Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.40.2.4
      1 /*	$NetBSD: kern_lwp.c,v 1.40.2.4 2006/11/17 16:34:36 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit (or thread) of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp".
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing in kernel simultaneously.
     52  *
     53  *	Note that LWPs differ from kernel threads (kthreads) in that kernel
     54  *	threads are distinct processes (system processes) with no user space
     55  *	component, which themselves may contain one or more LWPs.
     56  *
     57  * Execution states
     58  *
     59  *	At any given time, an LWP has overall state that is described by
     60  *	lwp::l_stat.  The states are broken into two sets below.  The first
     61  *	set is guaranteed to represent the absolute, current state of the
     62  *	LWP:
     63  *
     64  * 	LSONPROC
     65  *
     66  * 		On processor: the LWP is executing on a CPU, either in the
     67  * 		kernel or in user space.
     68  *
     69  * 	LSRUN
     70  *
     71  * 		Runnable: the LWP is parked on a run queue, and may soon be
     72  * 		chosen to run by a idle processor, or by a processor that
     73  * 		has been asked to preempt a currently runnning but lower
     74  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     75  *		then the LWP is not on a run queue, but may be soon.
     76  *
     77  * 	LSIDL
     78  *
     79  * 		Idle: the LWP has been created but has not yet executed.
     80  * 		Whoever created the new LWP can be expected to set it to
     81  * 		another state shortly.
     82  *
     83  * 	LSZOMB
     84  *
     85  * 		Zombie: the LWP has exited, released all of its resources
     86  * 		and can execute no further.  It will persist until 'reaped'
     87  * 		by another LWP or process via the _lwp_wait() or wait()
     88  * 		system calls.
     89  *
     90  * 	LSSUSPENDED:
     91  *
     92  * 		Suspended: the LWP has had its execution suspended by
     93  *		another LWP in the same process using the _lwp_suspend()
     94  *		system call.  User-level LWPs also enter the suspended
     95  *		state when the system is shutting down.
     96  *
     97  *	The second set represent a "statement of intent" on behalf of the
     98  *	LWP.  The LWP may in fact be executing on a processor, may be
     99  *	sleeping, idle, or on a run queue. It is expected to take the
    100  *	necessary action to stop executing or become "running" again within
    101  *	a short timeframe.
    102  *
    103  * 	LSDEAD:
    104  *
    105  * 		Dead: the LWP has released most of its resources and is
    106  * 		about to switch away into oblivion.  When it switches away,
    107  * 		its few remaining resources will be collected and the LWP
    108  * 		will enter the LSZOMB (zombie) state.
    109  *
    110  * 	LSSLEEP:
    111  *
    112  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    113  * 		will switch away shortly to allow other LWPs to run on the
    114  * 		CPU.
    115  *
    116  * 	LSSTOP:
    117  *
    118  * 		Stopped: the LWP has been stopped as a result of a job
    119  * 		control signal, or as a result of the ptrace() interface.
    120  * 		Stopped LWPs may run briefly within the kernel to handle
    121  * 		signals that they receive, but will not return to user space
    122  * 		until their process' state is changed away from stopped.
    123  * 		Single LWPs within a process can not be set stopped
    124  * 		selectively: all actions that can stop or continue LWPs
    125  * 		occur at the process level.
    126  *
    127  * State transitions
    128  *
    129  *	Note that the LSSTOP and LSSUSPENDED states may only be set
    130  *	when returning to user space in userret(), or when sleeping
    131  *	interruptably.  Before setting those states, we try to ensure
    132  *	that the LWPs will release all kernel locks that they hold,
    133  *	and at a minimum try to ensure that the LWP can be set runnable
    134  *	again by a signal.
    135  *
    136  *	LWPs may transition states in the following ways:
    137  *
    138  *	 IDL -------> SUSPENDED		DEAD -------> ZOMBIE
    139  *		    > RUN
    140  *
    141  *	 RUN -------> ONPROC		ONPROC -----> RUN
    142  *	            > STOPPED			    > SLEEP
    143  *	            > SUSPENDED			    > STOPPED
    144  *						    > SUSPENDED
    145  *						    > DEAD
    146  *
    147  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    148  *	            > SLEEP			    > SLEEP
    149  *
    150  *	 SLEEP -----> ONPROC
    151  *		    > RUN
    152  *		    > STOPPED
    153  *		    > SUSPENDED
    154  *
    155  * Locking
    156  *
    157  *	The majority of fields in 'struct lwp' are covered by a single,
    158  *	general spin mutex pointed to by lwp::l_mutex.  The locks covering
    159  *	each field are documented in sys/lwp.h.
    160  *
    161  *	State transitions must be made with the LWP's general lock held.  In
    162  *	a multiprocessor kernel, state transitions may cause the LWP's lock
    163  *	pointer to change.  On uniprocessor kernels, most scheduler and
    164  *	synchronisation objects such as sleep queues and LWPs are protected
    165  *	by only one mutex (sched_mutex).  In this case, LWPs' lock pointers
    166  *	will never change and will always reference sched_mutex.
    167  *
    168  *	Manipulation of the general lock is not performed directly, but
    169  *	through calls to lwp_lock(), lwp_relock() and similar.
    170  *
    171  *	States and their associated locks:
    172  *
    173  *	LSIDL, LSDEAD, LSZOMB
    174  *
    175  *		Always covered by lwp_mutex (the idle mutex).
    176  *
    177  *	LSONPROC, LSRUN:
    178  *
    179  *		Always covered by sched_mutex, which protects the run queues
    180  *		and other miscellaneous items.  If the scheduler is changed
    181  *		to use per-CPU run queues, this may become a per-CPU mutex.
    182  *
    183  *	LSSLEEP:
    184  *
    185  *		Covered by a mutex associated with the sleep queue that the
    186  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    187  *
    188  *	LSSTOP, LSSUSPENDED:
    189  *
    190  *		If the LWP was previously sleeping (l_wchan != NULL), then
    191  *		l_mutex references the sleep queue mutex.  If the LWP was
    192  *		runnable or on the CPU when halted, or has been removed from
    193  *		the sleep queue since halted, then the mutex is lwp_mutex.
    194  *
    195  *	The lock order for the various mutexes is as follows:
    196  *
    197  *		sleepq_t::sq_mutex -> lwp_mutex -> sched_mutex
    198  *
    199  *	Each process has an scheduler state mutex (proc::p_smutex), and a
    200  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    201  *	so on.  When an LWP is to be entered into or removed from one of the
    202  *	following states, p_mutex must be held and the process wide counters
    203  *	adjusted:
    204  *
    205  *		LSIDL, LSDEAD, LSZOMB, LSSTOP, LSSUSPENDED
    206  *
    207  *	Note that an LWP is considered running or likely to run soon if in
    208  *	one of the following states.  This affects the value of p_nrlwps:
    209  *
    210  *		LSRUN, LSONPROC, LSSLEEP
    211  *
    212  *	p_smutex does not need to be held when transitioning among these
    213  *	three states.
    214  */
    215 
    216 #include <sys/cdefs.h>
    217 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.40.2.4 2006/11/17 16:34:36 ad Exp $");
    218 
    219 #include "opt_multiprocessor.h"
    220 #include "opt_lockdebug.h"
    221 
    222 #include <sys/param.h>
    223 #include <sys/systm.h>
    224 #include <sys/pool.h>
    225 #include <sys/proc.h>
    226 #include <sys/sa.h>
    227 #include <sys/syscallargs.h>
    228 #include <sys/kauth.h>
    229 #include <sys/sleepq.h>
    230 #include <sys/lockdebug.h>
    231 
    232 #include <uvm/uvm_extern.h>
    233 
    234 struct lwplist	alllwp;
    235 kmutex_t	alllwp_mutex;
    236 kmutex_t	lwp_mutex;
    237 
    238 #define LWP_DEBUG
    239 
    240 #ifdef LWP_DEBUG
    241 int lwp_debug = 0;
    242 #define DPRINTF(x) if (lwp_debug) printf x
    243 #else
    244 #define DPRINTF(x)
    245 #endif
    246 
    247 /*
    248  * Set an LWP halted or suspended.
    249  *
    250  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    251  * LWP before return.
    252  */
    253 int
    254 lwp_halt(struct lwp *curl, struct lwp *t, int state)
    255 {
    256 	int error, want;
    257 
    258 	LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex)); /* XXXAD what now? */
    259 	LOCK_ASSERT(lwp_locked(t, NULL));
    260 
    261 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    262 
    263 	/*
    264 	 * If the current LWP has been told to exit, we must not suspend anyone
    265 	 * else or deadlock could occur.  We won't return to userspace.
    266 	 */
    267 	if ((curl->l_stat & (L_WEXIT | L_WCORE)) != 0)
    268 		return (EDEADLK);
    269 
    270 	error = 0;
    271 
    272 	want = (state == LSSUSPENDED ? L_WSUSPEND : 0);
    273 
    274 	switch (t->l_stat) {
    275 	case LSRUN:
    276 	case LSONPROC:
    277 		t->l_flag |= want;
    278 		signotify(t);
    279 		break;
    280 
    281 	case LSSLEEP:
    282 		t->l_stat |= want;
    283 
    284 		/*
    285 		 * Kick the LWP and try to get it to the kernel boundary
    286 		 * so that it will release any locks that it holds.
    287 		 * setrunnable() will release the lock.
    288 		 */
    289 		signotify(t);
    290 		setrunnable(t);
    291 		return 0;
    292 
    293 	case LSSUSPENDED:
    294 	case LSSTOP:
    295 		t->l_flag |= want;
    296 		break;
    297 
    298 	case LSIDL:
    299 	case LSZOMB:
    300 	case LSDEAD:
    301 		error = EINTR; /* It's what Solaris does..... */
    302 		break;
    303 	}
    304 
    305 	lwp_unlock(t);
    306 
    307 	return (error);
    308 }
    309 
    310 /*
    311  * Restart a suspended LWP.
    312  *
    313  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    314  * LWP before return.
    315  */
    316 void
    317 lwp_continue(struct lwp *l)
    318 {
    319 
    320 	LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
    321 	LOCK_ASSERT(lwp_locked(l, NULL));
    322 
    323 	DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
    324 	    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
    325 	    l->l_wchan));
    326 
    327 	/* If rebooting or not suspended, then just bail out. */
    328 	if ((l->l_flag & L_WREBOOT) != 0) {
    329 		lwp_unlock(l);
    330 		return;
    331 	}
    332 
    333 	l->l_flag &= ~L_WSUSPEND;
    334 
    335 	if (l->l_stat != LSSUSPENDED) {
    336 		lwp_unlock(l);
    337 		return;
    338 	}
    339 
    340 	/* setrunnable() will release the lock. */
    341 	setrunnable(l);
    342 }
    343 
    344 /*
    345  * Wait for an LWP within the current process to exit.  If 'lid' is
    346  * non-zero, we are waiting for a specific LWP.
    347  *
    348  * Must be called with p->p_smutex held.
    349  */
    350 int
    351 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    352 {
    353 	struct proc *p = l->l_proc;
    354 	struct lwp *l2;
    355 	int nfound, error, wpri;
    356 	static const char waitstr1[] = "lwpwait";
    357 	static const char waitstr2[] = "lwpwait2";
    358 
    359 	DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
    360 	    p->p_pid, l->l_lid, lid));
    361 
    362 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    363 
    364 	/*
    365 	 * Check for deadlock:
    366 	 *
    367 	 * 1) If all other LWPs are waiting for exits or suspended.
    368 	 * 2) If we are trying to wait on ourself.
    369 	 *
    370 	 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
    371 	 * waits, not any-LWP waits) and detect that sort of deadlock, but
    372 	 * we don't have a good place to store the lwp that is being waited
    373 	 * for. wchan is already filled with &p->p_nlwps, and putting the
    374 	 * lwp address in there for deadlock tracing would require exiting
    375 	 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
    376 	 * get threads sleeping on any LWP exiting.
    377 	 */
    378 	if (lwp_lastlive(p->p_nlwpwait) || lid == l->l_lid)
    379 		return (EDEADLK);
    380 
    381 	p->p_nlwpwait++;
    382 	wpri = PWAIT;
    383 	if ((flags & LWPWAIT_EXITCONTROL) == 0)
    384 		wpri |= PCATCH;
    385  loop:
    386 	nfound = 0;
    387 	LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    388 		if ((l2 == l) || (l2->l_flag & L_DETACHED) ||
    389 		    ((lid != 0) && (lid != l2->l_lid)))
    390 			continue;
    391 		nfound++;
    392 		if (l2->l_stat != LSZOMB)
    393 			continue;
    394 
    395 		if (departed)
    396 			*departed = l2->l_lid;
    397 
    398 		LIST_REMOVE(l2, l_sibling);
    399 		p->p_nlwps--;
    400 		p->p_nzlwps--;
    401 		p->p_nlwpwait--;
    402 		/* XXX decrement limits */
    403 		pool_put(&lwp_pool, l2);
    404 		return (0);
    405 	}
    406 
    407 	if (nfound == 0) {
    408 		p->p_nlwpwait--;
    409 		return (ESRCH);
    410 	}
    411 
    412 	if ((error = mtsleep(&p->p_nlwps, wpri,
    413 	    (lid != 0) ? waitstr1 : waitstr2, 0, &p->p_smutex)) != 0)
    414 		return (error);
    415 
    416 	goto loop;
    417 }
    418 
    419 /*
    420  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    421  * The new LWP is created in state LSIDL and must be set running,
    422  * suspended, or stopped by the caller.
    423  */
    424 int
    425 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, boolean_t inmem,
    426     int flags, void *stack, size_t stacksize,
    427     void (*func)(void *), void *arg, struct lwp **rnewlwpp)
    428 {
    429 	struct lwp *l2;
    430 
    431 	l2 = pool_get(&lwp_pool, PR_WAITOK);
    432 
    433 	l2->l_stat = LSIDL;
    434 	l2->l_forw = l2->l_back = NULL;
    435 	l2->l_proc = p2;
    436 	l2->l_refcnt = 1;
    437 
    438 	memset(&l2->l_startzero, 0,
    439 	       (unsigned) ((caddr_t)&l2->l_endzero -
    440 			   (caddr_t)&l2->l_startzero));
    441 
    442 	/* The copy here is unlocked, but is unlikely to pose a problem. */
    443 	memcpy(&l2->l_startcopy, &l1->l_startcopy,
    444 	       (unsigned) ((caddr_t)&l2->l_endcopy -
    445 			   (caddr_t)&l2->l_startcopy));
    446 
    447 #if !defined(MULTIPROCESSOR)
    448 	/*
    449 	 * In the single-processor case, all processes will always run
    450 	 * on the same CPU.  So, initialize the child's CPU to the parent's
    451 	 * now.  In the multiprocessor case, the child's CPU will be
    452 	 * initialized in the low-level context switch code when the
    453 	 * process runs.
    454 	 */
    455 	KASSERT(l1->l_cpu != NULL);
    456 	l2->l_cpu = l1->l_cpu;
    457 #else
    458 	/*
    459 	 * Zero child's CPU pointer so we don't get trash.
    460 	 */
    461 	l2->l_cpu = NULL;
    462 #endif /* ! MULTIPROCESSOR */
    463 
    464 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    465 	l2->l_mutex = &lwp_mutex;
    466 #else
    467 	l2->l_mutex = &sched_mutex;
    468 #endif
    469 
    470 	l2->l_flag = inmem ? L_INMEM : 0;
    471 	l2->l_flag |= (flags & LWP_DETACHED) ? L_DETACHED : 0;
    472 
    473 	if (p2->p_flag & P_SYSTEM) {
    474 		/*
    475 		 * Mark it as a system process and not a candidate for
    476 		 * swapping.
    477 		 */
    478 		l2->l_flag |= L_SYSTEM | L_INMEM;
    479 	}
    480 
    481 	lwp_update_creds(l2);
    482 	callout_init(&l2->l_tsleep_ch);
    483 	l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
    484 	l2->l_syncobj = &sched_syncobj;
    485 
    486 	if (rnewlwpp != NULL)
    487 		*rnewlwpp = l2;
    488 
    489 	l2->l_addr = UAREA_TO_USER(uaddr);
    490 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    491 	    (arg != NULL) ? arg : l2);
    492 
    493 	mutex_enter(&p2->p_smutex);
    494 
    495 	if ((p2->p_flag & P_SA) == 0) {
    496 		l2->l_sigpend = &l2->l_sigstore.ss_pend;
    497 		l2->l_sigmask = &l2->l_sigstore.ss_mask;
    498 		l2->l_sigstk = &l2->l_sigstore.ss_stk;
    499 		l2->l_sigmask = l1->l_sigmask;
    500 		CIRCLEQ_INIT(&l2->l_sigpend->sp_info);
    501 		sigemptyset(&l2->l_sigpend->sp_set);
    502 	} else {
    503 		l2->l_sigpend = &p2->p_sigstore.ss_pend;
    504 		l2->l_sigmask = &p2->p_sigstore.ss_mask;
    505 		l2->l_sigstk = &p2->p_sigstore.ss_stk;
    506 	}
    507 
    508 	l2->l_lid = ++p2->p_nlwpid;
    509 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    510 	p2->p_nlwps++;
    511 
    512 	mutex_exit(&p2->p_smutex);
    513 
    514 	mutex_enter(&alllwp_mutex);
    515 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    516 	mutex_exit(&alllwp_mutex);
    517 
    518 	if (p2->p_emul->e_lwp_fork)
    519 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    520 
    521 	return (0);
    522 }
    523 
    524 /*
    525  * Quit the process.  This will call cpu_exit, which will call cpu_switch,
    526  * so this can only be used meaningfully if you're willing to switch away.
    527  * Calling with l!=curlwp would be weird.
    528  */
    529 int
    530 lwp_exit(struct lwp *l, int checksigs)
    531 {
    532 	struct proc *p = l->l_proc;
    533 
    534 	DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
    535 	DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
    536 
    537 	mutex_enter(&p->p_smutex);
    538 
    539 	/*
    540 	 * If we've got pending signals that we haven't processed yet, make
    541 	 * sure that we take them before exiting.
    542 	 */
    543 	if (checksigs && sigispending(l)) {
    544 		mutex_exit(&p->p_smutex);
    545 		return ERESTART;
    546 	}
    547 
    548 	if (p->p_emul->e_lwp_exit)
    549 		(*p->p_emul->e_lwp_exit)(l);
    550 
    551 	/*
    552 	 * If we are the last live LWP in a process, we need to exit the
    553 	 * entire process.  We do so with an exit status of zero, because
    554 	 * it's a "controlled" exit, and because that's what Solaris does.
    555 	 *
    556 	 * We are not quite a zombie yet, but for accounting purposes we
    557 	 * must increment the count of zombies here.
    558 	 */
    559 	p->p_nzlwps++;
    560 	if (p->p_nlwps - p->p_nzlwps == 0) {
    561 		DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
    562 		    p->p_pid, l->l_lid));
    563 		exit1(l, 0);
    564 		/* NOTREACHED */
    565 	}
    566 
    567 	lwp_lock(l);
    568 	if ((l->l_flag & L_DETACHED) != 0) {
    569 		LIST_REMOVE(l, l_sibling);
    570 		p->p_nlwps--;
    571 		curlwp = NULL;
    572 		l->l_proc = NULL;
    573 	}
    574 	l->l_stat = LSDEAD;
    575 	lwp_unlock_to(l, &lwp_mutex);
    576 
    577 	if ((p->p_flag & P_SA) == 0) {
    578 		/*
    579 		 * Clear any private, pending signals.   XXX We may loose
    580 		 * process-wide signals that we didn't want to take.
    581 		 */
    582 		sigclear(l->l_sigpend, NULL);
    583 	}
    584 
    585 	mutex_exit(&p->p_smutex);
    586 
    587 	/*
    588 	 * Remove the LWP from the global list and from the parent process.
    589 	 * Once done, mark it as dead.  Nothing should be able to find or
    590 	 * update it past this point.
    591 	 */
    592 	mutex_enter(&alllwp_mutex);
    593 	LIST_REMOVE(l, l_list);
    594 	mutex_exit(&alllwp_mutex);
    595 
    596 	/*
    597 	 * Release our cached credentials and collate accounting flags.
    598 	 */
    599 	kauth_cred_free(l->l_cred);
    600 	mutex_enter(&p->p_mutex);
    601 	p->p_acflag |= l->l_acflag;
    602 	mutex_exit(&p->p_mutex);
    603 
    604 	/*
    605 	 * Verify that we hold no locks other than the kernel mutex, and
    606 	 * release our turnstile.  We should no longer sleep past this
    607 	 * point.
    608 	 */
    609 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    610 	pool_cache_put(&turnstile_cache, l->l_ts);
    611 
    612 	/*
    613 	 * Free MD LWP resources
    614 	 */
    615 #ifndef __NO_CPU_LWP_FREE
    616 	cpu_lwp_free(l, 0);
    617 #endif
    618 	pmap_deactivate(l);
    619 
    620 	/*
    621 	 * Release the kernel lock, and switch away into oblivion.
    622 	 */
    623 	(void)KERNEL_UNLOCK(0, l);	/* XXXSMP assert count == 1 */
    624 	cpu_exit(l);
    625 
    626 	/* NOTREACHED */
    627 	return 0;
    628 }
    629 
    630 /*
    631  * We are called from cpu_exit() once it is safe to schedule the dead LWP's
    632  * resources to be freed (i.e., once we've switched to the idle PCB for the
    633  * current CPU).
    634  *
    635  * NOTE: One must be careful with locking in this routine.  It's called from
    636  * a critical section in machine-dependent code.
    637  */
    638 void
    639 lwp_exit2(struct lwp *l)
    640 {
    641 	struct proc *p;
    642 	u_int refcnt;
    643 
    644 	/*
    645 	 * If someone holds a reference on the LWP, let them clean us up.
    646 	 */
    647 	lwp_lock(l);
    648 	refcnt = --l->l_refcnt;
    649 	lwp_unlock(l);
    650 	if (refcnt != 0)
    651 		return;
    652 
    653 	KASSERT(l->l_stat == LSDEAD);
    654 	KERNEL_LOCK(1, NULL);
    655 
    656 	/*
    657 	 * Free the VM resources we're still holding on to.
    658 	 */
    659 	uvm_lwp_exit(l);
    660 
    661 	p = l->l_proc;
    662 
    663 	if ((l->l_flag & L_DETACHED) != 0) {
    664 		/*
    665 		 * Nobody waits for detached LWPs.
    666 		 */
    667 		pool_put(&lwp_pool, l);
    668 		(void)KERNEL_UNLOCK(1, NULL);
    669 
    670 		/*
    671 		 * If this is the last LWP in the process, wake up the
    672 		 * parent so that it can reap us.
    673 		 */
    674 		mb_read();
    675 		if (p->p_nlwps == 0) {
    676 			KASSERT(p->p_stat == SDEAD);
    677 			p->p_stat = SZOMB;
    678 			mb_write();
    679 
    680 			/* XXXSMP too much locking */
    681 			mutex_enter(&proclist_mutex);
    682 			mutex_enter(&proc_stop_mutex);
    683 			p = p->p_pptr;
    684 			p->p_nstopchild++;
    685 			cv_broadcast(&p->p_waitcv);
    686 			mutex_exit(&proc_stop_mutex);
    687 			mutex_exit(&proclist_mutex);
    688 		}
    689 	} else {
    690 		(void)KERNEL_UNLOCK(1, NULL);
    691 		l->l_stat = LSZOMB;
    692 		mb_write();
    693 		mutex_enter(&p->p_smutex);
    694 		wakeup(&p->p_nlwps);
    695 		mutex_exit(&p->p_smutex);
    696 	}
    697 }
    698 
    699 /*
    700  * Pick a LWP to represent the process for those operations which
    701  * want information about a "process" that is actually associated
    702  * with a LWP.
    703  *
    704  * Must be called with p->p_smutex held, and will return the LWP locked.
    705  * If 'locking' is false, no locking or lock checks are performed.  This
    706  * is intended for use by DDB.
    707  */
    708 struct lwp *
    709 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    710 {
    711 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    712 	struct lwp *signalled;
    713 	int cnt;
    714 
    715 	if (locking)
    716 		LOCK_ASSERT(mutex_owned(&p->p_smutex));
    717 
    718 	/* Trivial case: only one LWP */
    719 	if (p->p_nlwps == 1) {
    720 		l = LIST_FIRST(&p->p_lwps);
    721 		if (nrlwps)
    722 			*nrlwps = (l->l_stat == LSONPROC || LSRUN);
    723 		if (locking)
    724 			lwp_lock(l);
    725 		return l;
    726 	}
    727 
    728 	cnt = 0;
    729 	switch (p->p_stat) {
    730 	case SSTOP:
    731 	case SACTIVE:
    732 		/* Pick the most live LWP */
    733 		onproc = running = sleeping = stopped = suspended = NULL;
    734 		signalled = NULL;
    735 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    736 			if (locking)
    737 				lwp_lock(l);
    738 			if (l->l_lid == p->p_sigctx.ps_lwp)
    739 				signalled = l;
    740 			switch (l->l_stat) {
    741 			case LSONPROC:
    742 				onproc = l;
    743 				cnt++;
    744 				break;
    745 			case LSRUN:
    746 				running = l;
    747 				cnt++;
    748 				break;
    749 			case LSSLEEP:
    750 				sleeping = l;
    751 				break;
    752 			case LSSTOP:
    753 				stopped = l;
    754 				break;
    755 			case LSSUSPENDED:
    756 				suspended = l;
    757 				break;
    758 			}
    759 			if (locking)
    760 				lwp_unlock(l);
    761 		}
    762 		if (nrlwps)
    763 			*nrlwps = cnt;
    764 		if (signalled)
    765 			l = signalled;
    766 		else if (onproc)
    767 			l = onproc;
    768 		else if (running)
    769 			l = running;
    770 		else if (sleeping)
    771 			l = sleeping;
    772 		else if (stopped)
    773 			l = stopped;
    774 		else if (suspended)
    775 			l = suspended;
    776 		else
    777 			break;
    778 		if (locking)
    779 			lwp_lock(l);
    780 		return l;
    781 	case SZOMB:
    782 		/* Doesn't really matter... */
    783 		if (nrlwps)
    784 			*nrlwps = 0;
    785 		l = LIST_FIRST(&p->p_lwps);
    786 		if (locking)
    787 			lwp_lock(l);
    788 		return l;
    789 #ifdef DIAGNOSTIC
    790 	case SIDL:
    791 		if (locking)
    792 			mutex_exit(&p->p_smutex);
    793 		/* We have more than one LWP and we're in SIDL?
    794 		 * How'd that happen?
    795 		 */
    796 		panic("Too many LWPs in SIDL process %d (%s)",
    797 		    p->p_pid, p->p_comm);
    798 	default:
    799 		if (locking)
    800 			mutex_exit(&p->p_smutex);
    801 		panic("Process %d (%s) in unknown state %d",
    802 		    p->p_pid, p->p_comm, p->p_stat);
    803 #endif
    804 	}
    805 
    806 	if (locking)
    807 		mutex_exit(&p->p_smutex);
    808 	panic("proc_representative_lwp: couldn't find a lwp for process"
    809 		" %d (%s)", p->p_pid, p->p_comm);
    810 	/* NOTREACHED */
    811 	return NULL;
    812 }
    813 
    814 /*
    815  * Look up a live LWP within the speicifed process, and return it locked.
    816  *
    817  * Must be called with p->p_smutex held.
    818  */
    819 struct lwp *
    820 lwp_byid(struct proc *p, int id)
    821 {
    822 	struct lwp *l;
    823 
    824 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    825 
    826 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    827 		if (l->l_lid == id)
    828 			break;
    829 	}
    830 
    831 	if (l != NULL) {
    832 		lwp_lock(l);
    833 		if (l->l_stat == LSIDL || l->l_stat == LSZOMB ||
    834 		    l->l_stat == LSDEAD) {
    835 			lwp_unlock(l);
    836 			l = NULL;
    837 		}
    838 	}
    839 
    840 	return l;
    841 }
    842 
    843 /*
    844  * Update an LWP's cached credentials to mirror the process' master copy.
    845  *
    846  * This happens early in the syscall path, on user trap, and on LWP
    847  * creation.  A long-running LWP can also voluntarily choose to update
    848  * it's credentials by calling this routine.  This may be called from
    849  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
    850  */
    851 void
    852 lwp_update_creds(struct lwp *l)
    853 {
    854 	kauth_cred_t oc;
    855 	struct proc *p;
    856 
    857 	p = l->l_proc;
    858 	oc = l->l_cred;
    859 
    860 	mutex_enter(&p->p_mutex);
    861 	kauth_cred_hold(p->p_cred);
    862 	l->l_cred = p->p_cred;
    863 	mutex_exit(&p->p_mutex);
    864 	if (oc != NULL)
    865 		kauth_cred_free(oc);
    866 }
    867 
    868 /*
    869  * Verify that an LWP is locked, and optionally verify that the lock matches
    870  * one we specify.
    871  */
    872 int
    873 lwp_locked(struct lwp *l, kmutex_t *mtx)
    874 {
    875 	kmutex_t *cur = l->l_mutex;
    876 
    877 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    878 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
    879 #else
    880 	return mutex_owned(cur);
    881 #endif
    882 }
    883 
    884 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    885 /*
    886  * Lock an LWP.
    887  */
    888 void
    889 lwp_lock_retry(struct lwp *l, kmutex_t *old)
    890 {
    891 
    892 	for (;;) {
    893 		mutex_exit(old);
    894 		old = l->l_mutex;
    895 		mutex_enter(old);
    896 
    897 		/*
    898 		 * mutex_enter() will have posted a read barrier.  Re-test
    899 		 * l->l_mutex.  If it has changed, we need to try again.
    900 		 */
    901 	} while (__predict_false(l->l_mutex != old));
    902 }
    903 #endif
    904 
    905 /*
    906  * Lend a new mutex to an LWP.  The old mutex must be held.
    907  */
    908 void
    909 lwp_setlock(struct lwp *l, kmutex_t *new)
    910 {
    911 
    912 	LOCK_ASSERT(mutex_owned(l->l_mutex));
    913 
    914 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    915 	mb_write();
    916 	l->l_mutex = new;
    917 #else
    918 	(void)new;
    919 #endif
    920 }
    921 
    922 /*
    923  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
    924  * must be held.
    925  */
    926 void
    927 lwp_unlock_to(struct lwp *l, kmutex_t *new)
    928 {
    929 	kmutex_t *old;
    930 
    931 	LOCK_ASSERT(mutex_owned(l->l_mutex));
    932 
    933 	old = l->l_mutex;
    934 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    935 	mb_write();
    936 	l->l_mutex = new;
    937 #else
    938 	(void)new;
    939 #endif
    940 	mutex_exit(old);
    941 }
    942 
    943 /*
    944  * Acquire a new mutex, and dontate it to an LWP.  The LWP must already be
    945  * locked.
    946  */
    947 void
    948 lwp_relock(struct lwp *l, kmutex_t *new)
    949 {
    950 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    951 	kmutex_t *old;
    952 #endif
    953 
    954 	LOCK_ASSERT(mutex_owned(l->l_mutex));
    955 
    956 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    957 	old = l->l_mutex;
    958 	if (old != new) {
    959 		mutex_enter(new);
    960 		l->l_mutex = new;
    961 		mutex_exit(old);
    962 	}
    963 #else
    964 	(void)new;
    965 #endif
    966 }
    967 
    968 /*
    969  * Handle exceptions for mi_userret().  Called if L_USERRET is set.
    970  */
    971 void
    972 lwp_userret(struct lwp *l)
    973 {
    974 	struct proc *p;
    975 	int sig;
    976 
    977 	p = l->l_proc;
    978 
    979 	do {
    980 		/* Process pending signals first. */
    981 		if ((l->l_flag & L_PENDSIG) != 0) {
    982 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
    983 			mutex_enter(&p->p_smutex);
    984 			while ((sig = issignal(l)) != 0)
    985 				postsig(sig);
    986 			mutex_exit(&p->p_smutex);
    987 			(void)KERNEL_UNLOCK(0, l);	/* XXXSMP */
    988 		}
    989 
    990 		/* Core-dump or suspend pending. */
    991 		if ((l->l_flag & L_WSUSPEND) != 0) {
    992 			/*
    993 			 * Suspend ourselves, so that the kernel stack and
    994 			 * therefore the userland registers saved in the
    995 			 * trapframe are around for coredump() to write them
    996 			 * out.  We issue a wakeup() on p->p_nrlwps so that
    997 			 * sigexit() will write the core file out once all
    998 			 * other LWPs are suspended.
    999 			 */
   1000 			mutex_enter(&p->p_smutex);
   1001 			lwp_lock(l);
   1002 			lwp_relock(l, &lwp_mutex);
   1003 			p->p_nrlwps--;
   1004 			wakeup(&p->p_nrlwps);
   1005 			l->l_stat = LSSUSPENDED;
   1006 			mutex_exit(&p->p_smutex);
   1007 			mi_switch(l, NULL);
   1008 			lwp_lock(l);
   1009 		}
   1010 
   1011 		/* Process is exiting. */
   1012 		if ((l->l_flag & L_WEXIT) != 0) {
   1013 			KERNEL_LOCK(1, l);
   1014 			(void)lwp_exit(l, 0);
   1015 			KASSERT(0);
   1016 			/* NOTREACHED */
   1017 		}
   1018 	} while ((l->l_flag & L_USERRET) != 0);
   1019 }
   1020 
   1021 /*
   1022  * Return non-zero if this the last live LWP in the process.  Called when
   1023  * exiting, dumping core, waiting for other LWPs to exit, etc.  Accepts a
   1024  * 'bias' value for deadlock detection.
   1025  *
   1026  * Must be called with p->p_smutex held.
   1027  */
   1028 int
   1029 lwp_lastlive(int bias)
   1030 {
   1031 	struct lwp *l = curlwp;
   1032 	struct proc *p = l->l_proc;
   1033 
   1034 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
   1035 	KASSERT(l->l_stat == LSONPROC || l->l_stat == LSSTOP);
   1036 
   1037 	return p->p_nrlwps - bias - (l->l_stat == LSONPROC) == 0;
   1038 }
   1039 
   1040 /*
   1041  * Add one reference to an LWP.  This will prevent the LWP from
   1042  * transitioning from the LSDEAD state into LSZOMB, and thus keep
   1043  * the lwp structure and PCB around to inspect.
   1044  */
   1045 void
   1046 lwp_addref(struct lwp *l)
   1047 {
   1048 
   1049 	LOCK_ASSERT(lwp_locked(l, NULL));
   1050 	KASSERT(l->l_stat != LSZOMB);
   1051 	KASSERT(l->l_refcnt != 0);
   1052 
   1053 	l->l_refcnt++;
   1054 }
   1055 
   1056 /*
   1057  * Remove one reference to an LWP.  If this is the last reference,
   1058  * then we must finalize the LWP's death.
   1059  */
   1060 void
   1061 lwp_delref(struct lwp *l)
   1062 {
   1063 
   1064 	lwp_exit2(l);
   1065 }
   1066