.6.10 2008/02/27 08:36:55 yamt Exp $");
209
210 #include "opt_ddb.h"
211 #include "opt_multiprocessor.h"
212 #include "opt_lockdebug.h"
213
214 #define _LWP_API_PRIVATE
215
216 #include <sys/param.h>
217 #include <sys/systm.h>
218 #include <sys/cpu.h>
219 #include <sys/pool.h>
220 #include <sys/proc.h>
221 #include <sys/syscallargs.h>
222 #include <sys/syscall_stats.h>
223 #include <sys/kauth.h>
224 #include <sys/sleepq.h>
225 #include <sys/user.h>
226 #include <sys/lockdebug.h>
227 #include <sys/kmem.h>
228 #include <sys/pset.h>
229 #include <sys/intr.h>
230 #include <sys/lwpctl.h>
231 #include <sys/atomic.h>
232
233 #include <uvm/uvm_extern.h>
234 #include <uvm/uvm_object.h>
235
236 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
237
238 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
239 &pool_allocator_nointr, IPL_NONE);
240
241 static pool_cache_t lwp_cache;
242 static specificdata_domain_t lwp_specificdata_domain;
243
244 void
245 lwpinit(void)
246 {
247
248 lwp_specificdata_domain = specificdata_domain_create();
249 KASSERT(lwp_specificdata_domain != NULL);
250 lwp_sys_init();
251 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
252 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
253 }
254
255 /*
256 * Set an suspended.
257 *
258 * Must be called with p_smutex held, and the LWP locked. Will unlock the
259 * LWP before return.
260 */
261 int
262 lwp_suspend(struct lwp *curl, struct lwp *t)
263 {
264 int error;
265
266 KASSERT(mutex_owned(&t->l_proc->p_smutex));
267 KASSERT(lwp_locked(t, NULL));
268
269 KASSERT(curl != t || curl->l_stat == LSONPROC);
270
271 /*
272 * If the current LWP has been told to exit, we must not suspend anyone
273 * else or deadlock could occur. We won't return to userspace.
274 */
275 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
276 lwp_unlock(t);
277 return (EDEADLK);
278 }
279
280 error = 0;
281
282 switch (t->l_stat) {
283 case LSRUN:
284 case LSONPROC:
285 t->l_flag |= LW_WSUSPEND;
286 lwp_need_userret(t);
287 lwp_unlock(t);
288 break;
289
290 case LSSLEEP:
291 t->l_flag |= LW_WSUSPEND;
292
293 /*
294 * Kick the LWP and try to get it to the kernel boundary
295 * so that it will release any locks that it holds.
296 * setrunnable() will release the lock.
297 */
298 if ((t->l_flag & LW_SINTR) != 0)
299 setrunnable(t);
300 else
301 lwp_unlock(t);
302 break;
303
304 case LSSUSPENDED:
305 lwp_unlock(t);
306 break;
307
308 case LSSTOP:
309 t->l_flag |= LW_WSUSPEND;
310 setrunnable(t);
311 break;
312
313 case LSIDL:
314 case LSZOMB:
315 error = EINTR; /* It's what Solaris does..... */
316 lwp_unlock(t);
317 break;
318 }
319
320 return (error);
321 }
322
323 /*
324 * Restart a suspended LWP.
325 *
326 * Must be called with p_smutex held, and the LWP locked. Will unlock the
327 * LWP before return.
328 */
329 void
330 lwp_continue(struct lwp *l)
331 {
332
333 KASSERT(mutex_owned(&l->l_proc->p_smutex));
334 KASSERT(lwp_locked(l, NULL));
335
336 /* If rebooting or not suspended, then just bail out. */
337 if ((l->l_flag & LW_WREBOOT) != 0) {
338 lwp_unlock(l);
339 return;
340 }
341
342 l->l_flag &= ~LW_WSUSPEND;
343
344 if (l->l_stat != LSSUSPENDED) {
345 lwp_unlock(l);
346 return;
347 }
348
349 /* setrunnable() will release the lock. */
350 setrunnable(l);
351 }
352
353 /*
354 * Wait for an LWP within the current process to exit. If 'lid' is
355 * non-zero, we are waiting for a specific LWP.
356 *
357 * Must be called with p->p_smutex held.
358 */
359 int
360 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
361 {
362 struct proc *p = l->l_proc;
363 struct lwp *l2;
364 int nfound, error;
365 lwpid_t curlid;
366 bool exiting;
367
368 KASSERT(mutex_owned(&p->p_smutex));
369
370 p->p_nlwpwait++;
371 l->l_waitingfor = lid;
372 curlid = l->l_lid;
373 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
374
375 for (;;) {
376 /*
377 * Avoid a race between exit1() and sigexit(): if the
378 * process is dumping core, then we need to bail out: call
379 * into lwp_userret() where we will be suspended until the
380 * deed is done.
381 */
382 if ((p->p_sflag & PS_WCORE) != 0) {
383 mutex_exit(&p->p_smutex);
384 lwp_userret(l);
385 #ifdef DIAGNOSTIC
386 panic("lwp_wait1");
387 #endif
388 /* NOTREACHED */
389 }
390
391 /*
392 * First off, drain any detached LWP that is waiting to be
393 * reaped.
394 */
395 while ((l2 = p->p_zomblwp) != NULL) {
396 p->p_zomblwp = NULL;
397 lwp_free(l2, false, false);/* releases proc mutex */
398 mutex_enter(&p->p_smutex);
399 }
400
401 /*
402 * Now look for an LWP to collect. If the whole process is
403 * exiting, count detached LWPs as eligible to be collected,
404 * but don't drain them here.
405 */
406 nfound = 0;
407 error = 0;
408 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
409 /*
410 * If a specific wait and the target is waiting on
411 * us, then avoid deadlock. This also traps LWPs
412 * that try to wait on themselves.
413 *
414 * Note that this does not handle more complicated
415 * cycles, like: t1 -> t2 -> t3 -> t1. The process
416 * can still be killed so it is not a major problem.
417 */
418 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
419 error = EDEADLK;
420 break;
421 }
422 if (l2 == l)
423 continue;
424 if ((l2->l_prflag & LPR_DETACHED) != 0) {
425 nfound += exiting;
426 continue;
427 }
428 if (lid != 0) {
429 if (l2->l_lid != lid)
430 continue;
431 /*
432 * Mark this LWP as the first waiter, if there
433 * is no other.
434 */
435 if (l2->l_waiter == 0)
436 l2->l_waiter = curlid;
437 } else if (l2->l_waiter != 0) {
438 /*
439 * It already has a waiter - so don't
440 * collect it. If the waiter doesn't
441 * grab it we'll get another chance
442 * later.
443 */
444 nfound++;
445 continue;
446 }
447 nfound++;
448
449 /* No need to lock the LWP in order to see LSZOMB. */
450 if (l2->l_stat != LSZOMB)
451 continue;
452
453 /*
454 * We're no longer waiting. Reset the "first waiter"
455 * pointer on the target, in case it was us.
456 */
457 l->l_waitingfor = 0;
458 l2->l_waiter = 0;
459 p->p_nlwpwait--;
460 if (departed)
461 *departed = l2->l_lid;
462 sched_lwp_collect(l2);
463
464 /* lwp_free() releases the proc lock. */
465 lwp_free(l2, false, false);
466 mutex_enter(&p->p_smutex);
467 return 0;
468 }
469
470 if (error != 0)
471 break;
472 if (nfound == 0) {
473 error = ESRCH;
474 break;
475 }
476
477 /*
478 * The kernel is careful to ensure that it can not deadlock
479 * when exiting - just keep waiting.
480 */
481 if (exiting) {
482 KASSERT(p->p_nlwps > 1);
483 cv_wait(&p->p_lwpcv, &p->p_smutex);
484 continue;
485 }
486
487 /*
488 * If all other LWPs are waiting for exits or suspends
489 * and the supply of zombies and potential zombies is
490 * exhausted, then we are about to deadlock.
491 *
492 * If the process is exiting (and this LWP is not the one
493 * that is coordinating the exit) then bail out now.
494 */
495 if ((p->p_sflag & PS_WEXIT) != 0 ||
496 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
497 error = EDEADLK;
498 break;
499 }
500
501 /*
502 * Sit around and wait for something to happen. We'll be
503 * awoken if any of the conditions examined change: if an
504 * LWP exits, is collected, or is detached.
505 */
506 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
507 break;
508 }
509
510 /*
511 * We didn't find any LWPs to collect, we may have received a
512 * signal, or some other condition has caused us to bail out.
513 *
514 * If waiting on a specific LWP, clear the waiters marker: some
515 * other LWP may want it. Then, kick all the remaining waiters
516 * so that they can re-check for zombies and for deadlock.
517 */
518 if (lid != 0) {
519 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
520 if (l2->l_lid == lid) {
521 if (l2->l_waiter == curlid)
522 l2->l_waiter = 0;
523 break;
524 }
525 }
526 }
527 p->p_nlwpwait--;
528 l->l_waitingfor = 0;
529 cv_broadcast(&p->p_lwpcv);
530
531 return error;
532 }
533
534 /*
535 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
536 * The new LWP is created in state LSIDL and must be set running,
537 * suspended, or stopped by the caller.
538 */
539 int
540 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
541 void *stack, size_t stacksize, void (*func)(void *), void *arg,
542 lwp_t **rnewlwpp, int sclass)
543 {
544 struct lwp *l2, *isfree;
545 turnstile_t *ts;
546
547 /*
548 * First off, reap any detached LWP waiting to be collected.
549 * We can re-use its LWP structure and turnstile.
550 */
551 isfree = NULL;
552 if (p2->p_zomblwp != NULL) {
553 mutex_enter(&p2->p_smutex);
554 if ((isfree = p2->p_zomblwp) != NULL) {
555 p2->p_zomblwp = NULL;
556 lwp_free(isfree, true, false);/* releases proc mutex */
557 } else
558 mutex_exit(&p2->p_smutex);
559 }
560 if (isfree == NULL) {
561 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
562 memset(l2, 0, sizeof(*l2));
563 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
564 SLIST_INIT(&l2->l_pi_lenders);
565 } else {
566 l2 = isfree;
567 ts = l2->l_ts;
568 KASSERT(l2->l_inheritedprio == -1);
569 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
570 memset(l2, 0, sizeof(*l2));
571 l2->l_ts = ts;
572 }
573
574 l2->l_stat = LSIDL;
575 l2->l_proc = p2;
576 l2->l_refcnt = 1;
577 l2->l_class = sclass;
578 l2->l_kpriority = l1->l_kpriority;
579 l2->l_kpribase = PRI_KERNEL;
580 l2->l_priority = l1->l_priority;
581 l2->l_inheritedprio = -1;
582 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
583 l2->l_cpu = l1->l_cpu;
584 l2->l_flag = inmem ? LW_INMEM : 0;
585 l2->l_pflag = LP_MPSAFE;
586
587 if (p2->p_flag & PK_SYSTEM) {
588 /* Mark it as a system LWP and not a candidate for swapping */
589 l2->l_flag |= LW_SYSTEM;
590 }
591
592 lwp_initspecific(l2);
593 sched_lwp_fork(l1, l2);
594 lwp_update_creds(l2);
595 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
596 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
597 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
598 cv_init(&l2->l_sigcv, "sigwait");
599 l2->l_syncobj = &sched_syncobj;
600
601 if (rnewlwpp != NULL)
602 *rnewlwpp = l2;
603
604 l2->l_addr = UAREA_TO_USER(uaddr);
605 uvm_lwp_fork(l1, l2, stack, stacksize, func,
606 (arg != NULL) ? arg : l2);
607
608 mutex_enter(&p2->p_smutex);
609
610 if ((flags & LWP_DETACHED) != 0) {
611 l2->l_prflag = LPR_DETACHED;
612 p2->p_ndlwps++;
613 } else
614 l2->l_prflag = 0;
615
616 l2->l_sigmask = l1->l_sigmask;
617 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
618 sigemptyset(&l2->l_sigpend.sp_set);
619
620 p2->p_nlwpid++;
621 if (p2->p_nlwpid == 0)
622 p2->p_nlwpid++;
623 l2->l_lid = p2->p_nlwpid;
624 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
625 p2->p_nlwps++;
626
627 mutex_exit(&p2->p_smutex);
628
629 mutex_enter(&proclist_lock);
630 LIST_INSERT_HEAD(&alllwp, l2, l_list);
631 mutex_exit(&proclist_lock);
632
633 if ((p2->p_flag & PK_SYSTEM) == 0) {
634 /* Locking is needed, since LWP is in the list of all LWPs */
635 lwp_lock(l2);
636 /* Inherit a processor-set */
637 l2->l_psid = l1->l_psid;
638 /* Inherit an affinity */
639 memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
640 /* Look for a CPU to start */
641 l2->l_cpu = sched_takecpu(l2);
642 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
643 }
644
645 SYSCALL_TIME_LWP_INIT(l2);
646
647 if (p2->p_emul->e_lwp_fork)
648 (*p2->p_emul->e_lwp_fork)(l1, l2);
649
650 return (0);
651 }
652
653 /*
654 * Called by MD code when a new LWP begins execution. Must be called
655 * with the previous LWP locked (so at splsched), or if there is no
656 * previous LWP, at splsched.
657 */
658 void
659 lwp_startup(struct lwp *prev, struct lwp *new)
660 {
661
662 if (prev != NULL) {
663 /*
664 * Normalize the count of the spin-mutexes, it was
665 * increased in mi_switch(). Unmark the state of
666 * context switch - it is finished for previous LWP.
667 */
668 curcpu()->ci_mtx_count++;
669 membar_exit();
670 prev->l_ctxswtch = 0;
671 }
672 spl0();
673 pmap_activate(new);
674 LOCKDEBUG_BARRIER(NULL, 0);
675 if ((new->l_pflag & LP_MPSAFE) == 0) {
676 KERNEL_LOCK(1, new);
677 }
678 }
679
680 /*
681 * Exit an LWP.
682 */
683 void
684 lwp_exit(struct lwp *l)
685 {
686 struct proc *p = l->l_proc;
687 struct lwp *l2;
688 bool current;
689
690 current = (l == curlwp);
691
692 KASSERT(current || l->l_stat == LSIDL);
693
694 /*
695 * Verify that we hold no locks other than the kernel lock.
696 */
697 #ifdef MULTIPROCESSOR
698 LOCKDEBUG_BARRIER(&kernel_lock, 0);
699 #else
700 LOCKDEBUG_BARRIER(NULL, 0);
701 #endif
702
703 /*
704 * If we are the last live LWP in a process, we need to exit the
705 * entire process. We do so with an exit status of zero, because
706 * it's a "controlled" exit, and because that's what Solaris does.
707 *
708 * We are not quite a zombie yet, but for accounting purposes we
709 * must increment the count of zombies here.
710 *
711 * Note: the last LWP's specificdata will be deleted here.
712 */
713 mutex_enter(&p->p_smutex);
714 if (p->p_nlwps - p->p_nzlwps == 1) {
715 KASSERT(current == true);
716 /* XXXSMP kernel_lock not held */
717 exit1(l, 0);
718 /* NOTREACHED */
719 }
720 p->p_nzlwps++;
721 mutex_exit(&p->p_smutex);
722
723 if (p->p_emul->e_lwp_exit)
724 (*p->p_emul->e_lwp_exit)(l);
725
726 /* Delete the specificdata while it's still safe to sleep. */
727 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
728
729 /*
730 * Release our cached credentials.
731 */
732 kauth_cred_free(l->l_cred);
733 callout_destroy(&l->l_timeout_ch);
734
735 /*
736 * While we can still block, mark the LWP as unswappable to
737 * prevent conflicts with the with the swapper.
738 */
739 if (current)
740 uvm_lwp_hold(l);
741
742 /*
743 * Remove the LWP from the global list.
744 */
745 mutex_enter(&proclist_lock);
746 mutex_enter(&proclist_mutex);
747 LIST_REMOVE(l, l_list);
748 mutex_exit(&proclist_mutex);
749 mutex_exit(&proclist_lock);
750
751 /*
752 * Get rid of all references to the LWP that others (e.g. procfs)
753 * may have, and mark the LWP as a zombie. If the LWP is detached,
754 * mark it waiting for collection in the proc structure. Note that
755 * before we can do that, we need to free any other dead, deatched
756 * LWP waiting to meet its maker.
757 *
758 * XXXSMP disable preemption.
759 */
760 mutex_enter(&p->p_smutex);
761 lwp_drainrefs(l);
762
763 if ((l->l_prflag & LPR_DETACHED) != 0) {
764 while ((l2 = p->p_zomblwp) != NULL) {
765 p->p_zomblwp = NULL;
766 lwp_free(l2, false, false);/* releases proc mutex */
767 mutex_enter(&p->p_smutex);
768 l->l_refcnt++;
769 lwp_drainrefs(l);
770 }
771 p->p_zomblwp = l;
772 }
773
774 /*
775 * If we find a pending signal for the process and we have been
776 * asked to check for signals, then we loose: arrange to have
777 * all other LWPs in the process check for signals.
778 */
779 if ((l->l_flag & LW_PENDSIG) != 0 &&
780 firstsig(&p->p_sigpend.sp_set) != 0) {
781 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
782 lwp_lock(l2);
783 l2->l_flag |= LW_PENDSIG;
784 lwp_unlock(l2);
785 }
786 }
787
788 lwp_lock(l);
789 l->l_stat = LSZOMB;
790 if (l->l_name != NULL)
791 strcpy(l->l_name, "(zombie)");
792 lwp_unlock(l);
793 p->p_nrlwps--;
794 cv_broadcast(&p->p_lwpcv);
795 if (l->l_lwpctl != NULL)
796 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
797 mutex_exit(&p->p_smutex);
798
799 /*
800 * We can no longer block. At this point, lwp_free() may already
801 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
802 *
803 * Free MD LWP resources.
804 */
805 #ifndef __NO_CPU_LWP_FREE
806 cpu_lwp_free(l, 0);
807 #endif
808
809 if (current) {
810 pmap_deactivate(l);
811
812 /*
813 * Release the kernel lock, and switch away into
814 * oblivion.
815 */
816 #ifdef notyet
817 /* XXXSMP hold in lwp_userret() */
818 KERNEL_UNLOCK_LAST(l);
819 #else
820 KERNEL_UNLOCK_ALL(l, NULL);
821 #endif
822 lwp_exit_switchaway(l);
823 }
824 }
825
826 void
827 lwp_exit_switchaway(struct lwp *l)
828 {
829 struct cpu_info *ci;
830 struct lwp *idlelwp;
831
832 /* Unlocked, but is for statistics only. */
833 uvmexp.swtch++;
834
835 (void)splsched();
836 l->l_flag &= ~LW_RUNNING;
837 ci = curcpu();
838 idlelwp = ci->ci_data.cpu_idlelwp;
839 idlelwp->l_stat = LSONPROC;
840
841 /*
842 * cpu_onproc must be updated with the CPU locked, as
843 * aston() may try to set a AST pending on the LWP (and
844 * it does so with the CPU locked). Otherwise, the LWP
845 * may be destroyed before the AST can be set, leading
846 * to a user-after-free.
847 */
848 spc_lock(ci);
849 ci->ci_data.cpu_onproc = idlelwp;
850 spc_unlock(ci);
851 cpu_switchto(NULL, idlelwp, false);
852 }
853
854 /*
855 * Free a dead LWP's remaining resources.
856 *
857 * XXXLWP limits.
858 */
859 void
860 lwp_free(struct lwp *l, bool recycle, bool last)
861 {
862 struct proc *p = l->l_proc;
863 ksiginfoq_t kq;
864
865 KASSERT(l != curlwp);
866
867 /*
868 * If this was not the last LWP in the process, then adjust
869 * counters and unlock.
870 */
871 if (!last) {
872 /*
873 * Add the LWP's run time to the process' base value.
874 * This needs to co-incide with coming off p_lwps.
875 */
876 bintime_add(&p->p_rtime, &l->l_rtime);
877 p->p_pctcpu += l->l_pctcpu;
878 LIST_REMOVE(l, l_sibling);
879 p->p_nlwps--;
880 p->p_nzlwps--;
881 if ((l->l_prflag & LPR_DETACHED) != 0)
882 p->p_ndlwps--;
883
884 /*
885 * Have any LWPs sleeping in lwp_wait() recheck for
886 * deadlock.
887 */
888 cv_broadcast(&p->p_lwpcv);
889 mutex_exit(&p->p_smutex);
890 }
891
892 #ifdef MULTIPROCESSOR
893 /*
894 * In the unlikely event that the LWP is still on the CPU,
895 * then spin until it has switched away. We need to release
896 * all locks to avoid deadlock against interrupt handlers on
897 * the target CPU.
898 */
899 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
900 int count;
901 (void)count; /* XXXgcc */
902 KERNEL_UNLOCK_ALL(curlwp, &count);
903 while ((l->l_flag & LW_RUNNING) != 0 ||
904 l->l_cpu->ci_curlwp == l)
905 SPINLOCK_BACKOFF_HOOK;
906 KERNEL_LOCK(count, curlwp);
907 }
908 #endif
909
910 /*
911 * Destroy the LWP's remaining signal information.
912 */
913 ksiginfo_queue_init(&kq);
914 sigclear(&l->l_sigpend, NULL, &kq);
915 ksiginfo_queue_drain(&kq);
916 cv_destroy(&l->l_sigcv);
917 mutex_destroy(&l->l_swaplock);
918
919 /*
920 * Free the LWP's turnstile and the LWP structure itself unless the
921 * caller wants to recycle them. Also, free the scheduler specific
922 * data.
923 *
924 * We can't return turnstile0 to the pool (it didn't come from it),
925 * so if it comes up just drop it quietly and move on.
926 *
927 * We don't recycle the VM resources at this time.
928 */
929 if (l->l_lwpctl != NULL)
930 lwp_ctl_free(l);
931 sched_lwp_exit(l);
932
933 if (!recycle && l->l_ts != &turnstile0)
934 pool_cache_put(turnstile_cache, l->l_ts);
935 if (l->l_name != NULL)
936 kmem_free(l->l_name, MAXCOMLEN);
937 #ifndef __NO_CPU_LWP_FREE
938 cpu_lwp_free2(l);
939 #endif
940 KASSERT((l->l_flag & LW_INMEM) != 0);
941 uvm_lwp_exit(l);
942 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
943 KASSERT(l->l_inheritedprio == -1);
944 if (!recycle)
945 pool_cache_put(lwp_cache, l);
946 }
947
948 /*
949 * Pick a LWP to represent the process for those operations which
950 * want information about a "process" that is actually associated
951 * with a LWP.
952 *
953 * If 'locking' is false, no locking or lock checks are performed.
954 * This is intended for use by DDB.
955 *
956 * We don't bother locking the LWP here, since code that uses this
957 * interface is broken by design and an exact match is not required.
958 */
959 struct lwp *
960 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
961 {
962 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
963 struct lwp *signalled;
964 int cnt;
965
966 if (locking) {
967 KASSERT(mutex_owned(&p->p_smutex));
968 }
969
970 /* Trivial case: only one LWP */
971 if (p->p_nlwps == 1) {
972 l = LIST_FIRST(&p->p_lwps);
973 if (nrlwps)
974 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
975 return l;
976 }
977
978 cnt = 0;
979 switch (p->p_stat) {
980 case SSTOP:
981 case SACTIVE:
982 /* Pick the most live LWP */
983 onproc = running = sleeping = stopped = suspended = NULL;
984 signalled = NULL;
985 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
986 if ((l->l_flag & LW_IDLE) != 0) {
987 continue;
988 }
989 if (l->l_lid == p->p_sigctx.ps_lwp)
990 signalled = l;
991 switch (l->l_stat) {
992 case LSONPROC:
993 onproc = l;
994 cnt++;
995 break;
996 case LSRUN:
997 running = l;
998 cnt++;
999 break;
1000 case LSSLEEP:
1001 sleeping = l;
1002 break;
1003 case LSSTOP:
1004 stopped = l;
1005 break;
1006 case LSSUSPENDED:
1007 suspended = l;
1008 break;
1009 }
1010 }
1011 if (nrlwps)
1012 *nrlwps = cnt;
1013 if (signalled)
1014 l = signalled;
1015 else if (onproc)
1016 l = onproc;
1017 else if (running)
1018 l = running;
1019 else if (sleeping)
1020 l = sleeping;
1021 else if (stopped)
1022 l = stopped;
1023 else if (suspended)
1024 l = suspended;
1025 else
1026 break;
1027 return l;
1028 #ifdef DIAGNOSTIC
1029 case SIDL:
1030 case SZOMB:
1031 case SDYING:
1032 case SDEAD:
1033 if (locking)
1034 mutex_exit(&p->p_smutex);
1035 /* We have more than one LWP and we're in SIDL?
1036 * How'd that happen?
1037 */
1038 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1039 p->p_pid, p->p_comm, p->p_stat);
1040 break;
1041 default:
1042 if (locking)
1043 mutex_exit(&p->p_smutex);
1044 panic("Process %d (%s) in unknown state %d",
1045 p->p_pid, p->p_comm, p->p_stat);
1046 #endif
1047 }
1048
1049 if (locking)
1050 mutex_exit(&p->p_smutex);
1051 panic("proc_representative_lwp: couldn't find a lwp for process"
1052 " %d (%s)", p->p_pid, p->p_comm);
1053 /* NOTREACHED */
1054 return NULL;
1055 }
1056
1057 /*
1058 * Migrate the LWP to the another CPU. Unlocks the LWP.
1059 */
1060 void
1061 lwp_migrate(lwp_t *l, struct cpu_info *ci)
1062 {
1063 struct schedstate_percpu *spc;
1064 KASSERT(lwp_locked(l, NULL));
1065
1066 if (l->l_cpu == ci) {
1067 lwp_unlock(l);
1068 return;
1069 }
1070
1071 spc = &ci->ci_schedstate;
1072 switch (l->l_stat) {
1073 case LSRUN:
1074 if (l->l_flag & LW_INMEM) {
1075 l->l_target_cpu = ci;
1076 break;
1077 }
1078 case LSIDL:
1079 l->l_cpu = ci;
1080 lwp_unlock_to(l, spc->spc_mutex);
1081 KASSERT(!mutex_owned(spc->spc_mutex));
1082 return;
1083 case LSSLEEP:
1084 l->l_cpu = ci;
1085 break;
1086 case LSSTOP:
1087 case LSSUSPENDED:
1088 if (l->l_wchan != NULL) {
1089 l->l_cpu = ci;
1090 break;
1091 }
1092 case LSONPROC:
1093 l->l_target_cpu = ci;
1094 break;
1095 }
1096 lwp_unlock(l);
1097 }
1098
1099 /*
1100 * Find the LWP in the process. Arguments may be zero, in such case,
1101 * the calling process and first LWP in the list will be used.
1102 * On success - returns LWP locked.
1103 */
1104 struct lwp *
1105 lwp_find2(pid_t pid, lwpid_t lid)
1106 {
1107 proc_t *p;
1108 lwp_t *l;
1109
1110 /* Find the process */
1111 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1112 if (p == NULL)
1113 return NULL;
1114 mutex_enter(&p->p_smutex);
1115 if (pid != 0) {
1116 /* Case of p_find */
1117 mutex_exit(&proclist_lock);
1118 }
1119
1120 /* Find the thread */
1121 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1122 if (l != NULL)
1123 lwp_lock(l);
1124 mutex_exit(&p->p_smutex);
1125
1126 return l;
1127 }
1128
1129 /*
1130 * Look up a live LWP within the speicifed process, and return it locked.
1131 *
1132 * Must be called with p->p_smutex held.
1133 */
1134 struct lwp *
1135 lwp_find(struct proc *p, int id)
1136 {
1137 struct lwp *l;
1138
1139 KASSERT(mutex_owned(&p->p_smutex));
1140
1141 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1142 if (l->l_lid == id)
1143 break;
1144 }
1145
1146 /*
1147 * No need to lock - all of these conditions will
1148 * be visible with the process level mutex held.
1149 */
1150 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1151 l = NULL;
1152
1153 return l;
1154 }
1155
1156 /*
1157 * Update an LWP's cached credentials to mirror the process' master copy.
1158 *
1159 * This happens early in the syscall path, on user trap, and on LWP
1160 * creation. A long-running LWP can also voluntarily choose to update
1161 * it's credentials by calling this routine. This may be called from
1162 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1163 */
1164 void
1165 lwp_update_creds(struct lwp *l)
1166 {
1167 kauth_cred_t oc;
1168 struct proc *p;
1169
1170 p = l->l_proc;
1171 oc = l->l_cred;
1172
1173 mutex_enter(&p->p_mutex);
1174 kauth_cred_hold(p->p_cred);
1175 l->l_cred = p->p_cred;
1176 mutex_exit(&p->p_mutex);
1177 if (oc != NULL)
1178 kauth_cred_free(oc);
1179 }
1180
1181 /*
1182 * Verify that an LWP is locked, and optionally verify that the lock matches
1183 * one we specify.
1184 */
1185 int
1186 lwp_locked(struct lwp *l, kmutex_t *mtx)
1187 {
1188 kmutex_t *cur = l->l_mutex;
1189
1190 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1191 }
1192
1193 /*
1194 * Lock an LWP.
1195 */
1196 void
1197 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1198 {
1199
1200 /*
1201 * XXXgcc ignoring kmutex_t * volatile on i386
1202 *
1203 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1204 */
1205 #if 1
1206 while (l->l_mutex != old) {
1207 #else
1208 for (;;) {
1209 #endif
1210 mutex_spin_exit(old);
1211 old = l->l_mutex;
1212 mutex_spin_enter(old);
1213
1214 /*
1215 * mutex_enter() will have posted a read barrier. Re-test
1216 * l->l_mutex. If it has changed, we need to try again.
1217 */
1218 #if 1
1219 }
1220 #else
1221 } while (__predict_false(l->l_mutex != old));
1222 #endif
1223 }
1224
1225 /*
1226 * Lend a new mutex to an LWP. The old mutex must be held.
1227 */
1228 void
1229 lwp_setlock(struct lwp *l, kmutex_t *new)
1230 {
1231
1232 KASSERT(mutex_owned(l->l_mutex));
1233
1234 membar_producer();
1235 l->l_mutex = new;
1236 }
1237
1238 /*
1239 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1240 * must be held.
1241 */
1242 void
1243 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1244 {
1245 kmutex_t *old;
1246
1247 KASSERT(mutex_owned(l->l_mutex));
1248
1249 old = l->l_mutex;
1250 membar_producer();
1251 l->l_mutex = new;
1252 mutex_spin_exit(old);
1253 }
1254
1255 /*
1256 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1257 * locked.
1258 */
1259 void
1260 lwp_relock(struct lwp *l, kmutex_t *new)
1261 {
1262 kmutex_t *old;
1263
1264 KASSERT(mutex_owned(l->l_mutex));
1265
1266 old = l->l_mutex;
1267 if (old != new) {
1268 mutex_spin_enter(new);
1269 l->l_mutex = new;
1270 mutex_spin_exit(old);
1271 }
1272 }
1273
1274 int
1275 lwp_trylock(struct lwp *l)
1276 {
1277 kmutex_t *old;
1278
1279 for (;;) {
1280 if (!mutex_tryenter(old = l->l_mutex))
1281 return 0;
1282 if (__predict_true(l->l_mutex == old))
1283 return 1;
1284 mutex_spin_exit(old);
1285 }
1286 }
1287
1288 /*
1289 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1290 * set.
1291 */
1292 void
1293 lwp_userret(struct lwp *l)
1294 {
1295 struct proc *p;
1296 void (*hook)(void);
1297 int sig;
1298
1299 p = l->l_proc;
1300
1301 #ifndef __HAVE_FAST_SOFTINTS
1302 /* Run pending soft interrupts. */
1303 if (l->l_cpu->ci_data.cpu_softints != 0)
1304 softint_overlay();
1305 #endif
1306
1307 /*
1308 * It should be safe to do this read unlocked on a multiprocessor
1309 * system..
1310 */
1311 while ((l->l_flag & LW_USERRET) != 0) {
1312 /*
1313 * Process pending signals first, unless the process
1314 * is dumping core or exiting, where we will instead
1315 * enter the L_WSUSPEND case below.
1316 */
1317 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1318 LW_PENDSIG) {
1319 mutex_enter(&p->p_smutex);
1320 while ((sig = issignal(l)) != 0)
1321 postsig(sig);
1322 mutex_exit(&p->p_smutex);
1323 }
1324
1325 /*
1326 * Core-dump or suspend pending.
1327 *
1328 * In case of core dump, suspend ourselves, so that the
1329 * kernel stack and therefore the userland registers saved
1330 * in the trapframe are around for coredump() to write them
1331 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1332 * will write the core file out once all other LWPs are
1333 * suspended.
1334 */
1335 if ((l->l_flag & LW_WSUSPEND) != 0) {
1336 mutex_enter(&p->p_smutex);
1337 p->p_nrlwps--;
1338 cv_broadcast(&p->p_lwpcv);
1339 lwp_lock(l);
1340 l->l_stat = LSSUSPENDED;
1341 mutex_exit(&p->p_smutex);
1342 mi_switch(l);
1343 }
1344
1345 /* Process is exiting. */
1346 if ((l->l_flag & LW_WEXIT) != 0) {
1347 lwp_exit(l);
1348 KASSERT(0);
1349 /* NOTREACHED */
1350 }
1351
1352 /* Call userret hook; used by Linux emulation. */
1353 if ((l->l_flag & LW_WUSERRET) != 0) {
1354 lwp_lock(l);
1355 l->l_flag &= ~LW_WUSERRET;
1356 lwp_unlock(l);
1357 hook = p->p_userret;
1358 p->p_userret = NULL;
1359 (*hook)();
1360 }
1361 }
1362 }
1363
1364 /*
1365 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1366 */
1367 void
1368 lwp_need_userret(struct lwp *l)
1369 {
1370 KASSERT(lwp_locked(l, NULL));
1371
1372 /*
1373 * Since the tests in lwp_userret() are done unlocked, make sure
1374 * that the condition will be seen before forcing the LWP to enter
1375 * kernel mode.
1376 */
1377 membar_producer();
1378 cpu_signotify(l);
1379 }
1380
1381 /*
1382 * Add one reference to an LWP. This will prevent the LWP from
1383 * exiting, thus keep the lwp structure and PCB around to inspect.
1384 */
1385 void
1386 lwp_addref(struct lwp *l)
1387 {
1388
1389 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1390 KASSERT(l->l_stat != LSZOMB);
1391 KASSERT(l->l_refcnt != 0);
1392
1393 l->l_refcnt++;
1394 }
1395
1396 /*
1397 * Remove one reference to an LWP. If this is the last reference,
1398 * then we must finalize the LWP's death.
1399 */
1400 void
1401 lwp_delref(struct lwp *l)
1402 {
1403 struct proc *p = l->l_proc;
1404
1405 mutex_enter(&p->p_smutex);
1406 KASSERT(l->l_stat != LSZOMB);
1407 KASSERT(l->l_refcnt > 0);
1408 if (--l->l_refcnt == 0)
1409 cv_broadcast(&p->p_lwpcv);
1410 mutex_exit(&p->p_smutex);
1411 }
1412
1413 /*
1414 * Drain all references to the current LWP.
1415 */
1416 void
1417 lwp_drainrefs(struct lwp *l)
1418 {
1419 struct proc *p = l->l_proc;
1420
1421 KASSERT(mutex_owned(&p->p_smutex));
1422 KASSERT(l->l_refcnt != 0);
1423
1424 l->l_refcnt--;
1425 while (l->l_refcnt != 0)
1426 cv_wait(&p->p_lwpcv, &p->p_smutex);
1427 }
1428
1429 /*
1430 * lwp_specific_key_create --
1431 * Create a key for subsystem lwp-specific data.
1432 */
1433 int
1434 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1435 {
1436
1437 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1438 }
1439
1440 /*
1441 * lwp_specific_key_delete --
1442 * Delete a key for subsystem lwp-specific data.
1443 */
1444 void
1445 lwp_specific_key_delete(specificdata_key_t key)
1446 {
1447
1448 specificdata_key_delete(lwp_specificdata_domain, key);
1449 }
1450
1451 /*
1452 * lwp_initspecific --
1453 * Initialize an LWP's specificdata container.
1454 */
1455 void
1456 lwp_initspecific(struct lwp *l)
1457 {
1458 int error;
1459
1460 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1461 KASSERT(error == 0);
1462 }
1463
1464 /*
1465 * lwp_finispecific --
1466 * Finalize an LWP's specificdata container.
1467 */
1468 void
1469 lwp_finispecific(struct lwp *l)
1470 {
1471
1472 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1473 }
1474
1475 /*
1476 * lwp_getspecific --
1477 * Return lwp-specific data corresponding to the specified key.
1478 *
1479 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1480 * only its OWN SPECIFIC DATA. If it is necessary to access another
1481 * LWP's specifc data, care must be taken to ensure that doing so
1482 * would not cause internal data structure inconsistency (i.e. caller
1483 * can guarantee that the target LWP is not inside an lwp_getspecific()
1484 * or lwp_setspecific() call).
1485 */
1486 void *
1487 lwp_getspecific(specificdata_key_t key)
1488 {
1489
1490 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1491 &curlwp->l_specdataref, key));
1492 }
1493
1494 void *
1495 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1496 {
1497
1498 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1499 &l->l_specdataref, key));
1500 }
1501
1502 /*
1503 * lwp_setspecific --
1504 * Set lwp-specific data corresponding to the specified key.
1505 */
1506 void
1507 lwp_setspecific(specificdata_key_t key, void *data)
1508 {
1509
1510 specificdata_setspecific(lwp_specificdata_domain,
1511 &curlwp->l_specdataref, key, data);
1512 }
1513
1514 /*
1515 * Allocate a new lwpctl structure for a user LWP.
1516 */
1517 int
1518 lwp_ctl_alloc(vaddr_t *uaddr)
1519 {
1520 lcproc_t *lp;
1521 u_int bit, i, offset;
1522 struct uvm_object *uao;
1523 int error;
1524 lcpage_t *lcp;
1525 proc_t *p;
1526 lwp_t *l;
1527
1528 l = curlwp;
1529 p = l->l_proc;
1530
1531 if (l->l_lcpage != NULL) {
1532 lcp = l->l_lcpage;
1533 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1534 return (EINVAL);
1535 }
1536
1537 /* First time around, allocate header structure for the process. */
1538 if ((lp = p->p_lwpctl) == NULL) {
1539 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1540 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1541 lp->lp_uao = NULL;
1542 TAILQ_INIT(&lp->lp_pages);
1543 mutex_enter(&p->p_mutex);
1544 if (p->p_lwpctl == NULL) {
1545 p->p_lwpctl = lp;
1546 mutex_exit(&p->p_mutex);
1547 } else {
1548 mutex_exit(&p->p_mutex);
1549 mutex_destroy(&lp->lp_lock);
1550 kmem_free(lp, sizeof(*lp));
1551 lp = p->p_lwpctl;
1552 }
1553 }
1554
1555 /*
1556 * Set up an anonymous memory region to hold the shared pages.
1557 * Map them into the process' address space. The user vmspace
1558 * gets the first reference on the UAO.
1559 */
1560 mutex_enter(&lp->lp_lock);
1561 if (lp->lp_uao == NULL) {
1562 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1563 lp->lp_cur = 0;
1564 lp->lp_max = LWPCTL_UAREA_SZ;
1565 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1566 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1567 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1568 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1569 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1570 if (error != 0) {
1571 uao_detach(lp->lp_uao);
1572 lp->lp_uao = NULL;
1573 mutex_exit(&lp->lp_lock);
1574 return error;
1575 }
1576 }
1577
1578 /* Get a free block and allocate for this LWP. */
1579 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1580 if (lcp->lcp_nfree != 0)
1581 break;
1582 }
1583 if (lcp == NULL) {
1584 /* Nothing available - try to set up a free page. */
1585 if (lp->lp_cur == lp->lp_max) {
1586 mutex_exit(&lp->lp_lock);
1587 return ENOMEM;
1588 }
1589 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1590 if (lcp == NULL) {
1591 mutex_exit(&lp->lp_lock);
1592 return ENOMEM;
1593 }
1594 /*
1595 * Wire the next page down in kernel space. Since this
1596 * is a new mapping, we must add a reference.
1597 */
1598 uao = lp->lp_uao;
1599 (*uao->pgops->pgo_reference)(uao);
1600 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1601 uao, lp->lp_cur, PAGE_SIZE,
1602 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1603 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1604 if (error != 0) {
1605 mutex_exit(&lp->lp_lock);
1606 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1607 (*uao->pgops->pgo_detach)(uao);
1608 return error;
1609 }
1610 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1611 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1612 if (error != 0) {
1613 mutex_exit(&lp->lp_lock);
1614 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1615 lcp->lcp_kaddr + PAGE_SIZE);
1616 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1617 return error;
1618 }
1619 /* Prepare the page descriptor and link into the list. */
1620 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1621 lp->lp_cur += PAGE_SIZE;
1622 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1623 lcp->lcp_rotor = 0;
1624 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1625 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1626 }
1627 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1628 if (++i >= LWPCTL_BITMAP_ENTRIES)
1629 i = 0;
1630 }
1631 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1632 lcp->lcp_bitmap[i] ^= (1 << bit);
1633 lcp->lcp_rotor = i;
1634 lcp->lcp_nfree--;
1635 l->l_lcpage = lcp;
1636 offset = (i << 5) + bit;
1637 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1638 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1639 mutex_exit(&lp->lp_lock);
1640
1641 l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
1642
1643 return 0;
1644 }
1645
1646 /*
1647 * Free an lwpctl structure back to the per-process list.
1648 */
1649 void
1650 lwp_ctl_free(lwp_t *l)
1651 {
1652 lcproc_t *lp;
1653 lcpage_t *lcp;
1654 u_int map, offset;
1655
1656 lp = l->l_proc->p_lwpctl;
1657 KASSERT(lp != NULL);
1658
1659 lcp = l->l_lcpage;
1660 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1661 KASSERT(offset < LWPCTL_PER_PAGE);
1662
1663 mutex_enter(&lp->lp_lock);
1664 lcp->lcp_nfree++;
1665 map = offset >> 5;
1666 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1667 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1668 lcp->lcp_rotor = map;
1669 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1670 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1671 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1672 }
1673 mutex_exit(&lp->lp_lock);
1674 }
1675
1676 /*
1677 * Process is exiting; tear down lwpctl state. This can only be safely
1678 * called by the last LWP in the process.
1679 */
1680 void
1681 lwp_ctl_exit(void)
1682 {
1683 lcpage_t *lcp, *next;
1684 lcproc_t *lp;
1685 proc_t *p;
1686 lwp_t *l;
1687
1688 l = curlwp;
1689 l->l_lwpctl = NULL;
1690 p = l->l_proc;
1691 lp = p->p_lwpctl;
1692
1693 KASSERT(lp != NULL);
1694 KASSERT(p->p_nlwps == 1);
1695
1696 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1697 next = TAILQ_NEXT(lcp, lcp_chain);
1698 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1699 lcp->lcp_kaddr + PAGE_SIZE);
1700 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1701 }
1702
1703 if (lp->lp_uao != NULL) {
1704 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1705 lp->lp_uva + LWPCTL_UAREA_SZ);
1706 }
1707
1708 mutex_destroy(&lp->lp_lock);
1709 kmem_free(lp, sizeof(*lp));
1710 p->p_lwpctl = NULL;
1711 }
1712
1713 #if defined(DDB)
1714 void
1715 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1716 {
1717 lwp_t *l;
1718
1719 LIST_FOREACH(l, &alllwp, l_list) {
1720 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1721
1722 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1723 continue;
1724 }
1725 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1726 (void *)addr, (void *)stack,
1727 (size_t)(addr - stack), l);
1728 }
1729 }
1730 #endif /* defined(DDB) */
1731