kern_lwp.c revision 1.40.2.16 1 /* $NetBSD: kern_lwp.c,v 1.40.2.16 2007/01/30 13:51:40 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit (or thread) of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp".
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing in kernel simultaneously.
52 *
53 * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 * threads are distinct processes (system processes) with no user space
55 * component, which themselves may contain one or more LWPs.
56 *
57 * Execution states
58 *
59 * At any given time, an LWP has overall state that is described by
60 * lwp::l_stat. The states are broken into two sets below. The first
61 * set is guaranteed to represent the absolute, current state of the
62 * LWP:
63 *
64 * LSONPROC
65 *
66 * On processor: the LWP is executing on a CPU, either in the
67 * kernel or in user space.
68 *
69 * LSRUN
70 *
71 * Runnable: the LWP is parked on a run queue, and may soon be
72 * chosen to run by a idle processor, or by a processor that
73 * has been asked to preempt a currently runnning but lower
74 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 * then the LWP is not on a run queue, but may be soon.
76 *
77 * LSIDL
78 *
79 * Idle: the LWP has been created but has not yet executed.
80 * Whoever created the new LWP can be expected to set it to
81 * another state shortly.
82 *
83 * LSSUSPENDED:
84 *
85 * Suspended: the LWP has had its execution suspended by
86 * another LWP in the same process using the _lwp_suspend()
87 * system call. User-level LWPs also enter the suspended
88 * state when the system is shutting down.
89 *
90 * The second set represent a "statement of intent" on behalf of the
91 * LWP. The LWP may in fact be executing on a processor, may be
92 * sleeping, idle, or on a run queue. It is expected to take the
93 * necessary action to stop executing or become "running" again within
94 * a short timeframe.
95 *
96 * LSZOMB:
97 *
98 * Dead: the LWP has released most of its resources and is
99 * about to switch away into oblivion. When it switches away,
100 * its few remaining resources will be collected.
101 *
102 * LSSLEEP:
103 *
104 * Sleeping: the LWP has entered itself onto a sleep queue, and
105 * will switch away shortly to allow other LWPs to run on the
106 * CPU.
107 *
108 * LSSTOP:
109 *
110 * Stopped: the LWP has been stopped as a result of a job
111 * control signal, or as a result of the ptrace() interface.
112 * Stopped LWPs may run briefly within the kernel to handle
113 * signals that they receive, but will not return to user space
114 * until their process' state is changed away from stopped.
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP and LSSUSPENDED states may only be set
122 * when returning to user space in userret(), or when sleeping
123 * interruptably. Before setting those states, we try to ensure
124 * that the LWPs will release all kernel locks that they hold,
125 * and at a minimum try to ensure that the LWP can be set runnable
126 * again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Locking
145 *
146 * The majority of fields in 'struct lwp' are covered by a single,
147 * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 * each field are documented in sys/lwp.h.
149 *
150 * State transitions must be made with the LWP's general lock held. In
151 * a multiprocessor kernel, state transitions may cause the LWP's lock
152 * pointer to change. On uniprocessor kernels, most scheduler and
153 * synchronisation objects such as sleep queues and LWPs are protected
154 * by only one mutex (sched_mutex). In this case, LWPs' lock pointers
155 * will never change and will always reference sched_mutex.
156 *
157 * Manipulation of the general lock is not performed directly, but
158 * through calls to lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSIDL, LSZOMB
163 *
164 * Always covered by sched_mutex.
165 *
166 * LSONPROC, LSRUN:
167 *
168 * Always covered by sched_mutex, which protects the run queues
169 * and other miscellaneous items. If the scheduler is changed
170 * to use per-CPU run queues, this may become a per-CPU mutex.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a mutex associated with the sleep queue that the
175 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue mutex. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the mutex is sched_mutex.
183 *
184 * The lock order is as follows:
185 *
186 * sleepq_t::sq_mutex -> sched_mutex
187 *
188 * Each process has an scheduler state mutex (proc::p_smutex), and a
189 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
190 * so on. When an LWP is to be entered into or removed from one of the
191 * following states, p_mutex must be held and the process wide counters
192 * adjusted:
193 *
194 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
195 *
196 * Note that an LWP is considered running or likely to run soon if in
197 * one of the following states. This affects the value of p_nrlwps:
198 *
199 * LSRUN, LSONPROC, LSSLEEP
200 *
201 * p_smutex does not need to be held when transitioning among these
202 * three states.
203 */
204
205 #include <sys/cdefs.h>
206 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.40.2.16 2007/01/30 13:51:40 ad Exp $");
207
208 #include "opt_multiprocessor.h"
209 #include "opt_lockdebug.h"
210
211 #define _LWP_API_PRIVATE
212
213 #include <sys/param.h>
214 #include <sys/systm.h>
215 #include <sys/pool.h>
216 #include <sys/proc.h>
217 #include <sys/syscallargs.h>
218 #include <sys/kauth.h>
219 #include <sys/sleepq.h>
220 #include <sys/lockdebug.h>
221 #include <sys/kmem.h>
222
223 #include <uvm/uvm_extern.h>
224
225 struct lwplist alllwp;
226
227 POOL_INIT(lwp_pool, sizeof(struct lwp), 32, 0, 0, "lwppl",
228 &pool_allocator_nointr);
229 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
230 &pool_allocator_nointr);
231
232 static specificdata_domain_t lwp_specificdata_domain;
233
234 #define LWP_DEBUG
235
236 #ifdef LWP_DEBUG
237 int lwp_debug = 0;
238 #define DPRINTF(x) if (lwp_debug) printf x
239 #else
240 #define DPRINTF(x)
241 #endif
242
243 void
244 lwpinit(void)
245 {
246
247 lwp_specificdata_domain = specificdata_domain_create();
248 KASSERT(lwp_specificdata_domain != NULL);
249 lwp_sys_init();
250 }
251
252 /*
253 * Set an suspended.
254 *
255 * Must be called with p_smutex held, and the LWP locked. Will unlock the
256 * LWP before return.
257 */
258 int
259 lwp_suspend(struct lwp *curl, struct lwp *t)
260 {
261 int error;
262
263 LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
264 LOCK_ASSERT(lwp_locked(t, NULL));
265
266 KASSERT(curl != t || curl->l_stat == LSONPROC);
267
268 /*
269 * If the current LWP has been told to exit, we must not suspend anyone
270 * else or deadlock could occur. We won't return to userspace.
271 */
272 if ((curl->l_stat & (L_WEXIT | L_WCORE)) != 0) {
273 lwp_unlock(t);
274 return (EDEADLK);
275 }
276
277 error = 0;
278
279 switch (t->l_stat) {
280 case LSRUN:
281 case LSONPROC:
282 t->l_flag |= L_WSUSPEND;
283 lwp_need_userret(t);
284 lwp_unlock(t);
285 break;
286
287 case LSSLEEP:
288 t->l_flag |= L_WSUSPEND;
289
290 /*
291 * Kick the LWP and try to get it to the kernel boundary
292 * so that it will release any locks that it holds.
293 * setrunnable() will release the lock.
294 */
295 if ((t->l_flag & L_SINTR) != 0)
296 setrunnable(t);
297 else
298 lwp_unlock(t);
299 break;
300
301 case LSSUSPENDED:
302 lwp_unlock(t);
303 break;
304
305 case LSSTOP:
306 t->l_flag |= L_WSUSPEND;
307 setrunnable(t);
308 break;
309
310 case LSIDL:
311 case LSZOMB:
312 error = EINTR; /* It's what Solaris does..... */
313 lwp_unlock(t);
314 break;
315 }
316
317 /*
318 * XXXLWP Wait for:
319 *
320 * o process exiting
321 * o target LWP suspended
322 * o target LWP not suspended and L_WSUSPEND clear
323 * o target LWP exited
324 */
325
326 return (error);
327 }
328
329 /*
330 * Restart a suspended LWP.
331 *
332 * Must be called with p_smutex held, and the LWP locked. Will unlock the
333 * LWP before return.
334 */
335 void
336 lwp_continue(struct lwp *l)
337 {
338
339 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
340 LOCK_ASSERT(lwp_locked(l, NULL));
341
342 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
343 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
344 l->l_wchan));
345
346 /* If rebooting or not suspended, then just bail out. */
347 if ((l->l_flag & L_WREBOOT) != 0) {
348 lwp_unlock(l);
349 return;
350 }
351
352 l->l_flag &= ~L_WSUSPEND;
353
354 if (l->l_stat != LSSUSPENDED) {
355 lwp_unlock(l);
356 return;
357 }
358
359 /* setrunnable() will release the lock. */
360 setrunnable(l);
361 }
362
363 /*
364 * Wait for an LWP within the current process to exit. If 'lid' is
365 * non-zero, we are waiting for a specific LWP.
366 *
367 * Must be called with p->p_smutex held.
368 */
369 int
370 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
371 {
372 struct proc *p = l->l_proc;
373 struct lwp *l2;
374 int nfound, error;
375
376 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
377 p->p_pid, l->l_lid, lid));
378
379 LOCK_ASSERT(mutex_owned(&p->p_smutex));
380
381 /*
382 * We try to check for deadlock:
383 *
384 * 1) If all other LWPs are waiting for exits or suspended.
385 * 2) If we are trying to wait on ourself.
386 *
387 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
388 * waits, not any-LWP waits) and detect that sort of deadlock, but
389 * we don't have a good place to store the lwp that is being waited
390 * for. wchan is already filled with &p->p_nlwps, and putting the
391 * lwp address in there for deadlock tracing would require exiting
392 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
393 * get threads sleeping on any LWP exiting.
394 */
395 if (lid == l->l_lid)
396 return EDEADLK;
397
398 p->p_nlwpwait++;
399
400 for (;;) {
401 /*
402 * Avoid a race between exit1() and sigexit(): if the
403 * process is dumping core, then we need to bail out: call
404 * into lwp_userret() where we will be suspended until the
405 * deed is done.
406 */
407 if ((p->p_sflag & PS_WCORE) != 0) {
408 mutex_exit(&p->p_smutex);
409 lwp_userret(l);
410 #ifdef DIAGNOSTIC
411 panic("lwp_wait1");
412 #endif
413 /* NOTREACHED */
414 }
415
416 /*
417 * First off, drain any detached LWP that is waiting to be
418 * reaped.
419 */
420 while ((l2 = p->p_zomblwp) != NULL) {
421 p->p_zomblwp = NULL;
422 lwp_free(l2, 0, 0); /* releases proc mutex */
423 mutex_enter(&p->p_smutex);
424 }
425
426 /*
427 * Now look for an LWP to collect. If the whole process is
428 * exiting, count detached LWPs as eligible to be collected,
429 * but don't drain them here.
430 */
431 nfound = 0;
432 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
433 if (l2 == l || (lid != 0 && l2->l_lid != lid))
434 continue;
435 if ((l2->l_prflag & LPR_DETACHED) != 0) {
436 nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
437 continue;
438 }
439 nfound++;
440
441 /* No need to lock the LWP in order to see LSZOMB. */
442 if (l2->l_stat != LSZOMB)
443 continue;
444
445 if (departed)
446 *departed = l2->l_lid;
447 lwp_free(l2, 0, 0);
448 mutex_enter(&p->p_smutex);
449 p->p_nlwpwait--;
450 return 0;
451 }
452
453 if (nfound == 0) {
454 error = ESRCH;
455 break;
456 }
457 if ((flags & LWPWAIT_EXITCONTROL) != 0) {
458 KASSERT(p->p_nlwps > 1);
459 cv_wait(&p->p_lwpcv, &p->p_smutex);
460 continue;
461 }
462 if ((p->p_sflag & PS_WEXIT) != 0 ||
463 p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
464 error = EDEADLK;
465 break;
466 }
467 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
468 break;
469 }
470
471 p->p_nlwpwait--;
472 return error;
473 }
474
475 /*
476 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
477 * The new LWP is created in state LSIDL and must be set running,
478 * suspended, or stopped by the caller.
479 */
480 int
481 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, boolean_t inmem,
482 int flags, void *stack, size_t stacksize,
483 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
484 {
485 struct lwp *l2, *isfree;
486 turnstile_t *ts;
487
488 /*
489 * First off, reap any detached LWP waiting to be collected.
490 * We can re-use its LWP structure and turnstile.
491 */
492 isfree = NULL;
493 if (p2->p_zomblwp != NULL) {
494 mutex_enter(&p2->p_smutex);
495 if ((isfree = p2->p_zomblwp) != NULL) {
496 p2->p_zomblwp = NULL;
497 lwp_free(isfree, 1, 0); /* releases proc mutex */
498 } else
499 mutex_exit(&p2->p_smutex);
500 }
501 if (isfree == NULL) {
502 l2 = pool_get(&lwp_pool, PR_WAITOK);
503 memset(l2, 0, sizeof(*l2));
504 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
505 } else {
506 l2 = isfree;
507 ts = l2->l_ts;
508 memset(l2, 0, sizeof(*l2));
509 l2->l_ts = ts;
510 }
511
512 l2->l_stat = LSIDL;
513 l2->l_proc = p2;
514 l2->l_refcnt = 1;
515 l2->l_priority = l1->l_priority;
516 l2->l_usrpri = l1->l_usrpri;
517 l2->l_mutex = &sched_mutex;
518 l2->l_cpu = l1->l_cpu;
519 l2->l_flag = inmem ? L_INMEM : 0;
520 lwp_initspecific(l2);
521
522 if (p2->p_flag & P_SYSTEM) {
523 /*
524 * Mark it as a system process and not a candidate for
525 * swapping.
526 */
527 l2->l_flag |= L_SYSTEM;
528 }
529
530 lwp_update_creds(l2);
531 callout_init(&l2->l_tsleep_ch);
532 cv_init(&l2->l_sigcv, "sigwait");
533 l2->l_syncobj = &sched_syncobj;
534
535 if (rnewlwpp != NULL)
536 *rnewlwpp = l2;
537
538 l2->l_addr = UAREA_TO_USER(uaddr);
539 uvm_lwp_fork(l1, l2, stack, stacksize, func,
540 (arg != NULL) ? arg : l2);
541
542 mutex_enter(&p2->p_smutex);
543
544 if ((flags & LWP_DETACHED) != 0) {
545 l2->l_prflag = LPR_DETACHED;
546 p2->p_ndlwps++;
547 } else
548 l2->l_prflag = 0;
549
550 l2->l_sigmask = l1->l_sigmask;
551 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
552 sigemptyset(&l2->l_sigpend.sp_set);
553
554 l2->l_lid = ++p2->p_nlwpid;
555 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
556 p2->p_nlwps++;
557
558 mutex_exit(&p2->p_smutex);
559
560 mutex_enter(&proclist_mutex);
561 LIST_INSERT_HEAD(&alllwp, l2, l_list);
562 mutex_exit(&proclist_mutex);
563
564 if (p2->p_emul->e_lwp_fork)
565 (*p2->p_emul->e_lwp_fork)(l1, l2);
566
567 return (0);
568 }
569
570 /*
571 * Quit the process. This will call cpu_exit, which will call cpu_switch,
572 * so this can only be used meaningfully if you're willing to switch away.
573 * Calling with l!=curlwp would be weird.
574 */
575 void
576 lwp_exit(struct lwp *l)
577 {
578 struct proc *p = l->l_proc;
579 struct lwp *l2;
580
581 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
582 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
583
584 /*
585 * Verify that we hold no locks other than the kernel lock.
586 */
587 #ifdef MULTIPROCESSOR
588 LOCKDEBUG_BARRIER(&kernel_lock, 0);
589 #else
590 LOCKDEBUG_BARRIER(NULL, 0);
591 #endif
592
593 /*
594 * If we are the last live LWP in a process, we need to exit the
595 * entire process. We do so with an exit status of zero, because
596 * it's a "controlled" exit, and because that's what Solaris does.
597 *
598 * We are not quite a zombie yet, but for accounting purposes we
599 * must increment the count of zombies here.
600 *
601 * Note: the last LWP's specificdata will be deleted here.
602 */
603 mutex_enter(&p->p_smutex);
604 if (p->p_nlwps - p->p_nzlwps == 1) {
605 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
606 p->p_pid, l->l_lid));
607 exit1(l, 0);
608 /* NOTREACHED */
609 }
610 p->p_nzlwps++;
611 mutex_exit(&p->p_smutex);
612
613 if (p->p_emul->e_lwp_exit)
614 (*p->p_emul->e_lwp_exit)(l);
615
616 /* Delete the specificdata while it's still safe to sleep. */
617 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
618
619 /*
620 * Release our cached credentials.
621 */
622 kauth_cred_free(l->l_cred);
623
624 /*
625 * Remove the LWP from the global list.
626 */
627 mutex_enter(&proclist_mutex);
628 LIST_REMOVE(l, l_list);
629 mutex_exit(&proclist_mutex);
630
631 /*
632 * Get rid of all references to the LWP that others (e.g. procfs)
633 * may have, and mark the LWP as a zombie. If the LWP is detached,
634 * mark it waiting for collection in the proc structure. Note that
635 * before we can do that, we need to free any other dead, deatched
636 * LWP waiting to meet its maker.
637 *
638 * XXXSMP disable preemption.
639 */
640 mutex_enter(&p->p_smutex);
641 lwp_drainrefs(l);
642
643 if ((l->l_prflag & LPR_DETACHED) != 0) {
644 while ((l2 = p->p_zomblwp) != NULL) {
645 p->p_zomblwp = NULL;
646 lwp_free(l2, 0, 0); /* releases proc mutex */
647 mutex_enter(&p->p_smutex);
648 }
649 p->p_zomblwp = l;
650 }
651
652 /*
653 * Clear any private, pending signals. If we find a pending signal
654 * for the process and we have been asked to check for signals, then
655 * we loose badly: arrange to have all other LWPs in the process check
656 * for signals.
657 */
658 sigclear(&l->l_sigpend, NULL);
659 if ((l->l_flag & L_PENDSIG) != 0 &&
660 firstsig(&p->p_sigpend.sp_set) != 0)
661 LIST_FOREACH(l2, &p->p_lwps, l_sibling)
662 l2->l_flag |= L_PENDSIG;
663
664 lwp_lock(l);
665 l->l_stat = LSZOMB;
666 lwp_unlock(l);
667 p->p_nrlwps--;
668 mutex_exit(&p->p_smutex);
669
670 /*
671 * We can no longer block. At this point, lwp_free() may already
672 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
673 *
674 * Free MD LWP resources.
675 */
676 #ifndef __NO_CPU_LWP_FREE
677 cpu_lwp_free(l, 0);
678 #endif
679 pmap_deactivate(l);
680
681 /*
682 * Release the kernel lock, signal another LWP to collect us,
683 * and switch away into oblivion.
684 */
685 #ifdef notyet
686 /* XXXSMP hold in lwp_userret() */
687 KERNEL_UNLOCK_LAST(l);
688 #else
689 KERNEL_UNLOCK_ALL(l, NULL);
690 #endif
691
692 cv_broadcast(&p->p_lwpcv);
693 cpu_exit(l);
694 }
695
696 /*
697 * We are called from cpu_exit() once it is safe to schedule the dead LWP's
698 * resources to be freed (i.e., once we've switched to the idle PCB for the
699 * current CPU).
700 */
701 void
702 lwp_exit2(struct lwp *l)
703 {
704 /* XXXSMP re-enable preemption */
705 }
706
707 /*
708 * Free a dead LWP's remaining resources.
709 *
710 * XXXLWP limits.
711 */
712 void
713 lwp_free(struct lwp *l, int recycle, int last)
714 {
715 struct proc *p = l->l_proc;
716
717 /*
718 * If this was not the last LWP in the process, then adjust
719 * counters and unlock.
720 */
721 if (!last) {
722 /*
723 * Add the LWP's run time to the process' base value.
724 * This needs to co-incide with coming off p_lwps.
725 */
726 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
727
728 LIST_REMOVE(l, l_sibling);
729 p->p_nlwps--;
730 p->p_nzlwps--;
731 if ((l->l_prflag & LPR_DETACHED) != 0)
732 p->p_ndlwps--;
733 mutex_exit(&p->p_smutex);
734
735 #ifdef MULTIPROCESSOR
736 /*
737 * In the unlikely event that the LWP is still on the CPU,
738 * then spin until it has switched away. We need to release
739 * all locks to avoid deadlock against interrupt handlers on
740 * the target CPU.
741 */
742 if (l->l_cpu->ci_curlwp == l) {
743 int count;
744 KERNEL_UNLOCK_ALL(curlwp, &count);
745 while (l->l_cpu->ci_curlwp == l)
746 SPINLOCK_BACKOFF_HOOK;
747 KERNEL_LOCK(count, curlwp);
748 }
749 #endif
750 }
751
752 /*
753 * Free the LWP's turnstile and the LWP structure itself unless the
754 * caller wants to recycle them.
755 *
756 * We can't return turnstile0 to the pool (it didn't come from it),
757 * so if it comes up just drop it quietly and move on.
758 *
759 * We don't recycle the VM resources at this time.
760 */
761 if (!recycle && l->l_ts != &turnstile0)
762 pool_cache_put(&turnstile_cache, l->l_ts);
763 #ifndef __NO_CPU_LWP_FREE
764 cpu_lwp_free2(l);
765 #endif
766 uvm_lwp_exit(l);
767 cv_destroy(&l->l_sigcv);
768 if (!recycle)
769 pool_put(&lwp_pool, l);
770 }
771
772 /*
773 * Pick a LWP to represent the process for those operations which
774 * want information about a "process" that is actually associated
775 * with a LWP.
776 *
777 * If 'locking' is false, no locking or lock checks are performed.
778 * This is intended for use by DDB.
779 *
780 * We don't bother locking the LWP here, since code that uses this
781 * interface is broken by design and an exact match is not required.
782 */
783 struct lwp *
784 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
785 {
786 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
787 struct lwp *signalled;
788 int cnt;
789
790 if (locking) {
791 LOCK_ASSERT(mutex_owned(&p->p_smutex));
792 }
793
794 /* Trivial case: only one LWP */
795 if (p->p_nlwps == 1) {
796 l = LIST_FIRST(&p->p_lwps);
797 if (nrlwps)
798 *nrlwps = (l->l_stat == LSONPROC || LSRUN);
799 return l;
800 }
801
802 cnt = 0;
803 switch (p->p_stat) {
804 case SSTOP:
805 case SACTIVE:
806 /* Pick the most live LWP */
807 onproc = running = sleeping = stopped = suspended = NULL;
808 signalled = NULL;
809 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
810 if (l->l_lid == p->p_sigctx.ps_lwp)
811 signalled = l;
812 switch (l->l_stat) {
813 case LSONPROC:
814 onproc = l;
815 cnt++;
816 break;
817 case LSRUN:
818 running = l;
819 cnt++;
820 break;
821 case LSSLEEP:
822 sleeping = l;
823 break;
824 case LSSTOP:
825 stopped = l;
826 break;
827 case LSSUSPENDED:
828 suspended = l;
829 break;
830 }
831 }
832 if (nrlwps)
833 *nrlwps = cnt;
834 if (signalled)
835 l = signalled;
836 else if (onproc)
837 l = onproc;
838 else if (running)
839 l = running;
840 else if (sleeping)
841 l = sleeping;
842 else if (stopped)
843 l = stopped;
844 else if (suspended)
845 l = suspended;
846 else
847 break;
848 return l;
849 if (nrlwps)
850 *nrlwps = 0;
851 l = LIST_FIRST(&p->p_lwps);
852 return l;
853 #ifdef DIAGNOSTIC
854 case SIDL:
855 case SZOMB:
856 case SDYING:
857 case SDEAD:
858 if (locking)
859 mutex_exit(&p->p_smutex);
860 /* We have more than one LWP and we're in SIDL?
861 * How'd that happen?
862 */
863 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
864 p->p_pid, p->p_comm, p->p_stat);
865 break;
866 default:
867 if (locking)
868 mutex_exit(&p->p_smutex);
869 panic("Process %d (%s) in unknown state %d",
870 p->p_pid, p->p_comm, p->p_stat);
871 #endif
872 }
873
874 if (locking)
875 mutex_exit(&p->p_smutex);
876 panic("proc_representative_lwp: couldn't find a lwp for process"
877 " %d (%s)", p->p_pid, p->p_comm);
878 /* NOTREACHED */
879 return NULL;
880 }
881
882 /*
883 * Look up a live LWP within the speicifed process, and return it locked.
884 *
885 * Must be called with p->p_smutex held.
886 */
887 struct lwp *
888 lwp_find(struct proc *p, int id)
889 {
890 struct lwp *l;
891
892 LOCK_ASSERT(mutex_owned(&p->p_smutex));
893
894 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
895 if (l->l_lid == id)
896 break;
897 }
898
899 /*
900 * No need to lock - all of these conditions will
901 * be visible with the process level mutex held.
902 */
903 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
904 l = NULL;
905
906 return l;
907 }
908
909 /*
910 * Update an LWP's cached credentials to mirror the process' master copy.
911 *
912 * This happens early in the syscall path, on user trap, and on LWP
913 * creation. A long-running LWP can also voluntarily choose to update
914 * it's credentials by calling this routine. This may be called from
915 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
916 */
917 void
918 lwp_update_creds(struct lwp *l)
919 {
920 kauth_cred_t oc;
921 struct proc *p;
922
923 p = l->l_proc;
924 oc = l->l_cred;
925
926 mutex_enter(&p->p_mutex);
927 kauth_cred_hold(p->p_cred);
928 l->l_cred = p->p_cred;
929 mutex_exit(&p->p_mutex);
930 if (oc != NULL) {
931 KERNEL_LOCK(1, l); /* XXXSMP */
932 kauth_cred_free(oc);
933 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
934 }
935 }
936
937 /*
938 * Verify that an LWP is locked, and optionally verify that the lock matches
939 * one we specify.
940 */
941 int
942 lwp_locked(struct lwp *l, kmutex_t *mtx)
943 {
944 kmutex_t *cur = l->l_mutex;
945
946 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
947 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
948 #else
949 return mutex_owned(cur);
950 #endif
951 }
952
953 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
954 /*
955 * Lock an LWP.
956 */
957 void
958 lwp_lock_retry(struct lwp *l, kmutex_t *old)
959 {
960
961 /*
962 * XXXgcc ignoring kmutex_t * volatile on i386
963 *
964 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
965 */
966 #if 1
967 while (l->l_mutex != old) {
968 #else
969 for (;;) {
970 #endif
971 mutex_spin_exit(old);
972 old = l->l_mutex;
973 mutex_spin_enter(old);
974
975 /*
976 * mutex_enter() will have posted a read barrier. Re-test
977 * l->l_mutex. If it has changed, we need to try again.
978 */
979 #if 1
980 }
981 #else
982 } while (__predict_false(l->l_mutex != old));
983 #endif
984 }
985 #endif
986
987 /*
988 * Lend a new mutex to an LWP. The old mutex must be held.
989 */
990 void
991 lwp_setlock(struct lwp *l, kmutex_t *new)
992 {
993
994 LOCK_ASSERT(mutex_owned(l->l_mutex));
995
996 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
997 mb_write();
998 l->l_mutex = new;
999 #else
1000 (void)new;
1001 #endif
1002 }
1003
1004 /*
1005 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1006 * must be held.
1007 */
1008 void
1009 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1010 {
1011 kmutex_t *old;
1012
1013 LOCK_ASSERT(mutex_owned(l->l_mutex));
1014
1015 old = l->l_mutex;
1016 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1017 mb_write();
1018 l->l_mutex = new;
1019 #else
1020 (void)new;
1021 #endif
1022 mutex_spin_exit(old);
1023 }
1024
1025 /*
1026 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1027 * locked.
1028 */
1029 void
1030 lwp_relock(struct lwp *l, kmutex_t *new)
1031 {
1032 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1033 kmutex_t *old;
1034 #endif
1035
1036 LOCK_ASSERT(mutex_owned(l->l_mutex));
1037
1038 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1039 old = l->l_mutex;
1040 if (old != new) {
1041 mutex_spin_enter(new);
1042 l->l_mutex = new;
1043 mutex_spin_exit(old);
1044 }
1045 #else
1046 (void)new;
1047 #endif
1048 }
1049
1050 /*
1051 * Handle exceptions for mi_userret(). Called if a member of L_USERRET is
1052 * set.
1053 */
1054 void
1055 lwp_userret(struct lwp *l)
1056 {
1057 struct proc *p;
1058 int sig;
1059
1060 p = l->l_proc;
1061
1062 /*
1063 * It should be safe to do this read unlocked on a multiprocessor
1064 * system..
1065 */
1066 while ((l->l_flag & L_USERRET) != 0) {
1067 /*
1068 * Process pending signals first, unless the process
1069 * is dumping core, where we will instead enter the
1070 * L_WSUSPEND case below.
1071 */
1072 if ((l->l_flag & (L_PENDSIG | L_WCORE)) == L_PENDSIG) {
1073 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1074 mutex_enter(&p->p_smutex);
1075 while ((sig = issignal(l)) != 0)
1076 postsig(sig);
1077 mutex_exit(&p->p_smutex);
1078 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1079 }
1080
1081 /*
1082 * Core-dump or suspend pending.
1083 *
1084 * In case of core dump, suspend ourselves, so that the
1085 * kernel stack and therefore the userland registers saved
1086 * in the trapframe are around for coredump() to write them
1087 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1088 * will write the core file out once all other LWPs are
1089 * suspended.
1090 */
1091 if ((l->l_flag & L_WSUSPEND) != 0) {
1092 mutex_enter(&p->p_smutex);
1093 p->p_nrlwps--;
1094 cv_broadcast(&p->p_lwpcv);
1095 lwp_lock(l);
1096 l->l_stat = LSSUSPENDED;
1097 mutex_exit(&p->p_smutex);
1098 mi_switch(l, NULL);
1099 }
1100
1101 /* Process is exiting. */
1102 if ((l->l_flag & L_WEXIT) != 0) {
1103 KERNEL_LOCK(1, l);
1104 lwp_exit(l);
1105 KASSERT(0);
1106 /* NOTREACHED */
1107 }
1108 }
1109 }
1110
1111 /*
1112 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1113 */
1114 void
1115 lwp_need_userret(struct lwp *l)
1116 {
1117 LOCK_ASSERT(lwp_locked(l, NULL));
1118
1119 /*
1120 * Since the tests in lwp_userret() are done unlocked, make sure
1121 * that the condition will be seen before forcing the LWP to enter
1122 * kernel mode.
1123 */
1124 mb_write();
1125
1126 if (l->l_priority > PUSER)
1127 lwp_changepri(l, PUSER);
1128 cpu_signotify(l);
1129 }
1130
1131 /*
1132 * Add one reference to an LWP. This will prevent the LWP from
1133 * exiting, thus keep the lwp structure and PCB around to inspect.
1134 */
1135 void
1136 lwp_addref(struct lwp *l)
1137 {
1138
1139 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
1140 KASSERT(l->l_stat != LSZOMB);
1141 KASSERT(l->l_refcnt != 0);
1142
1143 l->l_refcnt++;
1144 }
1145
1146 /*
1147 * Remove one reference to an LWP. If this is the last reference,
1148 * then we must finalize the LWP's death.
1149 */
1150 void
1151 lwp_delref(struct lwp *l)
1152 {
1153 struct proc *p = l->l_proc;
1154 u_int refcnt;
1155
1156 mutex_enter(&p->p_smutex);
1157 refcnt = --l->l_refcnt;
1158 mutex_exit(&p->p_smutex);
1159
1160 if (refcnt == 0)
1161 cv_broadcast(&p->p_refcv);
1162 }
1163
1164 /*
1165 * Drain all references to the current LWP.
1166 */
1167 void
1168 lwp_drainrefs(struct lwp *l)
1169 {
1170 struct proc *p = l->l_proc;
1171
1172 LOCK_ASSERT(mutex_owned(&p->p_smutex));
1173 KASSERT(l->l_refcnt != 0);
1174
1175 l->l_refcnt--;
1176 while (l->l_refcnt != 0)
1177 cv_wait(&p->p_refcv, &p->p_smutex);
1178 }
1179
1180 /*
1181 * lwp_specific_key_create --
1182 * Create a key for subsystem lwp-specific data.
1183 */
1184 int
1185 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1186 {
1187
1188 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1189 }
1190
1191 /*
1192 * lwp_specific_key_delete --
1193 * Delete a key for subsystem lwp-specific data.
1194 */
1195 void
1196 lwp_specific_key_delete(specificdata_key_t key)
1197 {
1198
1199 specificdata_key_delete(lwp_specificdata_domain, key);
1200 }
1201
1202 /*
1203 * lwp_initspecific --
1204 * Initialize an LWP's specificdata container.
1205 */
1206 void
1207 lwp_initspecific(struct lwp *l)
1208 {
1209 int error;
1210
1211 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1212 KASSERT(error == 0);
1213 }
1214
1215 /*
1216 * lwp_finispecific --
1217 * Finalize an LWP's specificdata container.
1218 */
1219 void
1220 lwp_finispecific(struct lwp *l)
1221 {
1222
1223 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1224 }
1225
1226 /*
1227 * lwp_getspecific --
1228 * Return lwp-specific data corresponding to the specified key.
1229 *
1230 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1231 * only its OWN SPECIFIC DATA. If it is necessary to access another
1232 * LWP's specifc data, care must be taken to ensure that doing so
1233 * would not cause internal data structure inconsistency (i.e. caller
1234 * can guarantee that the target LWP is not inside an lwp_getspecific()
1235 * or lwp_setspecific() call).
1236 */
1237 void *
1238 lwp_getspecific(specificdata_key_t key)
1239 {
1240
1241 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1242 &curlwp->l_specdataref, key));
1243 }
1244
1245 void *
1246 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1247 {
1248
1249 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1250 &l->l_specdataref, key));
1251 }
1252
1253 /*
1254 * lwp_setspecific --
1255 * Set lwp-specific data corresponding to the specified key.
1256 */
1257 void
1258 lwp_setspecific(specificdata_key_t key, void *data)
1259 {
1260
1261 specificdata_setspecific(lwp_specificdata_domain,
1262 &curlwp->l_specdataref, key, data);
1263 }
1264