kern_lwp.c revision 1.55.2.13 1 /* $NetBSD: kern_lwp.c,v 1.55.2.13 2007/04/21 15:50:15 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit (or thread) of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp".
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing in kernel simultaneously.
52 *
53 * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 * threads are distinct processes (system processes) with no user space
55 * component, which themselves may contain one or more LWPs.
56 *
57 * Execution states
58 *
59 * At any given time, an LWP has overall state that is described by
60 * lwp::l_stat. The states are broken into two sets below. The first
61 * set is guaranteed to represent the absolute, current state of the
62 * LWP:
63 *
64 * LSONPROC
65 *
66 * On processor: the LWP is executing on a CPU, either in the
67 * kernel or in user space.
68 *
69 * LSRUN
70 *
71 * Runnable: the LWP is parked on a run queue, and may soon be
72 * chosen to run by a idle processor, or by a processor that
73 * has been asked to preempt a currently runnning but lower
74 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 * then the LWP is not on a run queue, but may be soon.
76 *
77 * LSIDL
78 *
79 * Idle: the LWP has been created but has not yet executed.
80 * Whoever created the new LWP can be expected to set it to
81 * another state shortly.
82 *
83 * LSSUSPENDED:
84 *
85 * Suspended: the LWP has had its execution suspended by
86 * another LWP in the same process using the _lwp_suspend()
87 * system call. User-level LWPs also enter the suspended
88 * state when the system is shutting down.
89 *
90 * The second set represent a "statement of intent" on behalf of the
91 * LWP. The LWP may in fact be executing on a processor, may be
92 * sleeping, idle, or on a run queue. It is expected to take the
93 * necessary action to stop executing or become "running" again within
94 * a short timeframe.
95 *
96 * LSZOMB:
97 *
98 * Dead: the LWP has released most of its resources and is
99 * about to switch away into oblivion. When it switches away,
100 * its few remaining resources will be collected.
101 *
102 * LSSLEEP:
103 *
104 * Sleeping: the LWP has entered itself onto a sleep queue, and
105 * will switch away shortly to allow other LWPs to run on the
106 * CPU.
107 *
108 * LSSTOP:
109 *
110 * Stopped: the LWP has been stopped as a result of a job
111 * control signal, or as a result of the ptrace() interface.
112 * Stopped LWPs may run briefly within the kernel to handle
113 * signals that they receive, but will not return to user space
114 * until their process' state is changed away from stopped.
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP and LSSUSPENDED states may only be set
122 * when returning to user space in userret(), or when sleeping
123 * interruptably. Before setting those states, we try to ensure
124 * that the LWPs will release all kernel locks that they hold,
125 * and at a minimum try to ensure that the LWP can be set runnable
126 * again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Locking
145 *
146 * The majority of fields in 'struct lwp' are covered by a single,
147 * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 * each field are documented in sys/lwp.h.
149 *
150 * State transitions must be made with the LWP's general lock held. In
151 * a multiprocessor kernel, state transitions may cause the LWP's lock
152 * pointer to change. On uniprocessor kernels, most scheduler and
153 * synchronisation objects such as sleep queues and LWPs are protected
154 * by only one mutex (spc_mutex on single CPU). In this case, LWPs' lock
155 * pointers will never change and will always reference spc_mutex.
156 * Please note that in a multiprocessor kernel each CPU has own spc_mutex.
157 * (spc_mutex here refers to l->l_cpu->ci_schedstate.spc_mutex).
158 *
159 * Manipulation of the general lock is not performed directly, but
160 * through calls to lwp_lock(), lwp_relock() and similar.
161 *
162 * States and their associated locks:
163 *
164 * LSIDL, LSZOMB
165 *
166 * Always covered by spc_mutex.
167 *
168 * LSONPROC, LSRUN:
169 *
170 * Always covered by spc_mutex, which protects the run queues
171 * and other miscellaneous items. If the scheduler is changed
172 * to use per-CPU run queues, this may become a per-CPU mutex.
173 *
174 * LSSLEEP:
175 *
176 * Covered by a mutex associated with the sleep queue that the
177 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
178 *
179 * LSSTOP, LSSUSPENDED:
180 *
181 * If the LWP was previously sleeping (l_wchan != NULL), then
182 * l_mutex references the sleep queue mutex. If the LWP was
183 * runnable or on the CPU when halted, or has been removed from
184 * the sleep queue since halted, then the mutex is spc_mutex.
185 *
186 * The lock order is as follows:
187 *
188 * sleepq_t::sq_mutex |---> spc_mutex
189 * tschain_t::tc_mutex |
190 *
191 * Each process has an scheduler state mutex (proc::p_smutex), and a
192 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
193 * so on. When an LWP is to be entered into or removed from one of the
194 * following states, p_mutex must be held and the process wide counters
195 * adjusted:
196 *
197 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
198 *
199 * Note that an LWP is considered running or likely to run soon if in
200 * one of the following states. This affects the value of p_nrlwps:
201 *
202 * LSRUN, LSONPROC, LSSLEEP
203 *
204 * p_smutex does not need to be held when transitioning among these
205 * three states.
206 */
207
208 #include <sys/cdefs.h>
209 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.55.2.13 2007/04/21 15:50:15 ad Exp $");
210
211 #include "opt_multiprocessor.h"
212 #include "opt_lockdebug.h"
213
214 #define _LWP_API_PRIVATE
215
216 #include <sys/param.h>
217 #include <sys/systm.h>
218 #include <sys/cpu.h>
219 #include <sys/pool.h>
220 #include <sys/proc.h>
221 #include <sys/syscallargs.h>
222 #include <sys/syscall_stats.h>
223 #include <sys/kauth.h>
224 #include <sys/sleepq.h>
225 #include <sys/lockdebug.h>
226 #include <sys/kmem.h>
227
228 #include <uvm/uvm_extern.h>
229
230 struct lwplist alllwp;
231
232 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
233 &pool_allocator_nointr, IPL_NONE);
234 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
235 &pool_allocator_nointr, IPL_NONE);
236
237 static specificdata_domain_t lwp_specificdata_domain;
238
239 #define LWP_DEBUG
240
241 #ifdef LWP_DEBUG
242 int lwp_debug = 0;
243 #define DPRINTF(x) if (lwp_debug) printf x
244 #else
245 #define DPRINTF(x)
246 #endif
247
248 void
249 lwpinit(void)
250 {
251
252 lwp_specificdata_domain = specificdata_domain_create();
253 KASSERT(lwp_specificdata_domain != NULL);
254 lwp_sys_init();
255 }
256
257 /*
258 * Set an suspended.
259 *
260 * Must be called with p_smutex held, and the LWP locked. Will unlock the
261 * LWP before return.
262 */
263 int
264 lwp_suspend(struct lwp *curl, struct lwp *t)
265 {
266 int error;
267
268 KASSERT(mutex_owned(&t->l_proc->p_smutex));
269 KASSERT(lwp_locked(t, NULL));
270
271 KASSERT(curl != t || curl->l_stat == LSONPROC);
272
273 /*
274 * If the current LWP has been told to exit, we must not suspend anyone
275 * else or deadlock could occur. We won't return to userspace.
276 */
277 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
278 lwp_unlock(t);
279 return (EDEADLK);
280 }
281
282 error = 0;
283
284 switch (t->l_stat) {
285 case LSRUN:
286 case LSONPROC:
287 t->l_flag |= LW_WSUSPEND;
288 lwp_need_userret(t);
289 lwp_unlock(t);
290 break;
291
292 case LSSLEEP:
293 t->l_flag |= LW_WSUSPEND;
294
295 /*
296 * Kick the LWP and try to get it to the kernel boundary
297 * so that it will release any locks that it holds.
298 * setrunnable() will release the lock.
299 */
300 if ((t->l_flag & LW_SINTR) != 0)
301 setrunnable(t);
302 else
303 lwp_unlock(t);
304 break;
305
306 case LSSUSPENDED:
307 lwp_unlock(t);
308 break;
309
310 case LSSTOP:
311 t->l_flag |= LW_WSUSPEND;
312 setrunnable(t);
313 break;
314
315 case LSIDL:
316 case LSZOMB:
317 error = EINTR; /* It's what Solaris does..... */
318 lwp_unlock(t);
319 break;
320 }
321
322 /*
323 * XXXLWP Wait for:
324 *
325 * o process exiting
326 * o target LWP suspended
327 * o target LWP not suspended and L_WSUSPEND clear
328 * o target LWP exited
329 */
330
331 return (error);
332 }
333
334 /*
335 * Restart a suspended LWP.
336 *
337 * Must be called with p_smutex held, and the LWP locked. Will unlock the
338 * LWP before return.
339 */
340 void
341 lwp_continue(struct lwp *l)
342 {
343
344 KASSERT(mutex_owned(&l->l_proc->p_smutex));
345 KASSERT(lwp_locked(l, NULL));
346
347 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
348 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
349 l->l_wchan));
350
351 /* If rebooting or not suspended, then just bail out. */
352 if ((l->l_flag & LW_WREBOOT) != 0) {
353 lwp_unlock(l);
354 return;
355 }
356
357 l->l_flag &= ~LW_WSUSPEND;
358
359 if (l->l_stat != LSSUSPENDED) {
360 lwp_unlock(l);
361 return;
362 }
363
364 /* setrunnable() will release the lock. */
365 setrunnable(l);
366 }
367
368 /*
369 * Wait for an LWP within the current process to exit. If 'lid' is
370 * non-zero, we are waiting for a specific LWP.
371 *
372 * Must be called with p->p_smutex held.
373 */
374 int
375 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
376 {
377 struct proc *p = l->l_proc;
378 struct lwp *l2;
379 int nfound, error;
380 lwpid_t curlid;
381 bool exiting;
382
383 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
384 p->p_pid, l->l_lid, lid));
385
386 KASSERT(mutex_owned(&p->p_smutex));
387
388 p->p_nlwpwait++;
389 l->l_waitingfor = lid;
390 curlid = l->l_lid;
391 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
392
393 for (;;) {
394 /*
395 * Avoid a race between exit1() and sigexit(): if the
396 * process is dumping core, then we need to bail out: call
397 * into lwp_userret() where we will be suspended until the
398 * deed is done.
399 */
400 if ((p->p_sflag & PS_WCORE) != 0) {
401 mutex_exit(&p->p_smutex);
402 lwp_userret(l);
403 #ifdef DIAGNOSTIC
404 panic("lwp_wait1");
405 #endif
406 /* NOTREACHED */
407 }
408
409 /*
410 * First off, drain any detached LWP that is waiting to be
411 * reaped.
412 */
413 while ((l2 = p->p_zomblwp) != NULL) {
414 p->p_zomblwp = NULL;
415 lwp_free(l2, false, false);/* releases proc mutex */
416 mutex_enter(&p->p_smutex);
417 }
418
419 /*
420 * Now look for an LWP to collect. If the whole process is
421 * exiting, count detached LWPs as eligible to be collected,
422 * but don't drain them here.
423 */
424 nfound = 0;
425 error = 0;
426 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
427 /*
428 * If a specific wait and the target is waiting on
429 * us, then avoid deadlock. This also traps LWPs
430 * that try to wait on themselves.
431 *
432 * Note that this does not handle more complicated
433 * cycles, like: t1 -> t2 -> t3 -> t1. The process
434 * can still be killed so it is not a major problem.
435 */
436 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
437 error = EDEADLK;
438 break;
439 }
440 if (l2 == l)
441 continue;
442 if ((l2->l_prflag & LPR_DETACHED) != 0) {
443 nfound += exiting;
444 continue;
445 }
446 if (lid != 0) {
447 if (l2->l_lid != lid)
448 continue;
449 /*
450 * Mark this LWP as the first waiter, if there
451 * is no other.
452 */
453 if (l2->l_waiter == 0)
454 l2->l_waiter = curlid;
455 } else if (l2->l_waiter != 0) {
456 /*
457 * It already has a waiter - so don't
458 * collect it. If the waiter doesn't
459 * grab it we'll get another chance
460 * later.
461 */
462 nfound++;
463 continue;
464 }
465 nfound++;
466
467 /* No need to lock the LWP in order to see LSZOMB. */
468 if (l2->l_stat != LSZOMB)
469 continue;
470
471 /*
472 * We're no longer waiting. Reset the "first waiter"
473 * pointer on the target, in case it was us.
474 */
475 l->l_waitingfor = 0;
476 l2->l_waiter = 0;
477 p->p_nlwpwait--;
478 if (departed)
479 *departed = l2->l_lid;
480
481 /* lwp_free() releases the proc lock. */
482 lwp_free(l2, false, false);
483 mutex_enter(&p->p_smutex);
484 return 0;
485 }
486
487 if (error != 0)
488 break;
489 if (nfound == 0) {
490 error = ESRCH;
491 break;
492 }
493
494 /*
495 * The kernel is careful to ensure that it can not deadlock
496 * when exiting - just keep waiting.
497 */
498 if (exiting) {
499 KASSERT(p->p_nlwps > 1);
500 cv_wait(&p->p_lwpcv, &p->p_smutex);
501 continue;
502 }
503
504 /*
505 * If all other LWPs are waiting for exits or suspends
506 * and the supply of zombies and potential zombies is
507 * exhausted, then we are about to deadlock.
508 *
509 * If the process is exiting (and this LWP is not the one
510 * that is coordinating the exit) then bail out now.
511 */
512 if ((p->p_sflag & PS_WEXIT) != 0 ||
513 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
514 error = EDEADLK;
515 break;
516 }
517
518 /*
519 * Sit around and wait for something to happen. We'll be
520 * awoken if any of the conditions examined change: if an
521 * LWP exits, is collected, or is detached.
522 */
523 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
524 break;
525 }
526
527 /*
528 * We didn't find any LWPs to collect, we may have received a
529 * signal, or some other condition has caused us to bail out.
530 *
531 * If waiting on a specific LWP, clear the waiters marker: some
532 * other LWP may want it. Then, kick all the remaining waiters
533 * so that they can re-check for zombies and for deadlock.
534 */
535 if (lid != 0) {
536 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
537 if (l2->l_lid == lid) {
538 if (l2->l_waiter == curlid)
539 l2->l_waiter = 0;
540 break;
541 }
542 }
543 }
544 p->p_nlwpwait--;
545 l->l_waitingfor = 0;
546 cv_broadcast(&p->p_lwpcv);
547
548 return error;
549 }
550
551 /*
552 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
553 * The new LWP is created in state LSIDL and must be set running,
554 * suspended, or stopped by the caller.
555 */
556 int
557 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
558 int flags, void *stack, size_t stacksize,
559 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
560 {
561 struct lwp *l2, *isfree;
562 turnstile_t *ts;
563
564 /*
565 * First off, reap any detached LWP waiting to be collected.
566 * We can re-use its LWP structure and turnstile.
567 */
568 isfree = NULL;
569 if (p2->p_zomblwp != NULL) {
570 mutex_enter(&p2->p_smutex);
571 if ((isfree = p2->p_zomblwp) != NULL) {
572 p2->p_zomblwp = NULL;
573 lwp_free(isfree, true, false);/* releases proc mutex */
574 } else
575 mutex_exit(&p2->p_smutex);
576 }
577 if (isfree == NULL) {
578 l2 = pool_get(&lwp_pool, PR_WAITOK);
579 memset(l2, 0, sizeof(*l2));
580 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
581 SLIST_INIT(&l2->l_pi_lenders);
582 } else {
583 l2 = isfree;
584 ts = l2->l_ts;
585 KASSERT(l2->l_inheritedprio == MAXPRI);
586 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
587 memset(l2, 0, sizeof(*l2));
588 l2->l_ts = ts;
589 }
590
591 l2->l_stat = LSIDL;
592 l2->l_proc = p2;
593 l2->l_refcnt = 1;
594 l2->l_priority = l1->l_priority;
595 l2->l_usrpri = l1->l_usrpri;
596 l2->l_inheritedprio = MAXPRI;
597 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
598 l2->l_cpu = l1->l_cpu;
599 l2->l_flag = inmem ? LW_INMEM : 0;
600 lwp_initspecific(l2);
601 sched_lwp_fork(l2);
602
603 if (p2->p_flag & PK_SYSTEM) {
604 /*
605 * Mark it as a system process and not a candidate for
606 * swapping.
607 */
608 l2->l_flag |= LW_SYSTEM;
609 }
610
611 lwp_update_creds(l2);
612 callout_init(&l2->l_tsleep_ch);
613 cv_init(&l2->l_sigcv, "sigwait");
614 l2->l_syncobj = &sched_syncobj;
615
616 if (rnewlwpp != NULL)
617 *rnewlwpp = l2;
618
619 l2->l_addr = UAREA_TO_USER(uaddr);
620 uvm_lwp_fork(l1, l2, stack, stacksize, func,
621 (arg != NULL) ? arg : l2);
622
623 mutex_enter(&p2->p_smutex);
624
625 if ((flags & LWP_DETACHED) != 0) {
626 l2->l_prflag = LPR_DETACHED;
627 p2->p_ndlwps++;
628 } else
629 l2->l_prflag = 0;
630
631 l2->l_sigmask = l1->l_sigmask;
632 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
633 sigemptyset(&l2->l_sigpend.sp_set);
634
635 p2->p_nlwpid++;
636 if (p2->p_nlwpid == 0)
637 p2->p_nlwpid++;
638 l2->l_lid = p2->p_nlwpid;
639 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
640 p2->p_nlwps++;
641
642 mutex_exit(&p2->p_smutex);
643
644 mutex_enter(&proclist_mutex);
645 LIST_INSERT_HEAD(&alllwp, l2, l_list);
646 mutex_exit(&proclist_mutex);
647
648 SYSCALL_TIME_LWP_INIT(l2);
649
650 if (p2->p_emul->e_lwp_fork)
651 (*p2->p_emul->e_lwp_fork)(l1, l2);
652
653 return (0);
654 }
655
656 /*
657 * Called by MD code when a new LWP begins execution. Must be called
658 * with the previous LWP locked (so at splsched), or if there is no
659 * previous LWP, at splsched.
660 */
661 void
662 lwp_startup(struct lwp *prev, struct lwp *new)
663 {
664
665 curlwp = new;
666 if (prev != NULL) {
667 lwp_unlock(prev);
668 }
669 spl0();
670 pmap_activate(new);
671 LOCKDEBUG_BARRIER(NULL, 0);
672 KERNEL_LOCK(1, new);
673 }
674
675 /*
676 * Quit the process.
677 * this can only be used meaningfully if you're willing to switch away.
678 * Calling with l != curlwp would be weird.
679 */
680 void
681 lwp_exit(struct lwp *l)
682 {
683 struct proc *p = l->l_proc;
684 struct lwp *l2;
685
686 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
687 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
688
689 /*
690 * Verify that we hold no locks other than the kernel lock.
691 */
692 #ifdef MULTIPROCESSOR
693 LOCKDEBUG_BARRIER(&kernel_lock, 0);
694 #else
695 LOCKDEBUG_BARRIER(NULL, 0);
696 #endif
697
698 /*
699 * If we are the last live LWP in a process, we need to exit the
700 * entire process. We do so with an exit status of zero, because
701 * it's a "controlled" exit, and because that's what Solaris does.
702 *
703 * We are not quite a zombie yet, but for accounting purposes we
704 * must increment the count of zombies here.
705 *
706 * Note: the last LWP's specificdata will be deleted here.
707 */
708 mutex_enter(&p->p_smutex);
709 if (p->p_nlwps - p->p_nzlwps == 1) {
710 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
711 p->p_pid, l->l_lid));
712 exit1(l, 0);
713 /* NOTREACHED */
714 }
715 p->p_nzlwps++;
716 mutex_exit(&p->p_smutex);
717
718 if (p->p_emul->e_lwp_exit)
719 (*p->p_emul->e_lwp_exit)(l);
720
721 /* Delete the specificdata while it's still safe to sleep. */
722 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
723
724 /*
725 * Release our cached credentials.
726 */
727 kauth_cred_free(l->l_cred);
728
729 /*
730 * Remove the LWP from the global list.
731 */
732 mutex_enter(&proclist_mutex);
733 LIST_REMOVE(l, l_list);
734 mutex_exit(&proclist_mutex);
735
736 /*
737 * Get rid of all references to the LWP that others (e.g. procfs)
738 * may have, and mark the LWP as a zombie. If the LWP is detached,
739 * mark it waiting for collection in the proc structure. Note that
740 * before we can do that, we need to free any other dead, deatched
741 * LWP waiting to meet its maker.
742 *
743 * XXXSMP disable preemption.
744 */
745 mutex_enter(&p->p_smutex);
746 lwp_drainrefs(l);
747
748 if ((l->l_prflag & LPR_DETACHED) != 0) {
749 while ((l2 = p->p_zomblwp) != NULL) {
750 p->p_zomblwp = NULL;
751 lwp_free(l2, false, false);/* releases proc mutex */
752 mutex_enter(&p->p_smutex);
753 }
754 p->p_zomblwp = l;
755 }
756
757 /*
758 * If we find a pending signal for the process and we have been
759 * asked to check for signals, then we loose: arrange to have
760 * all other LWPs in the process check for signals.
761 */
762 if ((l->l_flag & LW_PENDSIG) != 0 &&
763 firstsig(&p->p_sigpend.sp_set) != 0) {
764 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
765 lwp_lock(l2);
766 l2->l_flag |= LW_PENDSIG;
767 lwp_unlock(l2);
768 }
769 }
770
771 lwp_lock(l);
772 l->l_stat = LSZOMB;
773 lwp_unlock(l);
774 p->p_nrlwps--;
775 cv_broadcast(&p->p_lwpcv);
776 mutex_exit(&p->p_smutex);
777
778 /*
779 * We can no longer block. At this point, lwp_free() may already
780 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
781 *
782 * Free MD LWP resources.
783 */
784 #ifndef __NO_CPU_LWP_FREE
785 cpu_lwp_free(l, 0);
786 #endif
787 pmap_deactivate(l);
788
789 /*
790 * Release the kernel lock, signal another LWP to collect us,
791 * and switch away into oblivion.
792 */
793 #ifdef notyet
794 /* XXXSMP hold in lwp_userret() */
795 KERNEL_UNLOCK_LAST(l);
796 #else
797 KERNEL_UNLOCK_ALL(l, NULL);
798 #endif
799
800 lwp_exit_switchaway(l);
801 }
802
803 void
804 lwp_exit_switchaway(struct lwp *l)
805 {
806 struct cpu_info *ci;
807 struct lwp *idlelwp;
808
809 /* Unlocked, but is for statistics only. */
810 uvmexp.swtch++;
811
812 (void)splsched();
813 l->l_flag &= ~LW_RUNNING;
814 ci = curcpu();
815 idlelwp = ci->ci_data.cpu_idlelwp;
816 idlelwp->l_stat = LSONPROC;
817 cpu_switchto(NULL, idlelwp);
818 }
819
820 /*
821 * Free a dead LWP's remaining resources.
822 *
823 * XXXLWP limits.
824 */
825 void
826 lwp_free(struct lwp *l, bool recycle, bool last)
827 {
828 struct proc *p = l->l_proc;
829 ksiginfoq_t kq;
830
831 /*
832 * If this was not the last LWP in the process, then adjust
833 * counters and unlock.
834 */
835 if (!last) {
836 /*
837 * Add the LWP's run time to the process' base value.
838 * This needs to co-incide with coming off p_lwps.
839 */
840 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
841 p->p_pctcpu += l->l_pctcpu;
842 LIST_REMOVE(l, l_sibling);
843 p->p_nlwps--;
844 p->p_nzlwps--;
845 if ((l->l_prflag & LPR_DETACHED) != 0)
846 p->p_ndlwps--;
847
848 /*
849 * Have any LWPs sleeping in lwp_wait() recheck for
850 * deadlock.
851 */
852 cv_broadcast(&p->p_lwpcv);
853 mutex_exit(&p->p_smutex);
854 }
855
856 #ifdef MULTIPROCESSOR
857 /*
858 * In the unlikely event that the LWP is still on the CPU,
859 * then spin until it has switched away. We need to release
860 * all locks to avoid deadlock against interrupt handlers on
861 * the target CPU.
862 */
863 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
864 int count;
865 (void)count; /* XXXgcc */
866 KERNEL_UNLOCK_ALL(curlwp, &count);
867 while ((l->l_flag & LW_RUNNING) != 0 ||
868 l->l_cpu->ci_curlwp == l)
869 SPINLOCK_BACKOFF_HOOK;
870 KERNEL_LOCK(count, curlwp);
871 }
872 #endif
873
874 /*
875 * Destroy the LWP's remaining signal information.
876 */
877 ksiginfo_queue_init(&kq);
878 sigclear(&l->l_sigpend, NULL, &kq);
879 ksiginfo_queue_drain(&kq);
880 cv_destroy(&l->l_sigcv);
881
882 /*
883 * Free the LWP's turnstile and the LWP structure itself unless the
884 * caller wants to recycle them. Also, free the scheduler specific data.
885 *
886 * We can't return turnstile0 to the pool (it didn't come from it),
887 * so if it comes up just drop it quietly and move on.
888 *
889 * We don't recycle the VM resources at this time.
890 */
891 KERNEL_LOCK(1, curlwp); /* XXXSMP */
892
893 sched_lwp_exit(l);
894
895 if (!recycle && l->l_ts != &turnstile0)
896 pool_cache_put(&turnstile_cache, l->l_ts);
897 #ifndef __NO_CPU_LWP_FREE
898 cpu_lwp_free2(l);
899 #endif
900 uvm_lwp_exit(l);
901 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
902 KASSERT(l->l_inheritedprio == MAXPRI);
903 if (!recycle)
904 pool_put(&lwp_pool, l);
905 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
906 }
907
908 /*
909 * Pick a LWP to represent the process for those operations which
910 * want information about a "process" that is actually associated
911 * with a LWP.
912 *
913 * If 'locking' is false, no locking or lock checks are performed.
914 * This is intended for use by DDB.
915 *
916 * We don't bother locking the LWP here, since code that uses this
917 * interface is broken by design and an exact match is not required.
918 */
919 struct lwp *
920 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
921 {
922 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
923 struct lwp *signalled;
924 int cnt;
925
926 if (locking) {
927 KASSERT(mutex_owned(&p->p_smutex));
928 }
929
930 /* Trivial case: only one LWP */
931 if (p->p_nlwps == 1) {
932 l = LIST_FIRST(&p->p_lwps);
933 if (nrlwps)
934 *nrlwps = (l->l_stat == LSONPROC || LSRUN);
935 return l;
936 }
937
938 cnt = 0;
939 switch (p->p_stat) {
940 case SSTOP:
941 case SACTIVE:
942 /* Pick the most live LWP */
943 onproc = running = sleeping = stopped = suspended = NULL;
944 signalled = NULL;
945 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
946 if ((l->l_flag & LW_IDLE) != 0) {
947 continue;
948 }
949 if (l->l_lid == p->p_sigctx.ps_lwp)
950 signalled = l;
951 switch (l->l_stat) {
952 case LSONPROC:
953 onproc = l;
954 cnt++;
955 break;
956 case LSRUN:
957 running = l;
958 cnt++;
959 break;
960 case LSSLEEP:
961 sleeping = l;
962 break;
963 case LSSTOP:
964 stopped = l;
965 break;
966 case LSSUSPENDED:
967 suspended = l;
968 break;
969 }
970 }
971 if (nrlwps)
972 *nrlwps = cnt;
973 if (signalled)
974 l = signalled;
975 else if (onproc)
976 l = onproc;
977 else if (running)
978 l = running;
979 else if (sleeping)
980 l = sleeping;
981 else if (stopped)
982 l = stopped;
983 else if (suspended)
984 l = suspended;
985 else
986 break;
987 return l;
988 if (nrlwps)
989 *nrlwps = 0;
990 l = LIST_FIRST(&p->p_lwps);
991 return l;
992 #ifdef DIAGNOSTIC
993 case SIDL:
994 case SZOMB:
995 case SDYING:
996 case SDEAD:
997 if (locking)
998 mutex_exit(&p->p_smutex);
999 /* We have more than one LWP and we're in SIDL?
1000 * How'd that happen?
1001 */
1002 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1003 p->p_pid, p->p_comm, p->p_stat);
1004 break;
1005 default:
1006 if (locking)
1007 mutex_exit(&p->p_smutex);
1008 panic("Process %d (%s) in unknown state %d",
1009 p->p_pid, p->p_comm, p->p_stat);
1010 #endif
1011 }
1012
1013 if (locking)
1014 mutex_exit(&p->p_smutex);
1015 panic("proc_representative_lwp: couldn't find a lwp for process"
1016 " %d (%s)", p->p_pid, p->p_comm);
1017 /* NOTREACHED */
1018 return NULL;
1019 }
1020
1021 /*
1022 * Look up a live LWP within the speicifed process, and return it locked.
1023 *
1024 * Must be called with p->p_smutex held.
1025 */
1026 struct lwp *
1027 lwp_find(struct proc *p, int id)
1028 {
1029 struct lwp *l;
1030
1031 KASSERT(mutex_owned(&p->p_smutex));
1032
1033 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1034 if (l->l_lid == id)
1035 break;
1036 }
1037
1038 /*
1039 * No need to lock - all of these conditions will
1040 * be visible with the process level mutex held.
1041 */
1042 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1043 l = NULL;
1044
1045 return l;
1046 }
1047
1048 /*
1049 * Update an LWP's cached credentials to mirror the process' master copy.
1050 *
1051 * This happens early in the syscall path, on user trap, and on LWP
1052 * creation. A long-running LWP can also voluntarily choose to update
1053 * it's credentials by calling this routine. This may be called from
1054 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1055 */
1056 void
1057 lwp_update_creds(struct lwp *l)
1058 {
1059 kauth_cred_t oc;
1060 struct proc *p;
1061
1062 p = l->l_proc;
1063 oc = l->l_cred;
1064
1065 mutex_enter(&p->p_mutex);
1066 kauth_cred_hold(p->p_cred);
1067 l->l_cred = p->p_cred;
1068 mutex_exit(&p->p_mutex);
1069 if (oc != NULL) {
1070 KERNEL_LOCK(1, l); /* XXXSMP */
1071 kauth_cred_free(oc);
1072 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
1073 }
1074 }
1075
1076 /*
1077 * Verify that an LWP is locked, and optionally verify that the lock matches
1078 * one we specify.
1079 */
1080 int
1081 lwp_locked(struct lwp *l, kmutex_t *mtx)
1082 {
1083 kmutex_t *cur = l->l_mutex;
1084
1085 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1086 }
1087
1088 /*
1089 * Lock an LWP.
1090 */
1091 void
1092 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1093 {
1094
1095 /*
1096 * XXXgcc ignoring kmutex_t * volatile on i386
1097 *
1098 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1099 */
1100 #if 1
1101 while (l->l_mutex != old) {
1102 #else
1103 for (;;) {
1104 #endif
1105 mutex_spin_exit(old);
1106 old = l->l_mutex;
1107 mutex_spin_enter(old);
1108
1109 /*
1110 * mutex_enter() will have posted a read barrier. Re-test
1111 * l->l_mutex. If it has changed, we need to try again.
1112 */
1113 #if 1
1114 }
1115 #else
1116 } while (__predict_false(l->l_mutex != old));
1117 #endif
1118 }
1119
1120 /*
1121 * Lend a new mutex to an LWP. The old mutex must be held.
1122 */
1123 void
1124 lwp_setlock(struct lwp *l, kmutex_t *new)
1125 {
1126
1127 KASSERT(mutex_owned(l->l_mutex));
1128
1129 mb_write();
1130 l->l_mutex = new;
1131 }
1132
1133 /*
1134 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1135 * must be held.
1136 */
1137 void
1138 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1139 {
1140 kmutex_t *old;
1141
1142 KASSERT(mutex_owned(l->l_mutex));
1143
1144 old = l->l_mutex;
1145 mb_write();
1146 l->l_mutex = new;
1147 mutex_spin_exit(old);
1148 }
1149
1150 /*
1151 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1152 * locked.
1153 */
1154 void
1155 lwp_relock(struct lwp *l, kmutex_t *new)
1156 {
1157 kmutex_t *old;
1158
1159 KASSERT(mutex_owned(l->l_mutex));
1160
1161 old = l->l_mutex;
1162 if (old != new) {
1163 mutex_spin_enter(new);
1164 l->l_mutex = new;
1165 mutex_spin_exit(old);
1166 }
1167 }
1168
1169 int
1170 lwp_trylock(struct lwp *l)
1171 {
1172 kmutex_t *old;
1173
1174 for (;;) {
1175 if (!mutex_tryenter(old = l->l_mutex))
1176 return 0;
1177 if (__predict_true(l->l_mutex == old))
1178 return 1;
1179 mutex_spin_exit(old);
1180 }
1181 }
1182
1183 /*
1184 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1185 * set.
1186 */
1187 void
1188 lwp_userret(struct lwp *l)
1189 {
1190 struct proc *p;
1191 void (*hook)(void);
1192 int sig;
1193
1194 p = l->l_proc;
1195
1196 /*
1197 * It should be safe to do this read unlocked on a multiprocessor
1198 * system..
1199 */
1200 while ((l->l_flag & LW_USERRET) != 0) {
1201 /*
1202 * Process pending signals first, unless the process
1203 * is dumping core or exiting, where we will instead
1204 * enter the L_WSUSPEND case below.
1205 */
1206 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1207 LW_PENDSIG) {
1208 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1209 mutex_enter(&p->p_smutex);
1210 while ((sig = issignal(l)) != 0)
1211 postsig(sig);
1212 mutex_exit(&p->p_smutex);
1213 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1214 }
1215
1216 /*
1217 * Core-dump or suspend pending.
1218 *
1219 * In case of core dump, suspend ourselves, so that the
1220 * kernel stack and therefore the userland registers saved
1221 * in the trapframe are around for coredump() to write them
1222 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1223 * will write the core file out once all other LWPs are
1224 * suspended.
1225 */
1226 if ((l->l_flag & LW_WSUSPEND) != 0) {
1227 mutex_enter(&p->p_smutex);
1228 p->p_nrlwps--;
1229 cv_broadcast(&p->p_lwpcv);
1230 lwp_lock(l);
1231 l->l_stat = LSSUSPENDED;
1232 mutex_exit(&p->p_smutex);
1233 mi_switch(l);
1234 }
1235
1236 /* Process is exiting. */
1237 if ((l->l_flag & LW_WEXIT) != 0) {
1238 KERNEL_LOCK(1, l);
1239 lwp_exit(l);
1240 KASSERT(0);
1241 /* NOTREACHED */
1242 }
1243
1244 /* Call userret hook; used by Linux emulation. */
1245 if ((l->l_flag & LW_WUSERRET) != 0) {
1246 lwp_lock(l);
1247 l->l_flag &= ~LW_WUSERRET;
1248 lwp_unlock(l);
1249 hook = p->p_userret;
1250 p->p_userret = NULL;
1251 (*hook)();
1252 }
1253 }
1254 }
1255
1256 /*
1257 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1258 */
1259 void
1260 lwp_need_userret(struct lwp *l)
1261 {
1262 KASSERT(lwp_locked(l, NULL));
1263
1264 /*
1265 * Since the tests in lwp_userret() are done unlocked, make sure
1266 * that the condition will be seen before forcing the LWP to enter
1267 * kernel mode.
1268 */
1269 mb_write();
1270 cpu_signotify(l);
1271 }
1272
1273 /*
1274 * Add one reference to an LWP. This will prevent the LWP from
1275 * exiting, thus keep the lwp structure and PCB around to inspect.
1276 */
1277 void
1278 lwp_addref(struct lwp *l)
1279 {
1280
1281 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1282 KASSERT(l->l_stat != LSZOMB);
1283 KASSERT(l->l_refcnt != 0);
1284
1285 l->l_refcnt++;
1286 }
1287
1288 /*
1289 * Remove one reference to an LWP. If this is the last reference,
1290 * then we must finalize the LWP's death.
1291 */
1292 void
1293 lwp_delref(struct lwp *l)
1294 {
1295 struct proc *p = l->l_proc;
1296
1297 mutex_enter(&p->p_smutex);
1298 if (--l->l_refcnt == 0)
1299 cv_broadcast(&p->p_refcv);
1300 mutex_exit(&p->p_smutex);
1301 }
1302
1303 /*
1304 * Drain all references to the current LWP.
1305 */
1306 void
1307 lwp_drainrefs(struct lwp *l)
1308 {
1309 struct proc *p = l->l_proc;
1310
1311 KASSERT(mutex_owned(&p->p_smutex));
1312 KASSERT(l->l_refcnt != 0);
1313
1314 l->l_refcnt--;
1315 while (l->l_refcnt != 0)
1316 cv_wait(&p->p_refcv, &p->p_smutex);
1317 }
1318
1319 /*
1320 * lwp_specific_key_create --
1321 * Create a key for subsystem lwp-specific data.
1322 */
1323 int
1324 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1325 {
1326
1327 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1328 }
1329
1330 /*
1331 * lwp_specific_key_delete --
1332 * Delete a key for subsystem lwp-specific data.
1333 */
1334 void
1335 lwp_specific_key_delete(specificdata_key_t key)
1336 {
1337
1338 specificdata_key_delete(lwp_specificdata_domain, key);
1339 }
1340
1341 /*
1342 * lwp_initspecific --
1343 * Initialize an LWP's specificdata container.
1344 */
1345 void
1346 lwp_initspecific(struct lwp *l)
1347 {
1348 int error;
1349
1350 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1351 KASSERT(error == 0);
1352 }
1353
1354 /*
1355 * lwp_finispecific --
1356 * Finalize an LWP's specificdata container.
1357 */
1358 void
1359 lwp_finispecific(struct lwp *l)
1360 {
1361
1362 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1363 }
1364
1365 /*
1366 * lwp_getspecific --
1367 * Return lwp-specific data corresponding to the specified key.
1368 *
1369 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1370 * only its OWN SPECIFIC DATA. If it is necessary to access another
1371 * LWP's specifc data, care must be taken to ensure that doing so
1372 * would not cause internal data structure inconsistency (i.e. caller
1373 * can guarantee that the target LWP is not inside an lwp_getspecific()
1374 * or lwp_setspecific() call).
1375 */
1376 void *
1377 lwp_getspecific(specificdata_key_t key)
1378 {
1379
1380 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1381 &curlwp->l_specdataref, key));
1382 }
1383
1384 void *
1385 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1386 {
1387
1388 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1389 &l->l_specdataref, key));
1390 }
1391
1392 /*
1393 * lwp_setspecific --
1394 * Set lwp-specific data corresponding to the specified key.
1395 */
1396 void
1397 lwp_setspecific(specificdata_key_t key, void *data)
1398 {
1399
1400 specificdata_setspecific(lwp_specificdata_domain,
1401 &curlwp->l_specdataref, key, data);
1402 }
1403