kern_lwp.c revision 1.40.2.18 1 /* $NetBSD: kern_lwp.c,v 1.40.2.18 2007/02/01 06:21:07 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit (or thread) of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp".
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing in kernel simultaneously.
52 *
53 * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 * threads are distinct processes (system processes) with no user space
55 * component, which themselves may contain one or more LWPs.
56 *
57 * Execution states
58 *
59 * At any given time, an LWP has overall state that is described by
60 * lwp::l_stat. The states are broken into two sets below. The first
61 * set is guaranteed to represent the absolute, current state of the
62 * LWP:
63 *
64 * LSONPROC
65 *
66 * On processor: the LWP is executing on a CPU, either in the
67 * kernel or in user space.
68 *
69 * LSRUN
70 *
71 * Runnable: the LWP is parked on a run queue, and may soon be
72 * chosen to run by a idle processor, or by a processor that
73 * has been asked to preempt a currently runnning but lower
74 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 * then the LWP is not on a run queue, but may be soon.
76 *
77 * LSIDL
78 *
79 * Idle: the LWP has been created but has not yet executed.
80 * Whoever created the new LWP can be expected to set it to
81 * another state shortly.
82 *
83 * LSSUSPENDED:
84 *
85 * Suspended: the LWP has had its execution suspended by
86 * another LWP in the same process using the _lwp_suspend()
87 * system call. User-level LWPs also enter the suspended
88 * state when the system is shutting down.
89 *
90 * The second set represent a "statement of intent" on behalf of the
91 * LWP. The LWP may in fact be executing on a processor, may be
92 * sleeping, idle, or on a run queue. It is expected to take the
93 * necessary action to stop executing or become "running" again within
94 * a short timeframe.
95 *
96 * LSZOMB:
97 *
98 * Dead: the LWP has released most of its resources and is
99 * about to switch away into oblivion. When it switches away,
100 * its few remaining resources will be collected.
101 *
102 * LSSLEEP:
103 *
104 * Sleeping: the LWP has entered itself onto a sleep queue, and
105 * will switch away shortly to allow other LWPs to run on the
106 * CPU.
107 *
108 * LSSTOP:
109 *
110 * Stopped: the LWP has been stopped as a result of a job
111 * control signal, or as a result of the ptrace() interface.
112 * Stopped LWPs may run briefly within the kernel to handle
113 * signals that they receive, but will not return to user space
114 * until their process' state is changed away from stopped.
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP and LSSUSPENDED states may only be set
122 * when returning to user space in userret(), or when sleeping
123 * interruptably. Before setting those states, we try to ensure
124 * that the LWPs will release all kernel locks that they hold,
125 * and at a minimum try to ensure that the LWP can be set runnable
126 * again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Locking
145 *
146 * The majority of fields in 'struct lwp' are covered by a single,
147 * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 * each field are documented in sys/lwp.h.
149 *
150 * State transitions must be made with the LWP's general lock held. In
151 * a multiprocessor kernel, state transitions may cause the LWP's lock
152 * pointer to change. On uniprocessor kernels, most scheduler and
153 * synchronisation objects such as sleep queues and LWPs are protected
154 * by only one mutex (sched_mutex). In this case, LWPs' lock pointers
155 * will never change and will always reference sched_mutex.
156 *
157 * Manipulation of the general lock is not performed directly, but
158 * through calls to lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSIDL, LSZOMB
163 *
164 * Always covered by sched_mutex.
165 *
166 * LSONPROC, LSRUN:
167 *
168 * Always covered by sched_mutex, which protects the run queues
169 * and other miscellaneous items. If the scheduler is changed
170 * to use per-CPU run queues, this may become a per-CPU mutex.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a mutex associated with the sleep queue that the
175 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue mutex. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the mutex is sched_mutex.
183 *
184 * The lock order is as follows:
185 *
186 * sleepq_t::sq_mutex -> sched_mutex
187 *
188 * Each process has an scheduler state mutex (proc::p_smutex), and a
189 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
190 * so on. When an LWP is to be entered into or removed from one of the
191 * following states, p_mutex must be held and the process wide counters
192 * adjusted:
193 *
194 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
195 *
196 * Note that an LWP is considered running or likely to run soon if in
197 * one of the following states. This affects the value of p_nrlwps:
198 *
199 * LSRUN, LSONPROC, LSSLEEP
200 *
201 * p_smutex does not need to be held when transitioning among these
202 * three states.
203 */
204
205 #include <sys/cdefs.h>
206 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.40.2.18 2007/02/01 06:21:07 ad Exp $");
207
208 #include "opt_multiprocessor.h"
209 #include "opt_lockdebug.h"
210
211 #define _LWP_API_PRIVATE
212
213 #include <sys/param.h>
214 #include <sys/systm.h>
215 #include <sys/pool.h>
216 #include <sys/proc.h>
217 #include <sys/syscallargs.h>
218 #include <sys/kauth.h>
219 #include <sys/sleepq.h>
220 #include <sys/lockdebug.h>
221 #include <sys/kmem.h>
222
223 #include <uvm/uvm_extern.h>
224
225 struct lwplist alllwp;
226
227 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
228 &pool_allocator_nointr);
229 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
230 &pool_allocator_nointr);
231
232 static specificdata_domain_t lwp_specificdata_domain;
233
234 #define LWP_DEBUG
235
236 #ifdef LWP_DEBUG
237 int lwp_debug = 0;
238 #define DPRINTF(x) if (lwp_debug) printf x
239 #else
240 #define DPRINTF(x)
241 #endif
242
243 void
244 lwpinit(void)
245 {
246
247 lwp_specificdata_domain = specificdata_domain_create();
248 KASSERT(lwp_specificdata_domain != NULL);
249 lwp_sys_init();
250 }
251
252 /*
253 * Set an suspended.
254 *
255 * Must be called with p_smutex held, and the LWP locked. Will unlock the
256 * LWP before return.
257 */
258 int
259 lwp_suspend(struct lwp *curl, struct lwp *t)
260 {
261 int error;
262
263 LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
264 LOCK_ASSERT(lwp_locked(t, NULL));
265
266 KASSERT(curl != t || curl->l_stat == LSONPROC);
267
268 /*
269 * If the current LWP has been told to exit, we must not suspend anyone
270 * else or deadlock could occur. We won't return to userspace.
271 */
272 if ((curl->l_stat & (L_WEXIT | L_WCORE)) != 0) {
273 lwp_unlock(t);
274 return (EDEADLK);
275 }
276
277 error = 0;
278
279 switch (t->l_stat) {
280 case LSRUN:
281 case LSONPROC:
282 t->l_flag |= L_WSUSPEND;
283 lwp_need_userret(t);
284 lwp_unlock(t);
285 break;
286
287 case LSSLEEP:
288 t->l_flag |= L_WSUSPEND;
289
290 /*
291 * Kick the LWP and try to get it to the kernel boundary
292 * so that it will release any locks that it holds.
293 * setrunnable() will release the lock.
294 */
295 if ((t->l_flag & L_SINTR) != 0)
296 setrunnable(t);
297 else
298 lwp_unlock(t);
299 break;
300
301 case LSSUSPENDED:
302 lwp_unlock(t);
303 break;
304
305 case LSSTOP:
306 t->l_flag |= L_WSUSPEND;
307 setrunnable(t);
308 break;
309
310 case LSIDL:
311 case LSZOMB:
312 error = EINTR; /* It's what Solaris does..... */
313 lwp_unlock(t);
314 break;
315 }
316
317 /*
318 * XXXLWP Wait for:
319 *
320 * o process exiting
321 * o target LWP suspended
322 * o target LWP not suspended and L_WSUSPEND clear
323 * o target LWP exited
324 */
325
326 return (error);
327 }
328
329 /*
330 * Restart a suspended LWP.
331 *
332 * Must be called with p_smutex held, and the LWP locked. Will unlock the
333 * LWP before return.
334 */
335 void
336 lwp_continue(struct lwp *l)
337 {
338
339 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
340 LOCK_ASSERT(lwp_locked(l, NULL));
341
342 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
343 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
344 l->l_wchan));
345
346 /* If rebooting or not suspended, then just bail out. */
347 if ((l->l_flag & L_WREBOOT) != 0) {
348 lwp_unlock(l);
349 return;
350 }
351
352 l->l_flag &= ~L_WSUSPEND;
353
354 if (l->l_stat != LSSUSPENDED) {
355 lwp_unlock(l);
356 return;
357 }
358
359 /* setrunnable() will release the lock. */
360 setrunnable(l);
361 }
362
363 /*
364 * Wait for an LWP within the current process to exit. If 'lid' is
365 * non-zero, we are waiting for a specific LWP.
366 *
367 * Must be called with p->p_smutex held.
368 */
369 int
370 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
371 {
372 struct proc *p = l->l_proc;
373 struct lwp *l2;
374 int nfound, error;
375
376 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
377 p->p_pid, l->l_lid, lid));
378
379 LOCK_ASSERT(mutex_owned(&p->p_smutex));
380
381 /*
382 * We try to check for deadlock:
383 *
384 * 1) If all other LWPs are waiting for exits or suspended.
385 * 2) If we are trying to wait on ourself.
386 *
387 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
388 * waits, not any-LWP waits) and detect that sort of deadlock, but
389 * we don't have a good place to store the lwp that is being waited
390 * for. wchan is already filled with &p->p_nlwps, and putting the
391 * lwp address in there for deadlock tracing would require exiting
392 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
393 * get threads sleeping on any LWP exiting.
394 */
395 if (lid == l->l_lid)
396 return EDEADLK;
397
398 p->p_nlwpwait++;
399
400 for (;;) {
401 /*
402 * Avoid a race between exit1() and sigexit(): if the
403 * process is dumping core, then we need to bail out: call
404 * into lwp_userret() where we will be suspended until the
405 * deed is done.
406 */
407 if ((p->p_sflag & PS_WCORE) != 0) {
408 mutex_exit(&p->p_smutex);
409 lwp_userret(l);
410 #ifdef DIAGNOSTIC
411 panic("lwp_wait1");
412 #endif
413 /* NOTREACHED */
414 }
415
416 /*
417 * First off, drain any detached LWP that is waiting to be
418 * reaped.
419 */
420 while ((l2 = p->p_zomblwp) != NULL) {
421 p->p_zomblwp = NULL;
422 lwp_free(l2, 0, 0); /* releases proc mutex */
423 mutex_enter(&p->p_smutex);
424 }
425
426 /*
427 * Now look for an LWP to collect. If the whole process is
428 * exiting, count detached LWPs as eligible to be collected,
429 * but don't drain them here.
430 */
431 nfound = 0;
432 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
433 if (l2 == l || (lid != 0 && l2->l_lid != lid))
434 continue;
435 if ((l2->l_prflag & LPR_DETACHED) != 0) {
436 nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
437 continue;
438 }
439 nfound++;
440
441 /* No need to lock the LWP in order to see LSZOMB. */
442 if (l2->l_stat != LSZOMB)
443 continue;
444
445 if (departed)
446 *departed = l2->l_lid;
447 lwp_free(l2, 0, 0);
448 mutex_enter(&p->p_smutex);
449 p->p_nlwpwait--;
450 return 0;
451 }
452
453 if (nfound == 0) {
454 error = ESRCH;
455 break;
456 }
457 if ((flags & LWPWAIT_EXITCONTROL) != 0) {
458 KASSERT(p->p_nlwps > 1);
459 cv_wait(&p->p_lwpcv, &p->p_smutex);
460 continue;
461 }
462 if ((p->p_sflag & PS_WEXIT) != 0 ||
463 p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
464 error = EDEADLK;
465 break;
466 }
467 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
468 break;
469 }
470
471 p->p_nlwpwait--;
472 return error;
473 }
474
475 /*
476 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
477 * The new LWP is created in state LSIDL and must be set running,
478 * suspended, or stopped by the caller.
479 */
480 int
481 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, boolean_t inmem,
482 int flags, void *stack, size_t stacksize,
483 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
484 {
485 struct lwp *l2, *isfree;
486 turnstile_t *ts;
487
488 /*
489 * First off, reap any detached LWP waiting to be collected.
490 * We can re-use its LWP structure and turnstile.
491 */
492 isfree = NULL;
493 if (p2->p_zomblwp != NULL) {
494 mutex_enter(&p2->p_smutex);
495 if ((isfree = p2->p_zomblwp) != NULL) {
496 p2->p_zomblwp = NULL;
497 lwp_free(isfree, 1, 0); /* releases proc mutex */
498 } else
499 mutex_exit(&p2->p_smutex);
500 }
501 if (isfree == NULL) {
502 l2 = pool_get(&lwp_pool, PR_WAITOK);
503 memset(l2, 0, sizeof(*l2));
504 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
505 } else {
506 l2 = isfree;
507 ts = l2->l_ts;
508 memset(l2, 0, sizeof(*l2));
509 l2->l_ts = ts;
510 }
511
512 l2->l_stat = LSIDL;
513 l2->l_proc = p2;
514 l2->l_refcnt = 1;
515 l2->l_priority = l1->l_priority;
516 l2->l_usrpri = l1->l_usrpri;
517 l2->l_mutex = &sched_mutex;
518 l2->l_cpu = l1->l_cpu;
519 l2->l_flag = inmem ? L_INMEM : 0;
520 lwp_initspecific(l2);
521
522 if (p2->p_flag & P_SYSTEM) {
523 /*
524 * Mark it as a system process and not a candidate for
525 * swapping.
526 */
527 l2->l_flag |= L_SYSTEM;
528 }
529
530 lwp_update_creds(l2);
531 callout_init(&l2->l_tsleep_ch);
532 cv_init(&l2->l_sigcv, "sigwait");
533 l2->l_syncobj = &sched_syncobj;
534
535 if (rnewlwpp != NULL)
536 *rnewlwpp = l2;
537
538 l2->l_addr = UAREA_TO_USER(uaddr);
539 uvm_lwp_fork(l1, l2, stack, stacksize, func,
540 (arg != NULL) ? arg : l2);
541
542 mutex_enter(&p2->p_smutex);
543
544 if ((flags & LWP_DETACHED) != 0) {
545 l2->l_prflag = LPR_DETACHED;
546 p2->p_ndlwps++;
547 } else
548 l2->l_prflag = 0;
549
550 l2->l_sigmask = l1->l_sigmask;
551 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
552 sigemptyset(&l2->l_sigpend.sp_set);
553
554 l2->l_lid = ++p2->p_nlwpid;
555 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
556 p2->p_nlwps++;
557
558 mutex_exit(&p2->p_smutex);
559
560 mutex_enter(&proclist_mutex);
561 LIST_INSERT_HEAD(&alllwp, l2, l_list);
562 mutex_exit(&proclist_mutex);
563
564 if (p2->p_emul->e_lwp_fork)
565 (*p2->p_emul->e_lwp_fork)(l1, l2);
566
567 return (0);
568 }
569
570 /*
571 * Quit the process. This will call cpu_exit, which will call cpu_switch,
572 * so this can only be used meaningfully if you're willing to switch away.
573 * Calling with l!=curlwp would be weird.
574 */
575 void
576 lwp_exit(struct lwp *l)
577 {
578 struct proc *p = l->l_proc;
579 struct lwp *l2;
580
581 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
582 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
583
584 /*
585 * Verify that we hold no locks other than the kernel lock.
586 */
587 #ifdef MULTIPROCESSOR
588 LOCKDEBUG_BARRIER(&kernel_lock, 0);
589 #else
590 LOCKDEBUG_BARRIER(NULL, 0);
591 #endif
592
593 /*
594 * If we are the last live LWP in a process, we need to exit the
595 * entire process. We do so with an exit status of zero, because
596 * it's a "controlled" exit, and because that's what Solaris does.
597 *
598 * We are not quite a zombie yet, but for accounting purposes we
599 * must increment the count of zombies here.
600 *
601 * Note: the last LWP's specificdata will be deleted here.
602 */
603 mutex_enter(&p->p_smutex);
604 if (p->p_nlwps - p->p_nzlwps == 1) {
605 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
606 p->p_pid, l->l_lid));
607 exit1(l, 0);
608 /* NOTREACHED */
609 }
610 p->p_nzlwps++;
611 mutex_exit(&p->p_smutex);
612
613 if (p->p_emul->e_lwp_exit)
614 (*p->p_emul->e_lwp_exit)(l);
615
616 /* Delete the specificdata while it's still safe to sleep. */
617 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
618
619 /*
620 * Release our cached credentials.
621 */
622 kauth_cred_free(l->l_cred);
623
624 /*
625 * Remove the LWP from the global list.
626 */
627 mutex_enter(&proclist_mutex);
628 LIST_REMOVE(l, l_list);
629 mutex_exit(&proclist_mutex);
630
631 /*
632 * Get rid of all references to the LWP that others (e.g. procfs)
633 * may have, and mark the LWP as a zombie. If the LWP is detached,
634 * mark it waiting for collection in the proc structure. Note that
635 * before we can do that, we need to free any other dead, deatched
636 * LWP waiting to meet its maker.
637 *
638 * XXXSMP disable preemption.
639 */
640 mutex_enter(&p->p_smutex);
641 lwp_drainrefs(l);
642
643 if ((l->l_prflag & LPR_DETACHED) != 0) {
644 while ((l2 = p->p_zomblwp) != NULL) {
645 p->p_zomblwp = NULL;
646 lwp_free(l2, 0, 0); /* releases proc mutex */
647 mutex_enter(&p->p_smutex);
648 }
649 p->p_zomblwp = l;
650 }
651
652 /*
653 * Clear any private, pending signals. If we find a pending signal
654 * for the process and we have been asked to check for signals, then
655 * we loose badly: arrange to have all other LWPs in the process check
656 * for signals.
657 */
658 sigclear(&l->l_sigpend, NULL);
659 if ((l->l_flag & L_PENDSIG) != 0 &&
660 firstsig(&p->p_sigpend.sp_set) != 0) {
661 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
662 lwp_lock(l2);
663 l2->l_flag |= L_PENDSIG;
664 lwp_unlock(l2);
665 }
666 }
667
668 lwp_lock(l);
669 l->l_stat = LSZOMB;
670 lwp_unlock(l);
671 p->p_nrlwps--;
672 mutex_exit(&p->p_smutex);
673
674 /*
675 * We can no longer block. At this point, lwp_free() may already
676 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
677 *
678 * Free MD LWP resources.
679 */
680 #ifndef __NO_CPU_LWP_FREE
681 cpu_lwp_free(l, 0);
682 #endif
683 pmap_deactivate(l);
684
685 /*
686 * Release the kernel lock, signal another LWP to collect us,
687 * and switch away into oblivion.
688 */
689 #ifdef notyet
690 /* XXXSMP hold in lwp_userret() */
691 KERNEL_UNLOCK_LAST(l);
692 #else
693 KERNEL_UNLOCK_ALL(l, NULL);
694 #endif
695
696 cv_broadcast(&p->p_lwpcv);
697 cpu_exit(l);
698 }
699
700 /*
701 * We are called from cpu_exit() once it is safe to schedule the dead LWP's
702 * resources to be freed (i.e., once we've switched to the idle PCB for the
703 * current CPU).
704 */
705 void
706 lwp_exit2(struct lwp *l)
707 {
708 /* XXXSMP re-enable preemption */
709 }
710
711 /*
712 * Free a dead LWP's remaining resources.
713 *
714 * XXXLWP limits.
715 */
716 void
717 lwp_free(struct lwp *l, int recycle, int last)
718 {
719 struct proc *p = l->l_proc;
720
721 /*
722 * If this was not the last LWP in the process, then adjust
723 * counters and unlock.
724 */
725 if (!last) {
726 /*
727 * Add the LWP's run time to the process' base value.
728 * This needs to co-incide with coming off p_lwps.
729 */
730 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
731
732 LIST_REMOVE(l, l_sibling);
733 p->p_nlwps--;
734 p->p_nzlwps--;
735 if ((l->l_prflag & LPR_DETACHED) != 0)
736 p->p_ndlwps--;
737 mutex_exit(&p->p_smutex);
738
739 #ifdef MULTIPROCESSOR
740 /*
741 * In the unlikely event that the LWP is still on the CPU,
742 * then spin until it has switched away. We need to release
743 * all locks to avoid deadlock against interrupt handlers on
744 * the target CPU.
745 */
746 if (l->l_cpu->ci_curlwp == l) {
747 int count;
748 KERNEL_UNLOCK_ALL(curlwp, &count);
749 while (l->l_cpu->ci_curlwp == l)
750 SPINLOCK_BACKOFF_HOOK;
751 KERNEL_LOCK(count, curlwp);
752 }
753 #endif
754 }
755
756 /*
757 * Free the LWP's turnstile and the LWP structure itself unless the
758 * caller wants to recycle them.
759 *
760 * We can't return turnstile0 to the pool (it didn't come from it),
761 * so if it comes up just drop it quietly and move on.
762 *
763 * We don't recycle the VM resources at this time.
764 */
765 if (!recycle && l->l_ts != &turnstile0)
766 pool_cache_put(&turnstile_cache, l->l_ts);
767 #ifndef __NO_CPU_LWP_FREE
768 cpu_lwp_free2(l);
769 #endif
770 uvm_lwp_exit(l);
771 cv_destroy(&l->l_sigcv);
772 if (!recycle)
773 pool_put(&lwp_pool, l);
774 }
775
776 /*
777 * Pick a LWP to represent the process for those operations which
778 * want information about a "process" that is actually associated
779 * with a LWP.
780 *
781 * If 'locking' is false, no locking or lock checks are performed.
782 * This is intended for use by DDB.
783 *
784 * We don't bother locking the LWP here, since code that uses this
785 * interface is broken by design and an exact match is not required.
786 */
787 struct lwp *
788 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
789 {
790 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
791 struct lwp *signalled;
792 int cnt;
793
794 if (locking) {
795 LOCK_ASSERT(mutex_owned(&p->p_smutex));
796 }
797
798 /* Trivial case: only one LWP */
799 if (p->p_nlwps == 1) {
800 l = LIST_FIRST(&p->p_lwps);
801 if (nrlwps)
802 *nrlwps = (l->l_stat == LSONPROC || LSRUN);
803 return l;
804 }
805
806 cnt = 0;
807 switch (p->p_stat) {
808 case SSTOP:
809 case SACTIVE:
810 /* Pick the most live LWP */
811 onproc = running = sleeping = stopped = suspended = NULL;
812 signalled = NULL;
813 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
814 if (l->l_lid == p->p_sigctx.ps_lwp)
815 signalled = l;
816 switch (l->l_stat) {
817 case LSONPROC:
818 onproc = l;
819 cnt++;
820 break;
821 case LSRUN:
822 running = l;
823 cnt++;
824 break;
825 case LSSLEEP:
826 sleeping = l;
827 break;
828 case LSSTOP:
829 stopped = l;
830 break;
831 case LSSUSPENDED:
832 suspended = l;
833 break;
834 }
835 }
836 if (nrlwps)
837 *nrlwps = cnt;
838 if (signalled)
839 l = signalled;
840 else if (onproc)
841 l = onproc;
842 else if (running)
843 l = running;
844 else if (sleeping)
845 l = sleeping;
846 else if (stopped)
847 l = stopped;
848 else if (suspended)
849 l = suspended;
850 else
851 break;
852 return l;
853 if (nrlwps)
854 *nrlwps = 0;
855 l = LIST_FIRST(&p->p_lwps);
856 return l;
857 #ifdef DIAGNOSTIC
858 case SIDL:
859 case SZOMB:
860 case SDYING:
861 case SDEAD:
862 if (locking)
863 mutex_exit(&p->p_smutex);
864 /* We have more than one LWP and we're in SIDL?
865 * How'd that happen?
866 */
867 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
868 p->p_pid, p->p_comm, p->p_stat);
869 break;
870 default:
871 if (locking)
872 mutex_exit(&p->p_smutex);
873 panic("Process %d (%s) in unknown state %d",
874 p->p_pid, p->p_comm, p->p_stat);
875 #endif
876 }
877
878 if (locking)
879 mutex_exit(&p->p_smutex);
880 panic("proc_representative_lwp: couldn't find a lwp for process"
881 " %d (%s)", p->p_pid, p->p_comm);
882 /* NOTREACHED */
883 return NULL;
884 }
885
886 /*
887 * Look up a live LWP within the speicifed process, and return it locked.
888 *
889 * Must be called with p->p_smutex held.
890 */
891 struct lwp *
892 lwp_find(struct proc *p, int id)
893 {
894 struct lwp *l;
895
896 LOCK_ASSERT(mutex_owned(&p->p_smutex));
897
898 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
899 if (l->l_lid == id)
900 break;
901 }
902
903 /*
904 * No need to lock - all of these conditions will
905 * be visible with the process level mutex held.
906 */
907 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
908 l = NULL;
909
910 return l;
911 }
912
913 /*
914 * Update an LWP's cached credentials to mirror the process' master copy.
915 *
916 * This happens early in the syscall path, on user trap, and on LWP
917 * creation. A long-running LWP can also voluntarily choose to update
918 * it's credentials by calling this routine. This may be called from
919 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
920 */
921 void
922 lwp_update_creds(struct lwp *l)
923 {
924 kauth_cred_t oc;
925 struct proc *p;
926
927 p = l->l_proc;
928 oc = l->l_cred;
929
930 mutex_enter(&p->p_mutex);
931 kauth_cred_hold(p->p_cred);
932 l->l_cred = p->p_cred;
933 mutex_exit(&p->p_mutex);
934 if (oc != NULL) {
935 KERNEL_LOCK(1, l); /* XXXSMP */
936 kauth_cred_free(oc);
937 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
938 }
939 }
940
941 /*
942 * Verify that an LWP is locked, and optionally verify that the lock matches
943 * one we specify.
944 */
945 int
946 lwp_locked(struct lwp *l, kmutex_t *mtx)
947 {
948 kmutex_t *cur = l->l_mutex;
949
950 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
951 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
952 #else
953 return mutex_owned(cur);
954 #endif
955 }
956
957 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
958 /*
959 * Lock an LWP.
960 */
961 void
962 lwp_lock_retry(struct lwp *l, kmutex_t *old)
963 {
964
965 /*
966 * XXXgcc ignoring kmutex_t * volatile on i386
967 *
968 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
969 */
970 #if 1
971 while (l->l_mutex != old) {
972 #else
973 for (;;) {
974 #endif
975 mutex_spin_exit(old);
976 old = l->l_mutex;
977 mutex_spin_enter(old);
978
979 /*
980 * mutex_enter() will have posted a read barrier. Re-test
981 * l->l_mutex. If it has changed, we need to try again.
982 */
983 #if 1
984 }
985 #else
986 } while (__predict_false(l->l_mutex != old));
987 #endif
988 }
989 #endif
990
991 /*
992 * Lend a new mutex to an LWP. The old mutex must be held.
993 */
994 void
995 lwp_setlock(struct lwp *l, kmutex_t *new)
996 {
997
998 LOCK_ASSERT(mutex_owned(l->l_mutex));
999
1000 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1001 mb_write();
1002 l->l_mutex = new;
1003 #else
1004 (void)new;
1005 #endif
1006 }
1007
1008 /*
1009 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1010 * must be held.
1011 */
1012 void
1013 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1014 {
1015 kmutex_t *old;
1016
1017 LOCK_ASSERT(mutex_owned(l->l_mutex));
1018
1019 old = l->l_mutex;
1020 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1021 mb_write();
1022 l->l_mutex = new;
1023 #else
1024 (void)new;
1025 #endif
1026 mutex_spin_exit(old);
1027 }
1028
1029 /*
1030 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1031 * locked.
1032 */
1033 void
1034 lwp_relock(struct lwp *l, kmutex_t *new)
1035 {
1036 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1037 kmutex_t *old;
1038 #endif
1039
1040 LOCK_ASSERT(mutex_owned(l->l_mutex));
1041
1042 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1043 old = l->l_mutex;
1044 if (old != new) {
1045 mutex_spin_enter(new);
1046 l->l_mutex = new;
1047 mutex_spin_exit(old);
1048 }
1049 #else
1050 (void)new;
1051 #endif
1052 }
1053
1054 /*
1055 * Handle exceptions for mi_userret(). Called if a member of L_USERRET is
1056 * set.
1057 */
1058 void
1059 lwp_userret(struct lwp *l)
1060 {
1061 struct proc *p;
1062 int sig;
1063
1064 p = l->l_proc;
1065
1066 /*
1067 * It should be safe to do this read unlocked on a multiprocessor
1068 * system..
1069 */
1070 while ((l->l_flag & L_USERRET) != 0) {
1071 /*
1072 * Process pending signals first, unless the process
1073 * is dumping core, where we will instead enter the
1074 * L_WSUSPEND case below.
1075 */
1076 if ((l->l_flag & (L_PENDSIG | L_WCORE)) == L_PENDSIG) {
1077 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1078 mutex_enter(&p->p_smutex);
1079 while ((sig = issignal(l)) != 0)
1080 postsig(sig);
1081 mutex_exit(&p->p_smutex);
1082 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1083 }
1084
1085 /*
1086 * Core-dump or suspend pending.
1087 *
1088 * In case of core dump, suspend ourselves, so that the
1089 * kernel stack and therefore the userland registers saved
1090 * in the trapframe are around for coredump() to write them
1091 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1092 * will write the core file out once all other LWPs are
1093 * suspended.
1094 */
1095 if ((l->l_flag & L_WSUSPEND) != 0) {
1096 mutex_enter(&p->p_smutex);
1097 p->p_nrlwps--;
1098 cv_broadcast(&p->p_lwpcv);
1099 lwp_lock(l);
1100 l->l_stat = LSSUSPENDED;
1101 mutex_exit(&p->p_smutex);
1102 mi_switch(l, NULL);
1103 }
1104
1105 /* Process is exiting. */
1106 if ((l->l_flag & L_WEXIT) != 0) {
1107 KERNEL_LOCK(1, l);
1108 lwp_exit(l);
1109 KASSERT(0);
1110 /* NOTREACHED */
1111 }
1112 }
1113 }
1114
1115 /*
1116 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1117 */
1118 void
1119 lwp_need_userret(struct lwp *l)
1120 {
1121 LOCK_ASSERT(lwp_locked(l, NULL));
1122
1123 /*
1124 * Since the tests in lwp_userret() are done unlocked, make sure
1125 * that the condition will be seen before forcing the LWP to enter
1126 * kernel mode.
1127 */
1128 mb_write();
1129
1130 if (l->l_priority > PUSER)
1131 lwp_changepri(l, PUSER);
1132 cpu_signotify(l);
1133 }
1134
1135 /*
1136 * Add one reference to an LWP. This will prevent the LWP from
1137 * exiting, thus keep the lwp structure and PCB around to inspect.
1138 */
1139 void
1140 lwp_addref(struct lwp *l)
1141 {
1142
1143 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
1144 KASSERT(l->l_stat != LSZOMB);
1145 KASSERT(l->l_refcnt != 0);
1146
1147 l->l_refcnt++;
1148 }
1149
1150 /*
1151 * Remove one reference to an LWP. If this is the last reference,
1152 * then we must finalize the LWP's death.
1153 */
1154 void
1155 lwp_delref(struct lwp *l)
1156 {
1157 struct proc *p = l->l_proc;
1158 u_int refcnt;
1159
1160 mutex_enter(&p->p_smutex);
1161 refcnt = --l->l_refcnt;
1162 mutex_exit(&p->p_smutex);
1163
1164 if (refcnt == 0)
1165 cv_broadcast(&p->p_refcv);
1166 }
1167
1168 /*
1169 * Drain all references to the current LWP.
1170 */
1171 void
1172 lwp_drainrefs(struct lwp *l)
1173 {
1174 struct proc *p = l->l_proc;
1175
1176 LOCK_ASSERT(mutex_owned(&p->p_smutex));
1177 KASSERT(l->l_refcnt != 0);
1178
1179 l->l_refcnt--;
1180 while (l->l_refcnt != 0)
1181 cv_wait(&p->p_refcv, &p->p_smutex);
1182 }
1183
1184 /*
1185 * lwp_specific_key_create --
1186 * Create a key for subsystem lwp-specific data.
1187 */
1188 int
1189 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1190 {
1191
1192 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1193 }
1194
1195 /*
1196 * lwp_specific_key_delete --
1197 * Delete a key for subsystem lwp-specific data.
1198 */
1199 void
1200 lwp_specific_key_delete(specificdata_key_t key)
1201 {
1202
1203 specificdata_key_delete(lwp_specificdata_domain, key);
1204 }
1205
1206 /*
1207 * lwp_initspecific --
1208 * Initialize an LWP's specificdata container.
1209 */
1210 void
1211 lwp_initspecific(struct lwp *l)
1212 {
1213 int error;
1214
1215 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1216 KASSERT(error == 0);
1217 }
1218
1219 /*
1220 * lwp_finispecific --
1221 * Finalize an LWP's specificdata container.
1222 */
1223 void
1224 lwp_finispecific(struct lwp *l)
1225 {
1226
1227 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1228 }
1229
1230 /*
1231 * lwp_getspecific --
1232 * Return lwp-specific data corresponding to the specified key.
1233 *
1234 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1235 * only its OWN SPECIFIC DATA. If it is necessary to access another
1236 * LWP's specifc data, care must be taken to ensure that doing so
1237 * would not cause internal data structure inconsistency (i.e. caller
1238 * can guarantee that the target LWP is not inside an lwp_getspecific()
1239 * or lwp_setspecific() call).
1240 */
1241 void *
1242 lwp_getspecific(specificdata_key_t key)
1243 {
1244
1245 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1246 &curlwp->l_specdataref, key));
1247 }
1248
1249 void *
1250 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1251 {
1252
1253 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1254 &l->l_specdataref, key));
1255 }
1256
1257 /*
1258 * lwp_setspecific --
1259 * Set lwp-specific data corresponding to the specified key.
1260 */
1261 void
1262 lwp_setspecific(specificdata_key_t key, void *data)
1263 {
1264
1265 specificdata_setspecific(lwp_specificdata_domain,
1266 &curlwp->l_specdataref, key, data);
1267 }
1268