kern_lwp.c revision 1.40.2.9 1 /* $NetBSD: kern_lwp.c,v 1.40.2.9 2007/01/16 01:26:20 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit (or thread) of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp".
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing in kernel simultaneously.
52 *
53 * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 * threads are distinct processes (system processes) with no user space
55 * component, which themselves may contain one or more LWPs.
56 *
57 * Execution states
58 *
59 * At any given time, an LWP has overall state that is described by
60 * lwp::l_stat. The states are broken into two sets below. The first
61 * set is guaranteed to represent the absolute, current state of the
62 * LWP:
63 *
64 * LSONPROC
65 *
66 * On processor: the LWP is executing on a CPU, either in the
67 * kernel or in user space.
68 *
69 * LSRUN
70 *
71 * Runnable: the LWP is parked on a run queue, and may soon be
72 * chosen to run by a idle processor, or by a processor that
73 * has been asked to preempt a currently runnning but lower
74 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 * then the LWP is not on a run queue, but may be soon.
76 *
77 * LSIDL
78 *
79 * Idle: the LWP has been created but has not yet executed.
80 * Whoever created the new LWP can be expected to set it to
81 * another state shortly.
82 *
83 * LSSUSPENDED:
84 *
85 * Suspended: the LWP has had its execution suspended by
86 * another LWP in the same process using the _lwp_suspend()
87 * system call. User-level LWPs also enter the suspended
88 * state when the system is shutting down.
89 *
90 * The second set represent a "statement of intent" on behalf of the
91 * LWP. The LWP may in fact be executing on a processor, may be
92 * sleeping, idle, or on a run queue. It is expected to take the
93 * necessary action to stop executing or become "running" again within
94 * a short timeframe.
95 *
96 * LSZOMB:
97 *
98 * Dead: the LWP has released most of its resources and is
99 * about to switch away into oblivion. When it switches away,
100 * its few remaining resources will be collected.
101 *
102 * LSSLEEP:
103 *
104 * Sleeping: the LWP has entered itself onto a sleep queue, and
105 * will switch away shortly to allow other LWPs to run on the
106 * CPU.
107 *
108 * LSSTOP:
109 *
110 * Stopped: the LWP has been stopped as a result of a job
111 * control signal, or as a result of the ptrace() interface.
112 * Stopped LWPs may run briefly within the kernel to handle
113 * signals that they receive, but will not return to user space
114 * until their process' state is changed away from stopped.
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP and LSSUSPENDED states may only be set
122 * when returning to user space in userret(), or when sleeping
123 * interruptably. Before setting those states, we try to ensure
124 * that the LWPs will release all kernel locks that they hold,
125 * and at a minimum try to ensure that the LWP can be set runnable
126 * again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Locking
145 *
146 * The majority of fields in 'struct lwp' are covered by a single,
147 * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 * each field are documented in sys/lwp.h.
149 *
150 * State transitions must be made with the LWP's general lock held. In
151 * a multiprocessor kernel, state transitions may cause the LWP's lock
152 * pointer to change. On uniprocessor kernels, most scheduler and
153 * synchronisation objects such as sleep queues and LWPs are protected
154 * by only one mutex (sched_mutex). In this case, LWPs' lock pointers
155 * will never change and will always reference sched_mutex.
156 *
157 * Manipulation of the general lock is not performed directly, but
158 * through calls to lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSIDL, LSZOMB
163 *
164 * Always covered by sched_mutex.
165 *
166 * LSONPROC, LSRUN:
167 *
168 * Always covered by sched_mutex, which protects the run queues
169 * and other miscellaneous items. If the scheduler is changed
170 * to use per-CPU run queues, this may become a per-CPU mutex.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a mutex associated with the sleep queue that the
175 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue mutex. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the mutex is sched_mutex.
183 *
184 * The lock order is as follows:
185 *
186 * sleepq_t::sq_mutex -> sched_mutex
187 *
188 * Each process has an scheduler state mutex (proc::p_smutex), and a
189 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
190 * so on. When an LWP is to be entered into or removed from one of the
191 * following states, p_mutex must be held and the process wide counters
192 * adjusted:
193 *
194 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
195 *
196 * Note that an LWP is considered running or likely to run soon if in
197 * one of the following states. This affects the value of p_nrlwps:
198 *
199 * LSRUN, LSONPROC, LSSLEEP
200 *
201 * p_smutex does not need to be held when transitioning among these
202 * three states.
203 */
204
205 #include <sys/cdefs.h>
206 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.40.2.9 2007/01/16 01:26:20 ad Exp $");
207
208 #include "opt_multiprocessor.h"
209 #include "opt_lockdebug.h"
210
211 #define _LWP_API_PRIVATE
212
213 #include <sys/param.h>
214 #include <sys/systm.h>
215 #include <sys/pool.h>
216 #include <sys/proc.h>
217 #include <sys/sa.h>
218 #include <sys/syscallargs.h>
219 #include <sys/kauth.h>
220 #include <sys/sleepq.h>
221 #include <sys/lockdebug.h>
222 #include <sys/kmem.h>
223
224 #include <uvm/uvm_extern.h>
225
226 struct lwplist alllwp;
227
228 POOL_INIT(lwp_pool, sizeof(struct lwp), 16, 0, 0, "lwppl",
229 &pool_allocator_nointr);
230 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
231 &pool_allocator_nointr);
232
233 static specificdata_domain_t lwp_specificdata_domain;
234
235 #define LWP_DEBUG
236
237 #ifdef LWP_DEBUG
238 int lwp_debug = 0;
239 #define DPRINTF(x) if (lwp_debug) printf x
240 #else
241 #define DPRINTF(x)
242 #endif
243
244 void
245 lwpinit(void)
246 {
247
248 lwp_specificdata_domain = specificdata_domain_create();
249 KASSERT(lwp_specificdata_domain != NULL);
250 lwp_sys_init();
251 }
252
253 /*
254 * Set an suspended.
255 *
256 * Must be called with p_smutex held, and the LWP locked. Will unlock the
257 * LWP before return.
258 */
259 int
260 lwp_suspend(struct lwp *curl, struct lwp *t)
261 {
262 int error;
263
264 LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
265 LOCK_ASSERT(lwp_locked(t, NULL));
266
267 KASSERT(curl != t || curl->l_stat == LSONPROC);
268
269 /*
270 * If the current LWP has been told to exit, we must not suspend anyone
271 * else or deadlock could occur. We won't return to userspace.
272 */
273 if ((curl->l_stat & (L_WEXIT | L_WCORE)) != 0) {
274 lwp_unlock(t);
275 return (EDEADLK);
276 }
277
278 error = 0;
279
280 switch (t->l_stat) {
281 case LSRUN:
282 case LSONPROC:
283 t->l_flag |= L_WSUSPEND;
284 lwp_need_userret(t);
285 lwp_unlock(t);
286 break;
287
288 case LSSLEEP:
289 t->l_flag |= L_WSUSPEND;
290
291 /*
292 * Kick the LWP and try to get it to the kernel boundary
293 * so that it will release any locks that it holds.
294 * setrunnable() will release the lock.
295 */
296 if ((t->l_flag & L_SINTR) != 0)
297 setrunnable(t);
298 else
299 lwp_unlock(t);
300 break;
301
302 case LSSUSPENDED:
303 lwp_unlock(t);
304 break;
305
306 case LSSTOP:
307 t->l_flag |= L_WSUSPEND;
308 setrunnable(t);
309 break;
310
311 case LSIDL:
312 case LSZOMB:
313 error = EINTR; /* It's what Solaris does..... */
314 lwp_unlock(t);
315 break;
316 }
317
318 /*
319 * XXXLWP Wait for:
320 *
321 * o process exiting
322 * o target LWP suspended
323 * o target LWP not suspended and L_WSUSPEND clear
324 * o target LWP exited
325 */
326
327 return (error);
328 }
329
330 /*
331 * Restart a suspended LWP.
332 *
333 * Must be called with p_smutex held, and the LWP locked. Will unlock the
334 * LWP before return.
335 */
336 void
337 lwp_continue(struct lwp *l)
338 {
339
340 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
341 LOCK_ASSERT(lwp_locked(l, NULL));
342
343 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
344 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
345 l->l_wchan));
346
347 /* If rebooting or not suspended, then just bail out. */
348 if ((l->l_flag & L_WREBOOT) != 0) {
349 lwp_unlock(l);
350 return;
351 }
352
353 l->l_flag &= ~L_WSUSPEND;
354
355 if (l->l_stat != LSSUSPENDED) {
356 lwp_unlock(l);
357 return;
358 }
359
360 /* setrunnable() will release the lock. */
361 setrunnable(l);
362 }
363
364 /*
365 * Wait for an LWP within the current process to exit. If 'lid' is
366 * non-zero, we are waiting for a specific LWP.
367 *
368 * Must be called with p->p_smutex held.
369 */
370 int
371 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
372 {
373 struct proc *p = l->l_proc;
374 struct lwp *l2;
375 int nfound, error;
376
377 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
378 p->p_pid, l->l_lid, lid));
379
380 LOCK_ASSERT(mutex_owned(&p->p_smutex));
381
382 /*
383 * We try to check for deadlock:
384 *
385 * 1) If all other LWPs are waiting for exits or suspended.
386 * 2) If we are trying to wait on ourself.
387 *
388 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
389 * waits, not any-LWP waits) and detect that sort of deadlock, but
390 * we don't have a good place to store the lwp that is being waited
391 * for. wchan is already filled with &p->p_nlwps, and putting the
392 * lwp address in there for deadlock tracing would require exiting
393 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
394 * get threads sleeping on any LWP exiting.
395 */
396 if (lid == l->l_lid)
397 return EDEADLK;
398
399 p->p_nlwpwait++;
400
401 for (;;) {
402 /*
403 * Avoid a race between exit1() and sigexit(): if the
404 * process is dumping core, then we need to bail out: call
405 * into lwp_userret() where we will be suspended until the
406 * deed is done.
407 */
408 if ((p->p_sflag & PS_WCORE) != 0) {
409 mutex_exit(&p->p_smutex);
410 lwp_userret(l);
411 #ifdef DIAGNOSTIC
412 panic("lwp_wait1");
413 #endif
414 /* NOTREACHED */
415 }
416
417 /*
418 * First off, drain any detached LWP that is waiting to be
419 * reaped.
420 */
421 while ((l2 = p->p_zomblwp) != NULL) {
422 p->p_zomblwp = NULL;
423 lwp_free(l2, 0, 0); /* releases proc mutex */
424 mutex_enter(&p->p_smutex);
425 }
426
427 /*
428 * Now look for an LWP to collect. If the whole process is
429 * exiting, count detached LWPs as eligible to be collected,
430 * but don't drain them here.
431 */
432 nfound = 0;
433 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
434 if (l2 == l || (lid != 0 && l2->l_lid != lid))
435 continue;
436 if ((l2->l_prflag & LPR_DETACHED) != 0) {
437 nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
438 continue;
439 }
440 nfound++;
441
442 /* No need to lock the LWP in order to see LSZOMB. */
443 if (l2->l_stat != LSZOMB)
444 continue;
445
446 if (departed)
447 *departed = l2->l_lid;
448 lwp_free(l2, 0, 0);
449 mutex_enter(&p->p_smutex);
450 p->p_nlwpwait--;
451 return 0;
452 }
453
454 if (nfound == 0) {
455 error = ESRCH;
456 break;
457 }
458 if ((flags & LWPWAIT_EXITCONTROL) != 0) {
459 KASSERT(p->p_nlwps > 1);
460 cv_wait(&p->p_lwpcv, &p->p_smutex);
461 continue;
462 }
463 if ((p->p_sflag & PS_WEXIT) != 0 ||
464 p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
465 error = EDEADLK;
466 break;
467 }
468 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
469 break;
470 }
471
472 p->p_nlwpwait--;
473 return error;
474 }
475
476 /*
477 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
478 * The new LWP is created in state LSIDL and must be set running,
479 * suspended, or stopped by the caller.
480 */
481 int
482 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, boolean_t inmem,
483 int flags, void *stack, size_t stacksize,
484 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
485 {
486 struct lwp *l2, *isfree;
487 turnstile_t *ts;
488
489 /*
490 * First off, reap any detached LWP waiting to be collected.
491 * We can re-use its LWP structure and turnstile.
492 */
493 isfree = NULL;
494 if (p2->p_zomblwp != NULL) {
495 mutex_enter(&p2->p_smutex);
496 if ((isfree = p2->p_zomblwp) != NULL) {
497 p2->p_zomblwp = NULL;
498 lwp_free(isfree, 1, 0); /* releases proc mutex */
499 } else
500 mutex_exit(&p2->p_smutex);
501 }
502 if (isfree == NULL) {
503 l2 = pool_get(&lwp_pool, PR_WAITOK);
504 memset(l2, 0, sizeof(*l2));
505 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
506 } else {
507 l2 = isfree;
508 ts = l2->l_ts;
509 memset(l2, 0, sizeof(*l2));
510 l2->l_ts = ts;
511 }
512
513 l2->l_stat = LSIDL;
514 l2->l_proc = p2;
515 l2->l_refcnt = 1;
516 l2->l_priority = l1->l_priority;
517 l2->l_usrpri = l1->l_usrpri;
518 l2->l_mutex = &sched_mutex;
519 l2->l_cpu = l1->l_cpu;
520 l2->l_flag = inmem ? L_INMEM : 0;
521 lwp_initspecific(l2);
522
523 if (p2->p_flag & P_SYSTEM) {
524 /*
525 * Mark it as a system process and not a candidate for
526 * swapping.
527 */
528 l2->l_flag |= L_SYSTEM | L_INMEM;
529 }
530
531 lwp_update_creds(l2);
532 callout_init(&l2->l_tsleep_ch);
533 l2->l_syncobj = &sched_syncobj;
534
535 if (rnewlwpp != NULL)
536 *rnewlwpp = l2;
537
538 l2->l_addr = UAREA_TO_USER(uaddr);
539 uvm_lwp_fork(l1, l2, stack, stacksize, func,
540 (arg != NULL) ? arg : l2);
541
542 mutex_enter(&p2->p_smutex);
543
544 if ((flags & LWP_DETACHED) != 0) {
545 l2->l_prflag = LPR_DETACHED;
546 p2->p_ndlwps++;
547 } else
548 l2->l_prflag = 0;
549
550 if ((p2->p_sflag & PS_SA) == 0) {
551 l2->l_sigmask = &l2->l_sigstore.ss_mask;
552 l2->l_sigstk = &l2->l_sigstore.ss_stk;
553 *l2->l_sigmask = *l1->l_sigmask;
554 } else {
555 l2->l_sigmask = &p2->p_sigstore.ss_mask;
556 l2->l_sigstk = &p2->p_sigstore.ss_stk;
557 }
558
559 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
560 sigemptyset(&l2->l_sigpend.sp_set);
561
562 l2->l_lid = ++p2->p_nlwpid;
563 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
564 p2->p_nlwps++;
565
566 mutex_exit(&p2->p_smutex);
567
568 mutex_enter(&proclist_mutex);
569 LIST_INSERT_HEAD(&alllwp, l2, l_list);
570 mutex_exit(&proclist_mutex);
571
572 if (p2->p_emul->e_lwp_fork)
573 (*p2->p_emul->e_lwp_fork)(l1, l2);
574
575 return (0);
576 }
577
578 /*
579 * Quit the process. This will call cpu_exit, which will call cpu_switch,
580 * so this can only be used meaningfully if you're willing to switch away.
581 * Calling with l!=curlwp would be weird.
582 */
583 void
584 lwp_exit(struct lwp *l)
585 {
586 struct proc *p = l->l_proc;
587 struct lwp *l2;
588
589 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
590 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
591
592 /*
593 * Verify that we hold no locks other than the kernel lock.
594 */
595 #ifdef MULTIPROCESSOR
596 LOCKDEBUG_BARRIER(&kernel_lock, 0);
597 #else
598 LOCKDEBUG_BARRIER(NULL, 0);
599 #endif
600
601 /*
602 * If we are the last live LWP in a process, we need to exit the
603 * entire process. We do so with an exit status of zero, because
604 * it's a "controlled" exit, and because that's what Solaris does.
605 *
606 * We are not quite a zombie yet, but for accounting purposes we
607 * must increment the count of zombies here.
608 *
609 * Note: the last LWP's specificdata will be deleted here.
610 */
611 mutex_enter(&p->p_smutex);
612 if (p->p_nlwps - p->p_nzlwps == 1) {
613 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
614 p->p_pid, l->l_lid));
615 exit1(l, 0);
616 /* NOTREACHED */
617 }
618 p->p_nzlwps++;
619 mutex_exit(&p->p_smutex);
620
621 if (p->p_emul->e_lwp_exit)
622 (*p->p_emul->e_lwp_exit)(l);
623
624 /* Delete the specificdata while it's still safe to sleep. */
625 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
626
627 /*
628 * Release our cached credentials.
629 */
630 kauth_cred_free(l->l_cred);
631
632 /*
633 * Remove the LWP from the global list.
634 */
635 mutex_enter(&proclist_mutex);
636 LIST_REMOVE(l, l_list);
637 mutex_exit(&proclist_mutex);
638
639 /*
640 * Get rid of all references to the LWP that others (e.g. procfs)
641 * may have, and mark the LWP as a zombie. If the LWP is detached,
642 * mark it waiting for collection in the proc structure. Note that
643 * before we can do that, we need to free any other dead, deatched
644 * LWP waiting to meet its maker.
645 *
646 * XXXSMP disable preemption.
647 */
648 mutex_enter(&p->p_smutex);
649 lwp_drainrefs(l);
650
651 if ((l->l_prflag & LPR_DETACHED) != 0) {
652 while ((l2 = p->p_zomblwp) != NULL) {
653 p->p_zomblwp = NULL;
654 lwp_free(l2, 0, 0); /* releases proc mutex */
655 mutex_enter(&p->p_smutex);
656 }
657 p->p_zomblwp = l;
658 }
659
660 /*
661 * Clear any private, pending signals. XXXLWP Small chance that
662 * we may defer process-wide signals by taking L_PENDSIG with us
663 * to the grave.
664 */
665 sigclear(&l->l_sigpend, NULL);
666
667 lwp_lock(l);
668 l->l_stat = LSZOMB;
669 lwp_unlock(l);
670 p->p_nrlwps--;
671 mutex_exit(&p->p_smutex);
672
673 /*
674 * We can no longer block. At this point, lwp_free() may already
675 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
676 *
677 * Free MD LWP resources.
678 */
679 #ifndef __NO_CPU_LWP_FREE
680 cpu_lwp_free(l, 0);
681 #endif
682 pmap_deactivate(l);
683
684 /*
685 * Release the kernel lock, signal another LWP to collect us,
686 * and switch away into oblivion.
687 */
688 #ifdef notyet
689 /* XXXSMP hold in lwp_userret() */
690 KERNEL_UNLOCK_LAST(l);
691 #else
692 KERNEL_UNLOCK_ALL(l, NULL);
693 #endif
694
695 cv_broadcast(&p->p_lwpcv);
696 cpu_exit(l);
697 }
698
699 /*
700 * We are called from cpu_exit() once it is safe to schedule the dead LWP's
701 * resources to be freed (i.e., once we've switched to the idle PCB for the
702 * current CPU).
703 */
704 void
705 lwp_exit2(struct lwp *l)
706 {
707 /* XXXSMP re-enable preemption */
708 }
709
710 /*
711 * Free a dead LWP's remaining resources.
712 *
713 * XXXLWP limits.
714 */
715 void
716 lwp_free(struct lwp *l, int recycle, int last)
717 {
718 struct proc *p = l->l_proc;
719
720 /*
721 * If this was not the last LWP in the process, then adjust
722 * counters and unlock.
723 */
724 if (!last) {
725 /*
726 * Add the LWP's run time to the process' base value.
727 * This needs to co-incide with coming off p_lwps.
728 */
729 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
730
731 LIST_REMOVE(l, l_sibling);
732 p->p_nlwps--;
733 p->p_nzlwps--;
734 if ((l->l_prflag & LPR_DETACHED) != 0)
735 p->p_ndlwps--;
736 mutex_exit(&p->p_smutex);
737
738 #ifdef MULTIPROCESSOR
739 /*
740 * In the unlikely event that the LWP is still on the CPU,
741 * then spin until it has switched away. We need to release
742 * all locks to avoid deadlock against interrupt handlers on
743 * the target CPU.
744 */
745 if (l->l_cpu->ci_curlwp == l) {
746 int count;
747 KERNEL_UNLOCK_ALL(curlwp, &count);
748 while (l->l_cpu->ci_curlwp == l)
749 SPINLOCK_BACKOFF_HOOK;
750 KERNEL_LOCK(count, curlwp);
751 }
752 #endif
753 }
754
755 /*
756 * Free the LWP's turnstile and the LWP structure itself unless the
757 * caller wants to recycle them.
758 *
759 * We can't return turnstile0 to the pool (it didn't come from it),
760 * so if it comes up just drop it quietly and move on.
761 *
762 * We don't recycle the VM resources at this time.
763 */
764 if (!recycle && l->l_ts != &turnstile0)
765 pool_cache_put(&turnstile_cache, l->l_ts);
766 #ifndef __NO_CPU_LWP_FREE
767 cpu_lwp_free2(l);
768 #endif
769 uvm_lwp_exit(l);
770 if (!recycle)
771 pool_put(&lwp_pool, l);
772 }
773
774 /*
775 * Pick a LWP to represent the process for those operations which
776 * want information about a "process" that is actually associated
777 * with a LWP.
778 *
779 * If 'locking' is false, no locking or lock checks are performed.
780 * This is intended for use by DDB.
781 *
782 * We don't bother locking the LWP here, since code that uses this
783 * interface is broken by design and an exact match is not required.
784 */
785 struct lwp *
786 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
787 {
788 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
789 struct lwp *signalled;
790 int cnt;
791
792 if (locking) {
793 LOCK_ASSERT(mutex_owned(&p->p_smutex));
794 }
795
796 /* Trivial case: only one LWP */
797 if (p->p_nlwps == 1) {
798 l = LIST_FIRST(&p->p_lwps);
799 if (nrlwps)
800 *nrlwps = (l->l_stat == LSONPROC || LSRUN);
801 return l;
802 }
803
804 cnt = 0;
805 switch (p->p_stat) {
806 case SSTOP:
807 case SACTIVE:
808 /* Pick the most live LWP */
809 onproc = running = sleeping = stopped = suspended = NULL;
810 signalled = NULL;
811 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
812 if (l->l_lid == p->p_sigctx.ps_lwp)
813 signalled = l;
814 switch (l->l_stat) {
815 case LSONPROC:
816 onproc = l;
817 cnt++;
818 break;
819 case LSRUN:
820 running = l;
821 cnt++;
822 break;
823 case LSSLEEP:
824 sleeping = l;
825 break;
826 case LSSTOP:
827 stopped = l;
828 break;
829 case LSSUSPENDED:
830 suspended = l;
831 break;
832 }
833 }
834 if (nrlwps)
835 *nrlwps = cnt;
836 if (signalled)
837 l = signalled;
838 else if (onproc)
839 l = onproc;
840 else if (running)
841 l = running;
842 else if (sleeping)
843 l = sleeping;
844 else if (stopped)
845 l = stopped;
846 else if (suspended)
847 l = suspended;
848 else
849 break;
850 return l;
851 if (nrlwps)
852 *nrlwps = 0;
853 l = LIST_FIRST(&p->p_lwps);
854 return l;
855 #ifdef DIAGNOSTIC
856 case SIDL:
857 case SZOMB:
858 case SDYING:
859 case SDEAD:
860 if (locking)
861 mutex_exit(&p->p_smutex);
862 /* We have more than one LWP and we're in SIDL?
863 * How'd that happen?
864 */
865 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
866 p->p_pid, p->p_comm, p->p_stat);
867 break;
868 default:
869 if (locking)
870 mutex_exit(&p->p_smutex);
871 panic("Process %d (%s) in unknown state %d",
872 p->p_pid, p->p_comm, p->p_stat);
873 #endif
874 }
875
876 if (locking)
877 mutex_exit(&p->p_smutex);
878 panic("proc_representative_lwp: couldn't find a lwp for process"
879 " %d (%s)", p->p_pid, p->p_comm);
880 /* NOTREACHED */
881 return NULL;
882 }
883
884 /*
885 * Look up a live LWP within the speicifed process, and return it locked.
886 *
887 * Must be called with p->p_smutex held.
888 */
889 struct lwp *
890 lwp_find(struct proc *p, int id)
891 {
892 struct lwp *l;
893
894 LOCK_ASSERT(mutex_owned(&p->p_smutex));
895
896 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
897 if (l->l_lid == id)
898 break;
899 }
900
901 /*
902 * No need to lock - all of these conditions will
903 * be visible with the process level mutex held.
904 */
905 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
906 l = NULL;
907
908 return l;
909 }
910
911 /*
912 * Update an LWP's cached credentials to mirror the process' master copy.
913 *
914 * This happens early in the syscall path, on user trap, and on LWP
915 * creation. A long-running LWP can also voluntarily choose to update
916 * it's credentials by calling this routine. This may be called from
917 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
918 */
919 void
920 lwp_update_creds(struct lwp *l)
921 {
922 kauth_cred_t oc;
923 struct proc *p;
924
925 p = l->l_proc;
926 oc = l->l_cred;
927
928 mutex_enter(&p->p_mutex);
929 kauth_cred_hold(p->p_cred);
930 l->l_cred = p->p_cred;
931 mutex_exit(&p->p_mutex);
932 if (oc != NULL) {
933 KERNEL_LOCK(1, l); /* XXXSMP */
934 kauth_cred_free(oc);
935 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
936 }
937 }
938
939 /*
940 * Verify that an LWP is locked, and optionally verify that the lock matches
941 * one we specify.
942 */
943 int
944 lwp_locked(struct lwp *l, kmutex_t *mtx)
945 {
946 kmutex_t *cur = l->l_mutex;
947
948 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
949 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
950 #else
951 return mutex_owned(cur);
952 #endif
953 }
954
955 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
956 /*
957 * Lock an LWP.
958 */
959 void
960 lwp_lock_retry(struct lwp *l, kmutex_t *old)
961 {
962
963 /*
964 * XXXgcc ignoring kmutex_t * volatile on i386
965 *
966 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
967 */
968 #if 1
969 while (l->l_mutex != old) {
970 #else
971 for (;;) {
972 #endif
973 smutex_exit(old);
974 old = l->l_mutex;
975 smutex_enter(old);
976
977 /*
978 * mutex_enter() will have posted a read barrier. Re-test
979 * l->l_mutex. If it has changed, we need to try again.
980 */
981 #if 1
982 }
983 #else
984 } while (__predict_false(l->l_mutex != old));
985 #endif
986 }
987 #endif
988
989 /*
990 * Lend a new mutex to an LWP. The old mutex must be held.
991 */
992 void
993 lwp_setlock(struct lwp *l, kmutex_t *new)
994 {
995
996 LOCK_ASSERT(mutex_owned(l->l_mutex));
997
998 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
999 mb_write();
1000 l->l_mutex = new;
1001 #else
1002 (void)new;
1003 #endif
1004 }
1005
1006 /*
1007 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1008 * must be held.
1009 */
1010 void
1011 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1012 {
1013 kmutex_t *old;
1014
1015 LOCK_ASSERT(mutex_owned(l->l_mutex));
1016
1017 old = l->l_mutex;
1018 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1019 mb_write();
1020 l->l_mutex = new;
1021 #else
1022 (void)new;
1023 #endif
1024 smutex_exit(old);
1025 }
1026
1027 /*
1028 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1029 * locked.
1030 */
1031 void
1032 lwp_relock(struct lwp *l, kmutex_t *new)
1033 {
1034 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1035 kmutex_t *old;
1036 #endif
1037
1038 LOCK_ASSERT(mutex_owned(l->l_mutex));
1039
1040 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1041 old = l->l_mutex;
1042 if (old != new) {
1043 smutex_enter(new);
1044 l->l_mutex = new;
1045 smutex_exit(old);
1046 }
1047 #else
1048 (void)new;
1049 #endif
1050 }
1051
1052 /*
1053 * Handle exceptions for mi_userret(). Called if a member of L_USERRET is
1054 * set.
1055 */
1056 void
1057 lwp_userret(struct lwp *l)
1058 {
1059 struct proc *p;
1060 int sig;
1061
1062 p = l->l_proc;
1063
1064 /*
1065 * It should be safe to do this read unlocked on a multiprocessor
1066 * system..
1067 */
1068 while ((l->l_flag & L_USERRET) != 0) {
1069 /*
1070 * Process pending signals first, unless the process
1071 * is dumping core, where we will instead enter the
1072 * L_WSUSPEND case below.
1073 */
1074 if ((l->l_flag & (L_PENDSIG | L_WCORE)) == L_PENDSIG) {
1075 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1076 mutex_enter(&p->p_smutex);
1077 while ((sig = issignal(l)) != 0)
1078 postsig(sig);
1079 mutex_exit(&p->p_smutex);
1080 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1081 }
1082
1083 /*
1084 * Core-dump or suspend pending.
1085 *
1086 * In case of core dump, suspend ourselves, so that the
1087 * kernel stack and therefore the userland registers saved
1088 * in the trapframe are around for coredump() to write them
1089 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1090 * will write the core file out once all other LWPs are
1091 * suspended.
1092 */
1093 if ((l->l_flag & L_WSUSPEND) != 0) {
1094 mutex_enter(&p->p_smutex);
1095 p->p_nrlwps--;
1096 cv_broadcast(&p->p_lwpcv);
1097 lwp_lock(l);
1098 l->l_stat = LSSUSPENDED;
1099 mutex_exit(&p->p_smutex);
1100 mi_switch(l, NULL);
1101 }
1102
1103 /* Process is exiting. */
1104 if ((l->l_flag & L_WEXIT) != 0) {
1105 KERNEL_LOCK(1, l);
1106 lwp_exit(l);
1107 KASSERT(0);
1108 /* NOTREACHED */
1109 }
1110 }
1111
1112 /*
1113 * Timer events are handled specially. We only try once to deliver
1114 * pending timer upcalls; if if fails, we can try again on the next
1115 * loop around. If we need to re-enter lwp_userret(), MD code will
1116 * bounce us back here through the trap path after we return.
1117 */
1118 if (p->p_timerpend)
1119 timerupcall(l);
1120 }
1121
1122 /*
1123 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1124 */
1125 void
1126 lwp_need_userret(struct lwp *l)
1127 {
1128 LOCK_ASSERT(lwp_locked(l, NULL));
1129
1130 /*
1131 * Since the tests in lwp_userret() are done unlocked, make sure
1132 * that the condition will be seen before forcing the LWP to enter
1133 * kernel mode.
1134 */
1135 mb_write();
1136
1137 lwp_changepri(l, PUSER);
1138 cpu_signotify(l);
1139 }
1140
1141 /*
1142 * Add one reference to an LWP. This will prevent the LWP from
1143 * exiting, thus keep the lwp structure and PCB around to inspect.
1144 */
1145 void
1146 lwp_addref(struct lwp *l)
1147 {
1148
1149 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
1150 KASSERT(l->l_stat != LSZOMB);
1151 KASSERT(l->l_refcnt != 0);
1152
1153 l->l_refcnt++;
1154 }
1155
1156 /*
1157 * Remove one reference to an LWP. If this is the last reference,
1158 * then we must finalize the LWP's death.
1159 */
1160 void
1161 lwp_delref(struct lwp *l)
1162 {
1163 struct proc *p = l->l_proc;
1164 u_int refcnt;
1165
1166 mutex_enter(&p->p_smutex);
1167 refcnt = --l->l_refcnt;
1168 mutex_exit(&p->p_smutex);
1169
1170 if (refcnt == 0)
1171 cv_broadcast(&p->p_refcv);
1172 }
1173
1174 /*
1175 * Drain all references to the current LWP.
1176 */
1177 void
1178 lwp_drainrefs(struct lwp *l)
1179 {
1180 struct proc *p = l->l_proc;
1181
1182 LOCK_ASSERT(mutex_owned(&p->p_smutex));
1183 KASSERT(l->l_refcnt != 0);
1184
1185 l->l_refcnt--;
1186 while (l->l_refcnt != 0)
1187 cv_wait(&p->p_refcv, &p->p_smutex);
1188 }
1189
1190 /*
1191 * lwp_specific_key_create --
1192 * Create a key for subsystem lwp-specific data.
1193 */
1194 int
1195 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1196 {
1197
1198 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1199 }
1200
1201 /*
1202 * lwp_specific_key_delete --
1203 * Delete a key for subsystem lwp-specific data.
1204 */
1205 void
1206 lwp_specific_key_delete(specificdata_key_t key)
1207 {
1208
1209 specificdata_key_delete(lwp_specificdata_domain, key);
1210 }
1211
1212 /*
1213 * lwp_initspecific --
1214 * Initialize an LWP's specificdata container.
1215 */
1216 void
1217 lwp_initspecific(struct lwp *l)
1218 {
1219 int error;
1220
1221 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1222 KASSERT(error == 0);
1223 }
1224
1225 /*
1226 * lwp_finispecific --
1227 * Finalize an LWP's specificdata container.
1228 */
1229 void
1230 lwp_finispecific(struct lwp *l)
1231 {
1232
1233 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1234 }
1235
1236 /*
1237 * lwp_getspecific --
1238 * Return lwp-specific data corresponding to the specified key.
1239 *
1240 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1241 * only its OWN SPECIFIC DATA. If it is necessary to access another
1242 * LWP's specifc data, care must be taken to ensure that doing so
1243 * would not cause internal data structure inconsistency (i.e. caller
1244 * can guarantee that the target LWP is not inside an lwp_getspecific()
1245 * or lwp_setspecific() call).
1246 */
1247 void *
1248 lwp_getspecific(specificdata_key_t key)
1249 {
1250
1251 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1252 &curlwp->l_specdataref, key));
1253 }
1254
1255 void *
1256 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1257 {
1258
1259 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1260 &l->l_specdataref, key));
1261 }
1262
1263 /*
1264 * lwp_setspecific --
1265 * Set lwp-specific data corresponding to the specified key.
1266 */
1267 void
1268 lwp_setspecific(specificdata_key_t key, void *data)
1269 {
1270
1271 specificdata_setspecific(lwp_specificdata_domain,
1272 &curlwp->l_specdataref, key, data);
1273 }
1274