kern_lwp.c revision 1.40.2.7 1 /* $NetBSD: kern_lwp.c,v 1.40.2.7 2007/01/11 22:22:59 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit (or thread) of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp".
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing in kernel simultaneously.
52 *
53 * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 * threads are distinct processes (system processes) with no user space
55 * component, which themselves may contain one or more LWPs.
56 *
57 * Execution states
58 *
59 * At any given time, an LWP has overall state that is described by
60 * lwp::l_stat. The states are broken into two sets below. The first
61 * set is guaranteed to represent the absolute, current state of the
62 * LWP:
63 *
64 * LSONPROC
65 *
66 * On processor: the LWP is executing on a CPU, either in the
67 * kernel or in user space.
68 *
69 * LSRUN
70 *
71 * Runnable: the LWP is parked on a run queue, and may soon be
72 * chosen to run by a idle processor, or by a processor that
73 * has been asked to preempt a currently runnning but lower
74 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 * then the LWP is not on a run queue, but may be soon.
76 *
77 * LSIDL
78 *
79 * Idle: the LWP has been created but has not yet executed.
80 * Whoever created the new LWP can be expected to set it to
81 * another state shortly.
82 *
83 * LSSUSPENDED:
84 *
85 * Suspended: the LWP has had its execution suspended by
86 * another LWP in the same process using the _lwp_suspend()
87 * system call. User-level LWPs also enter the suspended
88 * state when the system is shutting down.
89 *
90 * The second set represent a "statement of intent" on behalf of the
91 * LWP. The LWP may in fact be executing on a processor, may be
92 * sleeping, idle, or on a run queue. It is expected to take the
93 * necessary action to stop executing or become "running" again within
94 * a short timeframe.
95 *
96 * LSZOMB:
97 *
98 * Dead: the LWP has released most of its resources and is
99 * about to switch away into oblivion. When it switches away,
100 * its few remaining resources will be collected.
101 *
102 * LSSLEEP:
103 *
104 * Sleeping: the LWP has entered itself onto a sleep queue, and
105 * will switch away shortly to allow other LWPs to run on the
106 * CPU.
107 *
108 * LSSTOP:
109 *
110 * Stopped: the LWP has been stopped as a result of a job
111 * control signal, or as a result of the ptrace() interface.
112 * Stopped LWPs may run briefly within the kernel to handle
113 * signals that they receive, but will not return to user space
114 * until their process' state is changed away from stopped.
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP and LSSUSPENDED states may only be set
122 * when returning to user space in userret(), or when sleeping
123 * interruptably. Before setting those states, we try to ensure
124 * that the LWPs will release all kernel locks that they hold,
125 * and at a minimum try to ensure that the LWP can be set runnable
126 * again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Locking
145 *
146 * The majority of fields in 'struct lwp' are covered by a single,
147 * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 * each field are documented in sys/lwp.h.
149 *
150 * State transitions must be made with the LWP's general lock held. In
151 * a multiprocessor kernel, state transitions may cause the LWP's lock
152 * pointer to change. On uniprocessor kernels, most scheduler and
153 * synchronisation objects such as sleep queues and LWPs are protected
154 * by only one mutex (sched_mutex). In this case, LWPs' lock pointers
155 * will never change and will always reference sched_mutex.
156 *
157 * Manipulation of the general lock is not performed directly, but
158 * through calls to lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSIDL, LSZOMB
163 *
164 * Always covered by sched_mutex.
165 *
166 * LSONPROC, LSRUN:
167 *
168 * Always covered by sched_mutex, which protects the run queues
169 * and other miscellaneous items. If the scheduler is changed
170 * to use per-CPU run queues, this may become a per-CPU mutex.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a mutex associated with the sleep queue that the
175 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue mutex. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the mutex is sched_mutex.
183 *
184 * The lock order is as follows:
185 *
186 * sleepq_t::sq_mutex -> sched_mutex
187 *
188 * Each process has an scheduler state mutex (proc::p_smutex), and a
189 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
190 * so on. When an LWP is to be entered into or removed from one of the
191 * following states, p_mutex must be held and the process wide counters
192 * adjusted:
193 *
194 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
195 *
196 * Note that an LWP is considered running or likely to run soon if in
197 * one of the following states. This affects the value of p_nrlwps:
198 *
199 * LSRUN, LSONPROC, LSSLEEP
200 *
201 * p_smutex does not need to be held when transitioning among these
202 * three states.
203 */
204
205 #include <sys/cdefs.h>
206 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.40.2.7 2007/01/11 22:22:59 ad Exp $");
207
208 #include "opt_multiprocessor.h"
209 #include "opt_lockdebug.h"
210
211 #define _LWP_API_PRIVATE
212
213 #include <sys/param.h>
214 #include <sys/systm.h>
215 #include <sys/pool.h>
216 #include <sys/proc.h>
217 #include <sys/sa.h>
218 #include <sys/syscallargs.h>
219 #include <sys/kauth.h>
220 #include <sys/sleepq.h>
221 #include <sys/lockdebug.h>
222 #include <sys/kmem.h>
223
224 #include <uvm/uvm_extern.h>
225
226 struct lwplist alllwp;
227
228 POOL_INIT(lwp_pool, sizeof(struct lwp), 16, 0, 0, "lwppl",
229 &pool_allocator_nointr);
230 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
231 &pool_allocator_nointr);
232
233 static specificdata_domain_t lwp_specificdata_domain;
234
235 #define LWP_DEBUG
236
237 #ifdef LWP_DEBUG
238 int lwp_debug = 0;
239 #define DPRINTF(x) if (lwp_debug) printf x
240 #else
241 #define DPRINTF(x)
242 #endif
243
244 void
245 lwpinit(void)
246 {
247
248 lwp_specificdata_domain = specificdata_domain_create();
249 KASSERT(lwp_specificdata_domain != NULL);
250 lwp_sys_init();
251 }
252
253 /*
254 * Set an suspended.
255 *
256 * Must be called with p_smutex held, and the LWP locked. Will unlock the
257 * LWP before return.
258 */
259 int
260 lwp_suspend(struct lwp *curl, struct lwp *t)
261 {
262 int error;
263
264 LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
265 LOCK_ASSERT(lwp_locked(t, NULL));
266
267 KASSERT(curl != t || curl->l_stat == LSONPROC);
268
269 /*
270 * If the current LWP has been told to exit, we must not suspend anyone
271 * else or deadlock could occur. We won't return to userspace.
272 */
273 if ((curl->l_stat & (L_WEXIT | L_WCORE)) != 0) {
274 lwp_unlock(t);
275 return (EDEADLK);
276 }
277
278 error = 0;
279
280 switch (t->l_stat) {
281 case LSRUN:
282 case LSONPROC:
283 t->l_flag |= L_WSUSPEND;
284 lwp_need_userret(t);
285 lwp_unlock(t);
286 break;
287
288 case LSSLEEP:
289 t->l_flag |= L_WSUSPEND;
290
291 /*
292 * Kick the LWP and try to get it to the kernel boundary
293 * so that it will release any locks that it holds.
294 * setrunnable() will release the lock.
295 */
296 if ((t->l_flag & L_SINTR) != 0)
297 setrunnable(t);
298 else
299 lwp_unlock(t);
300 break;
301
302 case LSSUSPENDED:
303 lwp_unlock(t);
304 break;
305
306 case LSSTOP:
307 t->l_flag |= L_WSUSPEND;
308 setrunnable(t);
309 break;
310
311 case LSIDL:
312 case LSZOMB:
313 error = EINTR; /* It's what Solaris does..... */
314 lwp_unlock(t);
315 break;
316 }
317
318 /*
319 * XXXLWP Wait for:
320 *
321 * o process exiting
322 * o target LWP suspended
323 * o target LWP not suspended and L_WSUSPEND clear
324 * o target LWP exited
325 */
326
327 return (error);
328 }
329
330 /*
331 * Restart a suspended LWP.
332 *
333 * Must be called with p_smutex held, and the LWP locked. Will unlock the
334 * LWP before return.
335 */
336 void
337 lwp_continue(struct lwp *l)
338 {
339
340 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
341 LOCK_ASSERT(lwp_locked(l, NULL));
342
343 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
344 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
345 l->l_wchan));
346
347 /* If rebooting or not suspended, then just bail out. */
348 if ((l->l_flag & L_WREBOOT) != 0) {
349 lwp_unlock(l);
350 return;
351 }
352
353 l->l_flag &= ~L_WSUSPEND;
354
355 if (l->l_stat != LSSUSPENDED) {
356 lwp_unlock(l);
357 return;
358 }
359
360 /* setrunnable() will release the lock. */
361 setrunnable(l);
362 }
363
364 /*
365 * Wait for an LWP within the current process to exit. If 'lid' is
366 * non-zero, we are waiting for a specific LWP.
367 *
368 * Must be called with p->p_smutex held.
369 */
370 int
371 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
372 {
373 struct proc *p = l->l_proc;
374 struct lwp *l2;
375 int nfound, error;
376
377 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
378 p->p_pid, l->l_lid, lid));
379
380 LOCK_ASSERT(mutex_owned(&p->p_smutex));
381
382 /*
383 * We try to check for deadlock:
384 *
385 * 1) If all other LWPs are waiting for exits or suspended.
386 * 2) If we are trying to wait on ourself.
387 *
388 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
389 * waits, not any-LWP waits) and detect that sort of deadlock, but
390 * we don't have a good place to store the lwp that is being waited
391 * for. wchan is already filled with &p->p_nlwps, and putting the
392 * lwp address in there for deadlock tracing would require exiting
393 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
394 * get threads sleeping on any LWP exiting.
395 */
396 if (lid == l->l_lid)
397 return EDEADLK;
398
399 p->p_nlwpwait++;
400
401 for (;;) {
402 /*
403 * Avoid a race between exit1() and sigexit(): if the
404 * process is dumping core, then we need to bail out: call
405 * into lwp_userret() where we will be suspended until the
406 * deed is done.
407 */
408 if ((p->p_sflag & PS_WCORE) != 0) {
409 mutex_exit(&p->p_smutex);
410 lwp_userret(l);
411 #ifdef DIAGNOSTIC
412 panic("lwp_wait1");
413 #endif
414 /* NOTREACHED */
415 }
416
417 /*
418 * First off, drain any detached LWP that is waiting to be
419 * reaped.
420 */
421 while ((l2 = p->p_zomblwp) != NULL) {
422 p->p_zomblwp = NULL;
423 lwp_free(l2, 0, 0); /* releases proc mutex */
424 mutex_enter(&p->p_smutex);
425 }
426
427 /*
428 * Now look for an LWP to collect. If the whole process is
429 * exiting, count detached LWPs as eligible to be collected,
430 * but don't drain them here.
431 */
432 nfound = 0;
433 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
434 if (l2 == l || (lid != 0 && l2->l_lid != lid))
435 continue;
436 if ((l2->l_prflag & LPR_DETACHED) != 0) {
437 nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
438 continue;
439 }
440 nfound++;
441
442 /* No need to lock the LWP in order to see LSZOMB. */
443 if (l2->l_stat != LSZOMB)
444 continue;
445
446 if (departed)
447 *departed = l2->l_lid;
448 lwp_free(l2, 0, 0);
449 mutex_enter(&p->p_smutex);
450 p->p_nlwpwait--;
451 return 0;
452 }
453
454 if (nfound == 0) {
455 error = ESRCH;
456 break;
457 }
458 if ((flags & LWPWAIT_EXITCONTROL) != 0) {
459 KASSERT(p->p_nlwps > 1);
460 cv_wait(&p->p_lwpcv, &p->p_smutex);
461 continue;
462 }
463 if ((p->p_sflag & PS_WEXIT) != 0 ||
464 p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
465 error = EDEADLK;
466 break;
467 }
468 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
469 break;
470 }
471
472 p->p_nlwpwait--;
473 return error;
474 }
475
476 /*
477 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
478 * The new LWP is created in state LSIDL and must be set running,
479 * suspended, or stopped by the caller.
480 */
481 int
482 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, boolean_t inmem,
483 int flags, void *stack, size_t stacksize,
484 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
485 {
486 struct lwp *l2, *isfree;
487 turnstile_t *ts;
488
489 /*
490 * First off, reap any detached LWP waiting to be collected.
491 * We can re-use its LWP structure and turnstile.
492 */
493 isfree = NULL;
494 if (p2->p_zomblwp != NULL) {
495 mutex_enter(&p2->p_smutex);
496 if ((isfree = p2->p_zomblwp) != NULL) {
497 p2->p_zomblwp = NULL;
498 lwp_free(isfree, 1, 0); /* releases proc mutex */
499 } else
500 mutex_exit(&p2->p_smutex);
501 }
502 if (isfree == NULL) {
503 l2 = pool_get(&lwp_pool, PR_WAITOK);
504 memset(l2, 0, sizeof(*l2));
505 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
506 } else {
507 l2 = isfree;
508 ts = l2->l_ts;
509 memset(l2, 0, sizeof(*l2));
510 l2->l_ts = ts;
511 }
512
513 l2->l_stat = LSIDL;
514 l2->l_forw = l2->l_back = NULL;
515 l2->l_proc = p2;
516 l2->l_refcnt = 1;
517 l2->l_priority = l1->l_priority;
518 l2->l_usrpri = l1->l_usrpri;
519 l2->l_mutex = &sched_mutex;
520 l2->l_cpu = l1->l_cpu;
521 l2->l_flag = inmem ? L_INMEM : 0;
522 lwp_initspecific(l2);
523
524 if (p2->p_flag & P_SYSTEM) {
525 /*
526 * Mark it as a system process and not a candidate for
527 * swapping.
528 */
529 l2->l_flag |= L_SYSTEM | L_INMEM;
530 }
531
532 lwp_update_creds(l2);
533 callout_init(&l2->l_tsleep_ch);
534 l2->l_syncobj = &sched_syncobj;
535
536 if (rnewlwpp != NULL)
537 *rnewlwpp = l2;
538
539 l2->l_addr = UAREA_TO_USER(uaddr);
540 uvm_lwp_fork(l1, l2, stack, stacksize, func,
541 (arg != NULL) ? arg : l2);
542
543 mutex_enter(&p2->p_smutex);
544
545 if ((flags & LWP_DETACHED) != 0) {
546 l2->l_prflag = LPR_DETACHED;
547 p2->p_ndlwps++;
548 } else
549 l2->l_prflag = 0;
550
551 if ((p2->p_sflag & PS_SA) == 0) {
552 l2->l_sigmask = &l2->l_sigstore.ss_mask;
553 l2->l_sigstk = &l2->l_sigstore.ss_stk;
554 *l2->l_sigmask = *l1->l_sigmask;
555 } else {
556 l2->l_sigmask = &p2->p_sigstore.ss_mask;
557 l2->l_sigstk = &p2->p_sigstore.ss_stk;
558 }
559
560 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
561 sigemptyset(&l2->l_sigpend.sp_set);
562
563 l2->l_lid = ++p2->p_nlwpid;
564 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
565 p2->p_nlwps++;
566
567 mutex_exit(&p2->p_smutex);
568
569 mutex_enter(&proclist_mutex);
570 LIST_INSERT_HEAD(&alllwp, l2, l_list);
571 mutex_exit(&proclist_mutex);
572
573 if (p2->p_emul->e_lwp_fork)
574 (*p2->p_emul->e_lwp_fork)(l1, l2);
575
576 return (0);
577 }
578
579 /*
580 * Quit the process. This will call cpu_exit, which will call cpu_switch,
581 * so this can only be used meaningfully if you're willing to switch away.
582 * Calling with l!=curlwp would be weird.
583 */
584 void
585 lwp_exit(struct lwp *l)
586 {
587 struct proc *p = l->l_proc;
588 struct lwp *l2;
589
590 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
591 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
592
593 /*
594 * Verify that we hold no locks other than the kernel lock.
595 */
596 #ifdef MULTIPROCESSOR
597 LOCKDEBUG_BARRIER(&kernel_lock, 0);
598 #else
599 LOCKDEBUG_BARRIER(NULL, 0);
600 #endif
601
602 /*
603 * If we are the last live LWP in a process, we need to exit the
604 * entire process. We do so with an exit status of zero, because
605 * it's a "controlled" exit, and because that's what Solaris does.
606 *
607 * We are not quite a zombie yet, but for accounting purposes we
608 * must increment the count of zombies here.
609 *
610 * Note: the last LWP's specificdata will be deleted here.
611 */
612 mutex_enter(&p->p_smutex);
613
614 if (p->p_nlwps - p->p_nzlwps == 1) {
615 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
616 p->p_pid, l->l_lid));
617 exit1(l, 0);
618 /* NOTREACHED */
619 }
620 p->p_nzlwps++;
621 mutex_exit(&p->p_smutex);
622
623 if (p->p_emul->e_lwp_exit)
624 (*p->p_emul->e_lwp_exit)(l);
625
626 /* Delete the specificdata while it's still safe to sleep. */
627 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
628
629 /*
630 * Release our cached credentials.
631 */
632 kauth_cred_free(l->l_cred);
633
634 /*
635 * Remove the LWP from the global list.
636 */
637 mutex_enter(&proclist_mutex);
638 LIST_REMOVE(l, l_list);
639 mutex_exit(&proclist_mutex);
640
641 /*
642 * Get rid of all references to the LWP that others (e.g. procfs)
643 * may have, and mark the LWP as a zombie. If the LWP is detached,
644 * mark it waiting for collection in the proc structure. Note that
645 * before we can do that, we need to free any other dead, deatched
646 * LWP waiting to meet its maker.
647 *
648 * XXXSMP disable preemption.
649 */
650 mutex_enter(&p->p_smutex);
651 lwp_drainrefs(l);
652
653 if ((p->p_sflag & PS_SA) == 0) {
654 /*
655 * Clear any private, pending signals. XXXLWP Small
656 * chance that we may defer process-wide signals by
657 * taking L_PENDSIG with us to the grave.
658 */
659 sigclear(&l->l_sigpend, NULL);
660 }
661
662 if ((l->l_prflag & LPR_DETACHED) != 0) {
663 while ((l2 = p->p_zomblwp) != NULL) {
664 p->p_zomblwp = NULL;
665 lwp_free(l2, 0, 0); /* releases proc mutex */
666 mutex_enter(&p->p_smutex);
667 }
668 p->p_zomblwp = l;
669 }
670 lwp_lock(l);
671 l->l_stat = LSZOMB;
672 lwp_unlock(l);
673 p->p_nrlwps--;
674 mutex_exit(&p->p_smutex);
675
676 /*
677 * We can no longer block. At this point, lwp_free() may already
678 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
679 *
680 * Free MD LWP resources.
681 */
682 #ifndef __NO_CPU_LWP_FREE
683 cpu_lwp_free(l, 0);
684 #endif
685 pmap_deactivate(l);
686
687 /*
688 * Release the kernel lock, signal another LWP to collect us,
689 * and switch away into oblivion.
690 */
691 #ifdef notyet
692 /* XXXSMP hold in lwp_userret() */
693 KERNEL_UNLOCK_LAST(l);
694 #else
695 KERNEL_UNLOCK_ALL(l, NULL);
696 #endif
697
698 cv_broadcast(&p->p_lwpcv);
699 cpu_exit(l);
700 }
701
702 /*
703 * We are called from cpu_exit() once it is safe to schedule the dead LWP's
704 * resources to be freed (i.e., once we've switched to the idle PCB for the
705 * current CPU).
706 */
707 void
708 lwp_exit2(struct lwp *l)
709 {
710 /* XXXSMP re-enable preemption */
711 }
712
713 /*
714 * Free a dead LWP's remaining resources.
715 *
716 * XXXLWP limits.
717 */
718 void
719 lwp_free(struct lwp *l, int recycle, int last)
720 {
721 struct proc *p = l->l_proc;
722
723 /*
724 * If this was not the last LWP in the process, then adjust
725 * counters and unlock.
726 */
727 if (!last) {
728 /*
729 * Add the LWP's run time to the process' base value.
730 * This needs to co-incide with coming off p_lwps.
731 */
732 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
733
734 LIST_REMOVE(l, l_sibling);
735 p->p_nlwps--;
736 p->p_nzlwps--;
737 if ((l->l_prflag & LPR_DETACHED) != 0)
738 p->p_ndlwps--;
739 mutex_exit(&p->p_smutex);
740
741 #ifdef MULTIPROCESSOR
742 /*
743 * In the unlikely event that the LWP is still on the CPU,
744 * then spin until it has switched away. We need to release
745 * all locks to avoid deadlock against interrupt handlers on
746 * the target CPU.
747 */
748 if (l->l_cpu->ci_curlwp == l) {
749 int count;
750 KERNEL_UNLOCK_ALL(l, &count);
751 while (l->l_cpu->ci_curlwp == l)
752 SPINLOCK_BACKOFF_HOOK;
753 KERNEL_LOCK(count, l);
754 }
755 #endif
756 }
757
758 /*
759 * Free the LWP's turnstile and the LWP structure itself unless the
760 * caller wants to recycle them.
761 *
762 * We can't return turnstile0 to the pool (it didn't come from it),
763 * so if it comes up just drop it quietly and move on.
764 *
765 * We don't recycle the VM resources at this time.
766 */
767 if (!recycle && l->l_ts != &turnstile0)
768 pool_cache_put(&turnstile_cache, l->l_ts);
769 #ifndef __NO_CPU_LWP_FREE
770 cpu_lwp_free2(l);
771 #endif
772 uvm_lwp_exit(l);
773 if (!recycle)
774 pool_put(&lwp_pool, l);
775 }
776
777 /*
778 * Pick a LWP to represent the process for those operations which
779 * want information about a "process" that is actually associated
780 * with a LWP.
781 *
782 * If 'locking' is false, no locking or lock checks are performed.
783 * This is intended for use by DDB.
784 *
785 * We don't bother locking the LWP here, since code that uses this
786 * interface is broken by design and an exact match is not required.
787 */
788 struct lwp *
789 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
790 {
791 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
792 struct lwp *signalled;
793 int cnt;
794
795 if (locking) {
796 LOCK_ASSERT(mutex_owned(&p->p_smutex));
797 }
798
799 /* Trivial case: only one LWP */
800 if (p->p_nlwps == 1) {
801 l = LIST_FIRST(&p->p_lwps);
802 if (nrlwps)
803 *nrlwps = (l->l_stat == LSONPROC || LSRUN);
804 return l;
805 }
806
807 cnt = 0;
808 switch (p->p_stat) {
809 case SSTOP:
810 case SACTIVE:
811 /* Pick the most live LWP */
812 onproc = running = sleeping = stopped = suspended = NULL;
813 signalled = NULL;
814 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
815 if (l->l_lid == p->p_sigctx.ps_lwp)
816 signalled = l;
817 switch (l->l_stat) {
818 case LSONPROC:
819 onproc = l;
820 cnt++;
821 break;
822 case LSRUN:
823 running = l;
824 cnt++;
825 break;
826 case LSSLEEP:
827 sleeping = l;
828 break;
829 case LSSTOP:
830 stopped = l;
831 break;
832 case LSSUSPENDED:
833 suspended = l;
834 break;
835 }
836 }
837 if (nrlwps)
838 *nrlwps = cnt;
839 if (signalled)
840 l = signalled;
841 else if (onproc)
842 l = onproc;
843 else if (running)
844 l = running;
845 else if (sleeping)
846 l = sleeping;
847 else if (stopped)
848 l = stopped;
849 else if (suspended)
850 l = suspended;
851 else
852 break;
853 return l;
854 if (nrlwps)
855 *nrlwps = 0;
856 l = LIST_FIRST(&p->p_lwps);
857 return l;
858 #ifdef DIAGNOSTIC
859 case SIDL:
860 case SZOMB:
861 case SDYING:
862 case SDEAD:
863 if (locking)
864 mutex_exit(&p->p_smutex);
865 /* We have more than one LWP and we're in SIDL?
866 * How'd that happen?
867 */
868 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
869 p->p_pid, p->p_comm, p->p_stat);
870 break;
871 default:
872 if (locking)
873 mutex_exit(&p->p_smutex);
874 panic("Process %d (%s) in unknown state %d",
875 p->p_pid, p->p_comm, p->p_stat);
876 #endif
877 }
878
879 if (locking)
880 mutex_exit(&p->p_smutex);
881 panic("proc_representative_lwp: couldn't find a lwp for process"
882 " %d (%s)", p->p_pid, p->p_comm);
883 /* NOTREACHED */
884 return NULL;
885 }
886
887 /*
888 * Look up a live LWP within the speicifed process, and return it locked.
889 *
890 * Must be called with p->p_smutex held.
891 */
892 struct lwp *
893 lwp_find(struct proc *p, int id)
894 {
895 struct lwp *l;
896
897 LOCK_ASSERT(mutex_owned(&p->p_smutex));
898
899 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
900 if (l->l_lid == id)
901 break;
902 }
903
904 /*
905 * No need to lock - all of these conditions will
906 * be visible with the process level mutex held.
907 */
908 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
909 l = NULL;
910
911 return l;
912 }
913
914 /*
915 * Update an LWP's cached credentials to mirror the process' master copy.
916 *
917 * This happens early in the syscall path, on user trap, and on LWP
918 * creation. A long-running LWP can also voluntarily choose to update
919 * it's credentials by calling this routine. This may be called from
920 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
921 */
922 void
923 lwp_update_creds(struct lwp *l)
924 {
925 kauth_cred_t oc;
926 struct proc *p;
927
928 p = l->l_proc;
929 oc = l->l_cred;
930
931 mutex_enter(&p->p_mutex);
932 kauth_cred_hold(p->p_cred);
933 l->l_cred = p->p_cred;
934 mutex_exit(&p->p_mutex);
935 if (oc != NULL) {
936 KERNEL_LOCK(1, l); /* XXXSMP */
937 kauth_cred_free(oc);
938 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
939 }
940 }
941
942 /*
943 * Verify that an LWP is locked, and optionally verify that the lock matches
944 * one we specify.
945 */
946 int
947 lwp_locked(struct lwp *l, kmutex_t *mtx)
948 {
949 kmutex_t *cur = l->l_mutex;
950
951 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
952 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
953 #else
954 return mutex_owned(cur);
955 #endif
956 }
957
958 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
959 /*
960 * Lock an LWP.
961 */
962 void
963 lwp_lock_retry(struct lwp *l, kmutex_t *old)
964 {
965
966 /*
967 * XXXgcc ignoring kmutex_t * volatile on i386
968 *
969 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
970 */
971 #if 1
972 while (l->l_mutex != old) {
973 #else
974 for (;;) {
975 #endif
976 smutex_exit(old);
977 old = l->l_mutex;
978 smutex_enter(old);
979
980 /*
981 * mutex_enter() will have posted a read barrier. Re-test
982 * l->l_mutex. If it has changed, we need to try again.
983 */
984 #if 1
985 }
986 #else
987 } while (__predict_false(l->l_mutex != old));
988 #endif
989 }
990 #endif
991
992 /*
993 * Lend a new mutex to an LWP. The old mutex must be held.
994 */
995 void
996 lwp_setlock(struct lwp *l, kmutex_t *new)
997 {
998
999 LOCK_ASSERT(mutex_owned(l->l_mutex));
1000
1001 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1002 mb_write();
1003 l->l_mutex = new;
1004 #else
1005 (void)new;
1006 #endif
1007 }
1008
1009 /*
1010 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1011 * must be held.
1012 */
1013 void
1014 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1015 {
1016 kmutex_t *old;
1017
1018 LOCK_ASSERT(mutex_owned(l->l_mutex));
1019
1020 old = l->l_mutex;
1021 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1022 mb_write();
1023 l->l_mutex = new;
1024 #else
1025 (void)new;
1026 #endif
1027 smutex_exit(old);
1028 }
1029
1030 /*
1031 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1032 * locked.
1033 */
1034 void
1035 lwp_relock(struct lwp *l, kmutex_t *new)
1036 {
1037 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1038 kmutex_t *old;
1039 #endif
1040
1041 LOCK_ASSERT(mutex_owned(l->l_mutex));
1042
1043 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1044 old = l->l_mutex;
1045 if (old != new) {
1046 smutex_enter(new);
1047 l->l_mutex = new;
1048 smutex_exit(old);
1049 }
1050 #else
1051 (void)new;
1052 #endif
1053 }
1054
1055 /*
1056 * Handle exceptions for mi_userret(). Called if a member of L_USERRET is
1057 * set.
1058 */
1059 void
1060 lwp_userret(struct lwp *l)
1061 {
1062 struct proc *p;
1063 int sig;
1064
1065 p = l->l_proc;
1066
1067 /*
1068 * It should be safe to do this read unlocked on a multiprocessor
1069 * system..
1070 */
1071 while ((l->l_flag & L_USERRET) != 0) {
1072 /*
1073 * Process pending signals first, unless the process
1074 * is dumping core, where we will instead enter the
1075 * L_WSUSPEND case below.
1076 */
1077 if ((l->l_flag & (L_PENDSIG | L_WCORE)) == L_PENDSIG) {
1078 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1079 mutex_enter(&p->p_smutex);
1080 while ((sig = issignal(l)) != 0)
1081 postsig(sig);
1082 mutex_exit(&p->p_smutex);
1083 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1084 }
1085
1086 /*
1087 * Core-dump or suspend pending.
1088 *
1089 * In case of core dump, suspend ourselves, so that the
1090 * kernel stack and therefore the userland registers saved
1091 * in the trapframe are around for coredump() to write them
1092 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1093 * will write the core file out once all other LWPs are
1094 * suspended.
1095 */
1096 if ((l->l_flag & L_WSUSPEND) != 0) {
1097 mutex_enter(&p->p_smutex);
1098 p->p_nrlwps--;
1099 cv_broadcast(&p->p_lwpcv);
1100 lwp_lock(l);
1101 l->l_stat = LSSUSPENDED;
1102 mutex_exit(&p->p_smutex);
1103 mi_switch(l, NULL);
1104 }
1105
1106 /* Process is exiting. */
1107 if ((l->l_flag & L_WEXIT) != 0) {
1108 KERNEL_LOCK(1, l);
1109 lwp_exit(l);
1110 KASSERT(0);
1111 /* NOTREACHED */
1112 }
1113 }
1114
1115 /*
1116 * Timer events are handled specially. We only try once to deliver
1117 * pending timer upcalls; if if fails, we can try again on the next
1118 * loop around. If we need to re-enter lwp_userret(), MD code will
1119 * bounce us back here through the trap path after we return.
1120 */
1121 if (p->p_timerpend)
1122 timerupcall(l);
1123 }
1124
1125 /*
1126 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1127 */
1128 void
1129 lwp_need_userret(struct lwp *l)
1130 {
1131 LOCK_ASSERT(lwp_locked(l, NULL));
1132
1133 /*
1134 * Since the tests in lwp_userret() are done unlocked, make sure
1135 * that the condition will be seen before forcing the LWP to enter
1136 * kernel mode.
1137 */
1138 mb_write();
1139
1140 lwp_changepri(l, PUSER);
1141 cpu_signotify(l);
1142 }
1143
1144 /*
1145 * Add one reference to an LWP. This will prevent the LWP from
1146 * exiting, thus keep the lwp structure and PCB around to inspect.
1147 */
1148 void
1149 lwp_addref(struct lwp *l)
1150 {
1151
1152 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
1153 KASSERT(l->l_stat != LSZOMB);
1154 KASSERT(l->l_refcnt != 0);
1155
1156 l->l_refcnt++;
1157 }
1158
1159 /*
1160 * Remove one reference to an LWP. If this is the last reference,
1161 * then we must finalize the LWP's death.
1162 */
1163 void
1164 lwp_delref(struct lwp *l)
1165 {
1166 struct proc *p = l->l_proc;
1167 u_int refcnt;
1168
1169 mutex_enter(&p->p_smutex);
1170 refcnt = --l->l_refcnt;
1171 mutex_exit(&p->p_smutex);
1172
1173 if (refcnt == 0)
1174 cv_broadcast(&p->p_refcv);
1175 }
1176
1177 /*
1178 * Drain all references to the current LWP.
1179 */
1180 void
1181 lwp_drainrefs(struct lwp *l)
1182 {
1183 struct proc *p = l->l_proc;
1184
1185 LOCK_ASSERT(mutex_owned(&p->p_smutex));
1186 KASSERT(l->l_refcnt != 0);
1187
1188 l->l_refcnt--;
1189 while (l->l_refcnt != 0)
1190 cv_wait(&p->p_refcv, &p->p_smutex);
1191 }
1192
1193 /*
1194 * lwp_specific_key_create --
1195 * Create a key for subsystem lwp-specific data.
1196 */
1197 int
1198 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1199 {
1200
1201 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1202 }
1203
1204 /*
1205 * lwp_specific_key_delete --
1206 * Delete a key for subsystem lwp-specific data.
1207 */
1208 void
1209 lwp_specific_key_delete(specificdata_key_t key)
1210 {
1211
1212 specificdata_key_delete(lwp_specificdata_domain, key);
1213 }
1214
1215 /*
1216 * lwp_initspecific --
1217 * Initialize an LWP's specificdata container.
1218 */
1219 void
1220 lwp_initspecific(struct lwp *l)
1221 {
1222 int error;
1223
1224 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1225 KASSERT(error == 0);
1226 }
1227
1228 /*
1229 * lwp_finispecific --
1230 * Finalize an LWP's specificdata container.
1231 */
1232 void
1233 lwp_finispecific(struct lwp *l)
1234 {
1235
1236 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1237 }
1238
1239 /*
1240 * lwp_getspecific --
1241 * Return lwp-specific data corresponding to the specified key.
1242 *
1243 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1244 * only its OWN SPECIFIC DATA. If it is necessary to access another
1245 * LWP's specifc data, care must be taken to ensure that doing so
1246 * would not cause internal data structure inconsistency (i.e. caller
1247 * can guarantee that the target LWP is not inside an lwp_getspecific()
1248 * or lwp_setspecific() call).
1249 */
1250 void *
1251 lwp_getspecific(specificdata_key_t key)
1252 {
1253
1254 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1255 &curlwp->l_specdataref, key));
1256 }
1257
1258 void *
1259 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1260 {
1261
1262 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1263 &l->l_specdataref, key));
1264 }
1265
1266 /*
1267 * lwp_setspecific --
1268 * Set lwp-specific data corresponding to the specified key.
1269 */
1270 void
1271 lwp_setspecific(specificdata_key_t key, void *data)
1272 {
1273
1274 specificdata_setspecific(lwp_specificdata_domain,
1275 &curlwp->l_specdataref, key, data);
1276 }
1277