kern_lwp.c revision 1.55 1 /* $NetBSD: kern_lwp.c,v 1.55 2007/02/16 00:35:45 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit (or thread) of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp".
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing in kernel simultaneously.
52 *
53 * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 * threads are distinct processes (system processes) with no user space
55 * component, which themselves may contain one or more LWPs.
56 *
57 * Execution states
58 *
59 * At any given time, an LWP has overall state that is described by
60 * lwp::l_stat. The states are broken into two sets below. The first
61 * set is guaranteed to represent the absolute, current state of the
62 * LWP:
63 *
64 * LSONPROC
65 *
66 * On processor: the LWP is executing on a CPU, either in the
67 * kernel or in user space.
68 *
69 * LSRUN
70 *
71 * Runnable: the LWP is parked on a run queue, and may soon be
72 * chosen to run by a idle processor, or by a processor that
73 * has been asked to preempt a currently runnning but lower
74 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 * then the LWP is not on a run queue, but may be soon.
76 *
77 * LSIDL
78 *
79 * Idle: the LWP has been created but has not yet executed.
80 * Whoever created the new LWP can be expected to set it to
81 * another state shortly.
82 *
83 * LSSUSPENDED:
84 *
85 * Suspended: the LWP has had its execution suspended by
86 * another LWP in the same process using the _lwp_suspend()
87 * system call. User-level LWPs also enter the suspended
88 * state when the system is shutting down.
89 *
90 * The second set represent a "statement of intent" on behalf of the
91 * LWP. The LWP may in fact be executing on a processor, may be
92 * sleeping, idle, or on a run queue. It is expected to take the
93 * necessary action to stop executing or become "running" again within
94 * a short timeframe.
95 *
96 * LSZOMB:
97 *
98 * Dead: the LWP has released most of its resources and is
99 * about to switch away into oblivion. When it switches away,
100 * its few remaining resources will be collected.
101 *
102 * LSSLEEP:
103 *
104 * Sleeping: the LWP has entered itself onto a sleep queue, and
105 * will switch away shortly to allow other LWPs to run on the
106 * CPU.
107 *
108 * LSSTOP:
109 *
110 * Stopped: the LWP has been stopped as a result of a job
111 * control signal, or as a result of the ptrace() interface.
112 * Stopped LWPs may run briefly within the kernel to handle
113 * signals that they receive, but will not return to user space
114 * until their process' state is changed away from stopped.
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP and LSSUSPENDED states may only be set
122 * when returning to user space in userret(), or when sleeping
123 * interruptably. Before setting those states, we try to ensure
124 * that the LWPs will release all kernel locks that they hold,
125 * and at a minimum try to ensure that the LWP can be set runnable
126 * again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Locking
145 *
146 * The majority of fields in 'struct lwp' are covered by a single,
147 * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 * each field are documented in sys/lwp.h.
149 *
150 * State transitions must be made with the LWP's general lock held. In
151 * a multiprocessor kernel, state transitions may cause the LWP's lock
152 * pointer to change. On uniprocessor kernels, most scheduler and
153 * synchronisation objects such as sleep queues and LWPs are protected
154 * by only one mutex (sched_mutex). In this case, LWPs' lock pointers
155 * will never change and will always reference sched_mutex.
156 *
157 * Manipulation of the general lock is not performed directly, but
158 * through calls to lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSIDL, LSZOMB
163 *
164 * Always covered by sched_mutex.
165 *
166 * LSONPROC, LSRUN:
167 *
168 * Always covered by sched_mutex, which protects the run queues
169 * and other miscellaneous items. If the scheduler is changed
170 * to use per-CPU run queues, this may become a per-CPU mutex.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a mutex associated with the sleep queue that the
175 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue mutex. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the mutex is sched_mutex.
183 *
184 * The lock order is as follows:
185 *
186 * sleepq_t::sq_mutex |---> sched_mutex
187 * tschain_t::tc_mutex |
188 *
189 * Each process has an scheduler state mutex (proc::p_smutex), and a
190 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
191 * so on. When an LWP is to be entered into or removed from one of the
192 * following states, p_mutex must be held and the process wide counters
193 * adjusted:
194 *
195 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
196 *
197 * Note that an LWP is considered running or likely to run soon if in
198 * one of the following states. This affects the value of p_nrlwps:
199 *
200 * LSRUN, LSONPROC, LSSLEEP
201 *
202 * p_smutex does not need to be held when transitioning among these
203 * three states.
204 */
205
206 #include <sys/cdefs.h>
207 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.55 2007/02/16 00:35:45 ad Exp $");
208
209 #include "opt_multiprocessor.h"
210 #include "opt_lockdebug.h"
211
212 #define _LWP_API_PRIVATE
213
214 #include <sys/param.h>
215 #include <sys/systm.h>
216 #include <sys/pool.h>
217 #include <sys/proc.h>
218 #include <sys/syscallargs.h>
219 #include <sys/kauth.h>
220 #include <sys/sleepq.h>
221 #include <sys/lockdebug.h>
222 #include <sys/kmem.h>
223
224 #include <uvm/uvm_extern.h>
225
226 struct lwplist alllwp;
227
228 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
229 &pool_allocator_nointr);
230 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
231 &pool_allocator_nointr);
232
233 static specificdata_domain_t lwp_specificdata_domain;
234
235 #define LWP_DEBUG
236
237 #ifdef LWP_DEBUG
238 int lwp_debug = 0;
239 #define DPRINTF(x) if (lwp_debug) printf x
240 #else
241 #define DPRINTF(x)
242 #endif
243
244 void
245 lwpinit(void)
246 {
247
248 lwp_specificdata_domain = specificdata_domain_create();
249 KASSERT(lwp_specificdata_domain != NULL);
250 lwp_sys_init();
251 }
252
253 /*
254 * Set an suspended.
255 *
256 * Must be called with p_smutex held, and the LWP locked. Will unlock the
257 * LWP before return.
258 */
259 int
260 lwp_suspend(struct lwp *curl, struct lwp *t)
261 {
262 int error;
263
264 LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
265 LOCK_ASSERT(lwp_locked(t, NULL));
266
267 KASSERT(curl != t || curl->l_stat == LSONPROC);
268
269 /*
270 * If the current LWP has been told to exit, we must not suspend anyone
271 * else or deadlock could occur. We won't return to userspace.
272 */
273 if ((curl->l_stat & (L_WEXIT | L_WCORE)) != 0) {
274 lwp_unlock(t);
275 return (EDEADLK);
276 }
277
278 error = 0;
279
280 switch (t->l_stat) {
281 case LSRUN:
282 case LSONPROC:
283 t->l_flag |= L_WSUSPEND;
284 lwp_need_userret(t);
285 lwp_unlock(t);
286 break;
287
288 case LSSLEEP:
289 t->l_flag |= L_WSUSPEND;
290
291 /*
292 * Kick the LWP and try to get it to the kernel boundary
293 * so that it will release any locks that it holds.
294 * setrunnable() will release the lock.
295 */
296 if ((t->l_flag & L_SINTR) != 0)
297 setrunnable(t);
298 else
299 lwp_unlock(t);
300 break;
301
302 case LSSUSPENDED:
303 lwp_unlock(t);
304 break;
305
306 case LSSTOP:
307 t->l_flag |= L_WSUSPEND;
308 setrunnable(t);
309 break;
310
311 case LSIDL:
312 case LSZOMB:
313 error = EINTR; /* It's what Solaris does..... */
314 lwp_unlock(t);
315 break;
316 }
317
318 /*
319 * XXXLWP Wait for:
320 *
321 * o process exiting
322 * o target LWP suspended
323 * o target LWP not suspended and L_WSUSPEND clear
324 * o target LWP exited
325 */
326
327 return (error);
328 }
329
330 /*
331 * Restart a suspended LWP.
332 *
333 * Must be called with p_smutex held, and the LWP locked. Will unlock the
334 * LWP before return.
335 */
336 void
337 lwp_continue(struct lwp *l)
338 {
339
340 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
341 LOCK_ASSERT(lwp_locked(l, NULL));
342
343 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
344 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
345 l->l_wchan));
346
347 /* If rebooting or not suspended, then just bail out. */
348 if ((l->l_flag & L_WREBOOT) != 0) {
349 lwp_unlock(l);
350 return;
351 }
352
353 l->l_flag &= ~L_WSUSPEND;
354
355 if (l->l_stat != LSSUSPENDED) {
356 lwp_unlock(l);
357 return;
358 }
359
360 /* setrunnable() will release the lock. */
361 setrunnable(l);
362 }
363
364 /*
365 * Wait for an LWP within the current process to exit. If 'lid' is
366 * non-zero, we are waiting for a specific LWP.
367 *
368 * Must be called with p->p_smutex held.
369 */
370 int
371 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
372 {
373 struct proc *p = l->l_proc;
374 struct lwp *l2;
375 int nfound, error;
376
377 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
378 p->p_pid, l->l_lid, lid));
379
380 LOCK_ASSERT(mutex_owned(&p->p_smutex));
381
382 /*
383 * We try to check for deadlock:
384 *
385 * 1) If all other LWPs are waiting for exits or suspended.
386 * 2) If we are trying to wait on ourself.
387 *
388 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
389 * waits, not any-LWP waits) and detect that sort of deadlock, but
390 * we don't have a good place to store the lwp that is being waited
391 * for. wchan is already filled with &p->p_nlwps, and putting the
392 * lwp address in there for deadlock tracing would require exiting
393 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
394 * get threads sleeping on any LWP exiting.
395 */
396 if (lid == l->l_lid)
397 return EDEADLK;
398
399 p->p_nlwpwait++;
400
401 for (;;) {
402 /*
403 * Avoid a race between exit1() and sigexit(): if the
404 * process is dumping core, then we need to bail out: call
405 * into lwp_userret() where we will be suspended until the
406 * deed is done.
407 */
408 if ((p->p_sflag & PS_WCORE) != 0) {
409 mutex_exit(&p->p_smutex);
410 lwp_userret(l);
411 #ifdef DIAGNOSTIC
412 panic("lwp_wait1");
413 #endif
414 /* NOTREACHED */
415 }
416
417 /*
418 * First off, drain any detached LWP that is waiting to be
419 * reaped.
420 */
421 while ((l2 = p->p_zomblwp) != NULL) {
422 p->p_zomblwp = NULL;
423 lwp_free(l2, 0, 0); /* releases proc mutex */
424 mutex_enter(&p->p_smutex);
425 }
426
427 /*
428 * Now look for an LWP to collect. If the whole process is
429 * exiting, count detached LWPs as eligible to be collected,
430 * but don't drain them here.
431 */
432 nfound = 0;
433 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
434 if (l2 == l || (lid != 0 && l2->l_lid != lid))
435 continue;
436 if ((l2->l_prflag & LPR_DETACHED) != 0) {
437 nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
438 continue;
439 }
440 nfound++;
441
442 /* No need to lock the LWP in order to see LSZOMB. */
443 if (l2->l_stat != LSZOMB)
444 continue;
445
446 if (departed)
447 *departed = l2->l_lid;
448 lwp_free(l2, 0, 0);
449 mutex_enter(&p->p_smutex);
450 p->p_nlwpwait--;
451 return 0;
452 }
453
454 if (nfound == 0) {
455 error = ESRCH;
456 break;
457 }
458 if ((flags & LWPWAIT_EXITCONTROL) != 0) {
459 KASSERT(p->p_nlwps > 1);
460 cv_wait(&p->p_lwpcv, &p->p_smutex);
461 continue;
462 }
463 if ((p->p_sflag & PS_WEXIT) != 0 ||
464 p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
465 error = EDEADLK;
466 break;
467 }
468 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
469 break;
470 }
471
472 p->p_nlwpwait--;
473 return error;
474 }
475
476 /*
477 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
478 * The new LWP is created in state LSIDL and must be set running,
479 * suspended, or stopped by the caller.
480 */
481 int
482 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, boolean_t inmem,
483 int flags, void *stack, size_t stacksize,
484 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
485 {
486 struct lwp *l2, *isfree;
487 turnstile_t *ts;
488
489 /*
490 * First off, reap any detached LWP waiting to be collected.
491 * We can re-use its LWP structure and turnstile.
492 */
493 isfree = NULL;
494 if (p2->p_zomblwp != NULL) {
495 mutex_enter(&p2->p_smutex);
496 if ((isfree = p2->p_zomblwp) != NULL) {
497 p2->p_zomblwp = NULL;
498 lwp_free(isfree, 1, 0); /* releases proc mutex */
499 } else
500 mutex_exit(&p2->p_smutex);
501 }
502 if (isfree == NULL) {
503 l2 = pool_get(&lwp_pool, PR_WAITOK);
504 memset(l2, 0, sizeof(*l2));
505 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
506 } else {
507 l2 = isfree;
508 ts = l2->l_ts;
509 memset(l2, 0, sizeof(*l2));
510 l2->l_ts = ts;
511 }
512
513 l2->l_stat = LSIDL;
514 l2->l_proc = p2;
515 l2->l_refcnt = 1;
516 l2->l_priority = l1->l_priority;
517 l2->l_usrpri = l1->l_usrpri;
518 l2->l_mutex = &sched_mutex;
519 l2->l_cpu = l1->l_cpu;
520 l2->l_flag = inmem ? L_INMEM : 0;
521 lwp_initspecific(l2);
522
523 if (p2->p_flag & P_SYSTEM) {
524 /*
525 * Mark it as a system process and not a candidate for
526 * swapping.
527 */
528 l2->l_flag |= L_SYSTEM;
529 }
530
531 lwp_update_creds(l2);
532 callout_init(&l2->l_tsleep_ch);
533 cv_init(&l2->l_sigcv, "sigwait");
534 l2->l_syncobj = &sched_syncobj;
535
536 if (rnewlwpp != NULL)
537 *rnewlwpp = l2;
538
539 l2->l_addr = UAREA_TO_USER(uaddr);
540 uvm_lwp_fork(l1, l2, stack, stacksize, func,
541 (arg != NULL) ? arg : l2);
542
543 mutex_enter(&p2->p_smutex);
544
545 if ((flags & LWP_DETACHED) != 0) {
546 l2->l_prflag = LPR_DETACHED;
547 p2->p_ndlwps++;
548 } else
549 l2->l_prflag = 0;
550
551 l2->l_sigmask = l1->l_sigmask;
552 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
553 sigemptyset(&l2->l_sigpend.sp_set);
554
555 p2->p_nlwpid++;
556 if (p2->p_nlwpid == 0)
557 p2->p_nlwpid++;
558 l2->l_lid = p2->p_nlwpid;
559 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
560 p2->p_nlwps++;
561
562 mutex_exit(&p2->p_smutex);
563
564 mutex_enter(&proclist_mutex);
565 LIST_INSERT_HEAD(&alllwp, l2, l_list);
566 mutex_exit(&proclist_mutex);
567
568 if (p2->p_emul->e_lwp_fork)
569 (*p2->p_emul->e_lwp_fork)(l1, l2);
570
571 return (0);
572 }
573
574 /*
575 * Quit the process. This will call cpu_exit, which will call cpu_switch,
576 * so this can only be used meaningfully if you're willing to switch away.
577 * Calling with l!=curlwp would be weird.
578 */
579 void
580 lwp_exit(struct lwp *l)
581 {
582 struct proc *p = l->l_proc;
583 struct lwp *l2;
584
585 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
586 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
587
588 /*
589 * Verify that we hold no locks other than the kernel lock.
590 */
591 #ifdef MULTIPROCESSOR
592 LOCKDEBUG_BARRIER(&kernel_lock, 0);
593 #else
594 LOCKDEBUG_BARRIER(NULL, 0);
595 #endif
596
597 /*
598 * If we are the last live LWP in a process, we need to exit the
599 * entire process. We do so with an exit status of zero, because
600 * it's a "controlled" exit, and because that's what Solaris does.
601 *
602 * We are not quite a zombie yet, but for accounting purposes we
603 * must increment the count of zombies here.
604 *
605 * Note: the last LWP's specificdata will be deleted here.
606 */
607 mutex_enter(&p->p_smutex);
608 if (p->p_nlwps - p->p_nzlwps == 1) {
609 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
610 p->p_pid, l->l_lid));
611 exit1(l, 0);
612 /* NOTREACHED */
613 }
614 p->p_nzlwps++;
615 mutex_exit(&p->p_smutex);
616
617 if (p->p_emul->e_lwp_exit)
618 (*p->p_emul->e_lwp_exit)(l);
619
620 /* Delete the specificdata while it's still safe to sleep. */
621 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
622
623 /*
624 * Release our cached credentials.
625 */
626 kauth_cred_free(l->l_cred);
627
628 /*
629 * Remove the LWP from the global list.
630 */
631 mutex_enter(&proclist_mutex);
632 LIST_REMOVE(l, l_list);
633 mutex_exit(&proclist_mutex);
634
635 /*
636 * Get rid of all references to the LWP that others (e.g. procfs)
637 * may have, and mark the LWP as a zombie. If the LWP is detached,
638 * mark it waiting for collection in the proc structure. Note that
639 * before we can do that, we need to free any other dead, deatched
640 * LWP waiting to meet its maker.
641 *
642 * XXXSMP disable preemption.
643 */
644 mutex_enter(&p->p_smutex);
645 lwp_drainrefs(l);
646
647 if ((l->l_prflag & LPR_DETACHED) != 0) {
648 while ((l2 = p->p_zomblwp) != NULL) {
649 p->p_zomblwp = NULL;
650 lwp_free(l2, 0, 0); /* releases proc mutex */
651 mutex_enter(&p->p_smutex);
652 }
653 p->p_zomblwp = l;
654 }
655
656 /*
657 * If we find a pending signal for the process and we have been
658 * asked to check for signals, then we loose: arrange to have
659 * all other LWPs in the process check for signals.
660 */
661 if ((l->l_flag & L_PENDSIG) != 0 &&
662 firstsig(&p->p_sigpend.sp_set) != 0) {
663 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
664 lwp_lock(l2);
665 l2->l_flag |= L_PENDSIG;
666 lwp_unlock(l2);
667 }
668 }
669
670 lwp_lock(l);
671 l->l_stat = LSZOMB;
672 lwp_unlock(l);
673 p->p_nrlwps--;
674 cv_broadcast(&p->p_lwpcv);
675 mutex_exit(&p->p_smutex);
676
677 /*
678 * We can no longer block. At this point, lwp_free() may already
679 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
680 *
681 * Free MD LWP resources.
682 */
683 #ifndef __NO_CPU_LWP_FREE
684 cpu_lwp_free(l, 0);
685 #endif
686 pmap_deactivate(l);
687
688 /*
689 * Release the kernel lock, signal another LWP to collect us,
690 * and switch away into oblivion.
691 */
692 #ifdef notyet
693 /* XXXSMP hold in lwp_userret() */
694 KERNEL_UNLOCK_LAST(l);
695 #else
696 KERNEL_UNLOCK_ALL(l, NULL);
697 #endif
698
699 cpu_exit(l);
700 }
701
702 /*
703 * We are called from cpu_exit() once it is safe to schedule the dead LWP's
704 * resources to be freed (i.e., once we've switched to the idle PCB for the
705 * current CPU).
706 */
707 void
708 lwp_exit2(struct lwp *l)
709 {
710 /* XXXSMP re-enable preemption */
711 }
712
713 /*
714 * Free a dead LWP's remaining resources.
715 *
716 * XXXLWP limits.
717 */
718 void
719 lwp_free(struct lwp *l, int recycle, int last)
720 {
721 struct proc *p = l->l_proc;
722 ksiginfoq_t kq;
723
724 /*
725 * If this was not the last LWP in the process, then adjust
726 * counters and unlock.
727 */
728 if (!last) {
729 /*
730 * Add the LWP's run time to the process' base value.
731 * This needs to co-incide with coming off p_lwps.
732 */
733 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
734 LIST_REMOVE(l, l_sibling);
735 p->p_nlwps--;
736 p->p_nzlwps--;
737 if ((l->l_prflag & LPR_DETACHED) != 0)
738 p->p_ndlwps--;
739 mutex_exit(&p->p_smutex);
740
741 #ifdef MULTIPROCESSOR
742 /*
743 * In the unlikely event that the LWP is still on the CPU,
744 * then spin until it has switched away. We need to release
745 * all locks to avoid deadlock against interrupt handlers on
746 * the target CPU.
747 */
748 if (l->l_cpu->ci_curlwp == l) {
749 int count;
750 KERNEL_UNLOCK_ALL(curlwp, &count);
751 while (l->l_cpu->ci_curlwp == l)
752 SPINLOCK_BACKOFF_HOOK;
753 KERNEL_LOCK(count, curlwp);
754 }
755 #endif
756 }
757
758 /*
759 * Destroy the LWP's remaining signal information.
760 */
761 ksiginfo_queue_init(&kq);
762 sigclear(&l->l_sigpend, NULL, &kq);
763 ksiginfo_queue_drain(&kq);
764 cv_destroy(&l->l_sigcv);
765
766 /*
767 * Free the LWP's turnstile and the LWP structure itself unless the
768 * caller wants to recycle them.
769 *
770 * We can't return turnstile0 to the pool (it didn't come from it),
771 * so if it comes up just drop it quietly and move on.
772 *
773 * We don't recycle the VM resources at this time.
774 */
775 KERNEL_LOCK(1, curlwp); /* XXXSMP */
776 if (!recycle && l->l_ts != &turnstile0)
777 pool_cache_put(&turnstile_cache, l->l_ts);
778 #ifndef __NO_CPU_LWP_FREE
779 cpu_lwp_free2(l);
780 #endif
781 uvm_lwp_exit(l);
782 if (!recycle)
783 pool_put(&lwp_pool, l);
784 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
785 }
786
787 /*
788 * Pick a LWP to represent the process for those operations which
789 * want information about a "process" that is actually associated
790 * with a LWP.
791 *
792 * If 'locking' is false, no locking or lock checks are performed.
793 * This is intended for use by DDB.
794 *
795 * We don't bother locking the LWP here, since code that uses this
796 * interface is broken by design and an exact match is not required.
797 */
798 struct lwp *
799 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
800 {
801 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
802 struct lwp *signalled;
803 int cnt;
804
805 if (locking) {
806 LOCK_ASSERT(mutex_owned(&p->p_smutex));
807 }
808
809 /* Trivial case: only one LWP */
810 if (p->p_nlwps == 1) {
811 l = LIST_FIRST(&p->p_lwps);
812 if (nrlwps)
813 *nrlwps = (l->l_stat == LSONPROC || LSRUN);
814 return l;
815 }
816
817 cnt = 0;
818 switch (p->p_stat) {
819 case SSTOP:
820 case SACTIVE:
821 /* Pick the most live LWP */
822 onproc = running = sleeping = stopped = suspended = NULL;
823 signalled = NULL;
824 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
825 if (l->l_lid == p->p_sigctx.ps_lwp)
826 signalled = l;
827 switch (l->l_stat) {
828 case LSONPROC:
829 onproc = l;
830 cnt++;
831 break;
832 case LSRUN:
833 running = l;
834 cnt++;
835 break;
836 case LSSLEEP:
837 sleeping = l;
838 break;
839 case LSSTOP:
840 stopped = l;
841 break;
842 case LSSUSPENDED:
843 suspended = l;
844 break;
845 }
846 }
847 if (nrlwps)
848 *nrlwps = cnt;
849 if (signalled)
850 l = signalled;
851 else if (onproc)
852 l = onproc;
853 else if (running)
854 l = running;
855 else if (sleeping)
856 l = sleeping;
857 else if (stopped)
858 l = stopped;
859 else if (suspended)
860 l = suspended;
861 else
862 break;
863 return l;
864 if (nrlwps)
865 *nrlwps = 0;
866 l = LIST_FIRST(&p->p_lwps);
867 return l;
868 #ifdef DIAGNOSTIC
869 case SIDL:
870 case SZOMB:
871 case SDYING:
872 case SDEAD:
873 if (locking)
874 mutex_exit(&p->p_smutex);
875 /* We have more than one LWP and we're in SIDL?
876 * How'd that happen?
877 */
878 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
879 p->p_pid, p->p_comm, p->p_stat);
880 break;
881 default:
882 if (locking)
883 mutex_exit(&p->p_smutex);
884 panic("Process %d (%s) in unknown state %d",
885 p->p_pid, p->p_comm, p->p_stat);
886 #endif
887 }
888
889 if (locking)
890 mutex_exit(&p->p_smutex);
891 panic("proc_representative_lwp: couldn't find a lwp for process"
892 " %d (%s)", p->p_pid, p->p_comm);
893 /* NOTREACHED */
894 return NULL;
895 }
896
897 /*
898 * Look up a live LWP within the speicifed process, and return it locked.
899 *
900 * Must be called with p->p_smutex held.
901 */
902 struct lwp *
903 lwp_find(struct proc *p, int id)
904 {
905 struct lwp *l;
906
907 LOCK_ASSERT(mutex_owned(&p->p_smutex));
908
909 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
910 if (l->l_lid == id)
911 break;
912 }
913
914 /*
915 * No need to lock - all of these conditions will
916 * be visible with the process level mutex held.
917 */
918 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
919 l = NULL;
920
921 return l;
922 }
923
924 /*
925 * Update an LWP's cached credentials to mirror the process' master copy.
926 *
927 * This happens early in the syscall path, on user trap, and on LWP
928 * creation. A long-running LWP can also voluntarily choose to update
929 * it's credentials by calling this routine. This may be called from
930 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
931 */
932 void
933 lwp_update_creds(struct lwp *l)
934 {
935 kauth_cred_t oc;
936 struct proc *p;
937
938 p = l->l_proc;
939 oc = l->l_cred;
940
941 mutex_enter(&p->p_mutex);
942 kauth_cred_hold(p->p_cred);
943 l->l_cred = p->p_cred;
944 mutex_exit(&p->p_mutex);
945 if (oc != NULL) {
946 KERNEL_LOCK(1, l); /* XXXSMP */
947 kauth_cred_free(oc);
948 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
949 }
950 }
951
952 /*
953 * Verify that an LWP is locked, and optionally verify that the lock matches
954 * one we specify.
955 */
956 int
957 lwp_locked(struct lwp *l, kmutex_t *mtx)
958 {
959 kmutex_t *cur = l->l_mutex;
960
961 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
962 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
963 #else
964 return mutex_owned(cur);
965 #endif
966 }
967
968 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
969 /*
970 * Lock an LWP.
971 */
972 void
973 lwp_lock_retry(struct lwp *l, kmutex_t *old)
974 {
975
976 /*
977 * XXXgcc ignoring kmutex_t * volatile on i386
978 *
979 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
980 */
981 #if 1
982 while (l->l_mutex != old) {
983 #else
984 for (;;) {
985 #endif
986 mutex_spin_exit(old);
987 old = l->l_mutex;
988 mutex_spin_enter(old);
989
990 /*
991 * mutex_enter() will have posted a read barrier. Re-test
992 * l->l_mutex. If it has changed, we need to try again.
993 */
994 #if 1
995 }
996 #else
997 } while (__predict_false(l->l_mutex != old));
998 #endif
999 }
1000 #endif
1001
1002 /*
1003 * Lend a new mutex to an LWP. The old mutex must be held.
1004 */
1005 void
1006 lwp_setlock(struct lwp *l, kmutex_t *new)
1007 {
1008
1009 LOCK_ASSERT(mutex_owned(l->l_mutex));
1010
1011 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1012 mb_write();
1013 l->l_mutex = new;
1014 #else
1015 (void)new;
1016 #endif
1017 }
1018
1019 /*
1020 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1021 * must be held.
1022 */
1023 void
1024 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1025 {
1026 kmutex_t *old;
1027
1028 LOCK_ASSERT(mutex_owned(l->l_mutex));
1029
1030 old = l->l_mutex;
1031 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1032 mb_write();
1033 l->l_mutex = new;
1034 #else
1035 (void)new;
1036 #endif
1037 mutex_spin_exit(old);
1038 }
1039
1040 /*
1041 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1042 * locked.
1043 */
1044 void
1045 lwp_relock(struct lwp *l, kmutex_t *new)
1046 {
1047 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1048 kmutex_t *old;
1049 #endif
1050
1051 LOCK_ASSERT(mutex_owned(l->l_mutex));
1052
1053 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1054 old = l->l_mutex;
1055 if (old != new) {
1056 mutex_spin_enter(new);
1057 l->l_mutex = new;
1058 mutex_spin_exit(old);
1059 }
1060 #else
1061 (void)new;
1062 #endif
1063 }
1064
1065 /*
1066 * Handle exceptions for mi_userret(). Called if a member of L_USERRET is
1067 * set.
1068 */
1069 void
1070 lwp_userret(struct lwp *l)
1071 {
1072 struct proc *p;
1073 void (*hook)(void);
1074 int sig;
1075
1076 p = l->l_proc;
1077
1078 /*
1079 * It should be safe to do this read unlocked on a multiprocessor
1080 * system..
1081 */
1082 while ((l->l_flag & L_USERRET) != 0) {
1083 /*
1084 * Process pending signals first, unless the process
1085 * is dumping core, where we will instead enter the
1086 * L_WSUSPEND case below.
1087 */
1088 if ((l->l_flag & (L_PENDSIG | L_WCORE)) == L_PENDSIG) {
1089 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1090 mutex_enter(&p->p_smutex);
1091 while ((sig = issignal(l)) != 0)
1092 postsig(sig);
1093 mutex_exit(&p->p_smutex);
1094 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1095 }
1096
1097 /*
1098 * Core-dump or suspend pending.
1099 *
1100 * In case of core dump, suspend ourselves, so that the
1101 * kernel stack and therefore the userland registers saved
1102 * in the trapframe are around for coredump() to write them
1103 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1104 * will write the core file out once all other LWPs are
1105 * suspended.
1106 */
1107 if ((l->l_flag & L_WSUSPEND) != 0) {
1108 mutex_enter(&p->p_smutex);
1109 p->p_nrlwps--;
1110 cv_broadcast(&p->p_lwpcv);
1111 lwp_lock(l);
1112 l->l_stat = LSSUSPENDED;
1113 mutex_exit(&p->p_smutex);
1114 mi_switch(l, NULL);
1115 }
1116
1117 /* Process is exiting. */
1118 if ((l->l_flag & L_WEXIT) != 0) {
1119 KERNEL_LOCK(1, l);
1120 lwp_exit(l);
1121 KASSERT(0);
1122 /* NOTREACHED */
1123 }
1124
1125 /* Call userret hook; used by Linux emulation. */
1126 if ((l->l_flag & L_WUSERRET) != 0) {
1127 lwp_lock(l);
1128 l->l_flag &= ~L_WUSERRET;
1129 lwp_unlock(l);
1130 hook = p->p_userret;
1131 p->p_userret = NULL;
1132 (*hook)();
1133 }
1134 }
1135 }
1136
1137 /*
1138 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1139 */
1140 void
1141 lwp_need_userret(struct lwp *l)
1142 {
1143 LOCK_ASSERT(lwp_locked(l, NULL));
1144
1145 /*
1146 * Since the tests in lwp_userret() are done unlocked, make sure
1147 * that the condition will be seen before forcing the LWP to enter
1148 * kernel mode.
1149 */
1150 mb_write();
1151
1152 if (l->l_priority > PUSER)
1153 lwp_changepri(l, PUSER);
1154 cpu_signotify(l);
1155 }
1156
1157 /*
1158 * Add one reference to an LWP. This will prevent the LWP from
1159 * exiting, thus keep the lwp structure and PCB around to inspect.
1160 */
1161 void
1162 lwp_addref(struct lwp *l)
1163 {
1164
1165 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
1166 KASSERT(l->l_stat != LSZOMB);
1167 KASSERT(l->l_refcnt != 0);
1168
1169 l->l_refcnt++;
1170 }
1171
1172 /*
1173 * Remove one reference to an LWP. If this is the last reference,
1174 * then we must finalize the LWP's death.
1175 */
1176 void
1177 lwp_delref(struct lwp *l)
1178 {
1179 struct proc *p = l->l_proc;
1180
1181 mutex_enter(&p->p_smutex);
1182 if (--l->l_refcnt == 0)
1183 cv_broadcast(&p->p_refcv);
1184 mutex_exit(&p->p_smutex);
1185 }
1186
1187 /*
1188 * Drain all references to the current LWP.
1189 */
1190 void
1191 lwp_drainrefs(struct lwp *l)
1192 {
1193 struct proc *p = l->l_proc;
1194
1195 LOCK_ASSERT(mutex_owned(&p->p_smutex));
1196 KASSERT(l->l_refcnt != 0);
1197
1198 l->l_refcnt--;
1199 while (l->l_refcnt != 0)
1200 cv_wait(&p->p_refcv, &p->p_smutex);
1201 }
1202
1203 /*
1204 * lwp_specific_key_create --
1205 * Create a key for subsystem lwp-specific data.
1206 */
1207 int
1208 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1209 {
1210
1211 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1212 }
1213
1214 /*
1215 * lwp_specific_key_delete --
1216 * Delete a key for subsystem lwp-specific data.
1217 */
1218 void
1219 lwp_specific_key_delete(specificdata_key_t key)
1220 {
1221
1222 specificdata_key_delete(lwp_specificdata_domain, key);
1223 }
1224
1225 /*
1226 * lwp_initspecific --
1227 * Initialize an LWP's specificdata container.
1228 */
1229 void
1230 lwp_initspecific(struct lwp *l)
1231 {
1232 int error;
1233
1234 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1235 KASSERT(error == 0);
1236 }
1237
1238 /*
1239 * lwp_finispecific --
1240 * Finalize an LWP's specificdata container.
1241 */
1242 void
1243 lwp_finispecific(struct lwp *l)
1244 {
1245
1246 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1247 }
1248
1249 /*
1250 * lwp_getspecific --
1251 * Return lwp-specific data corresponding to the specified key.
1252 *
1253 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1254 * only its OWN SPECIFIC DATA. If it is necessary to access another
1255 * LWP's specifc data, care must be taken to ensure that doing so
1256 * would not cause internal data structure inconsistency (i.e. caller
1257 * can guarantee that the target LWP is not inside an lwp_getspecific()
1258 * or lwp_setspecific() call).
1259 */
1260 void *
1261 lwp_getspecific(specificdata_key_t key)
1262 {
1263
1264 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1265 &curlwp->l_specdataref, key));
1266 }
1267
1268 void *
1269 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1270 {
1271
1272 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1273 &l->l_specdataref, key));
1274 }
1275
1276 /*
1277 * lwp_setspecific --
1278 * Set lwp-specific data corresponding to the specified key.
1279 */
1280 void
1281 lwp_setspecific(specificdata_key_t key, void *data)
1282 {
1283
1284 specificdata_setspecific(lwp_specificdata_domain,
1285 &curlwp->l_specdataref, key, data);
1286 }
1287