Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.55.2.2
      1 /*	$NetBSD: kern_lwp.c,v 1.55.2.2 2007/02/18 13:09:03 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit (or thread) of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp".
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing in kernel simultaneously.
     52  *
     53  *	Note that LWPs differ from kernel threads (kthreads) in that kernel
     54  *	threads are distinct processes (system processes) with no user space
     55  *	component, which themselves may contain one or more LWPs.
     56  *
     57  * Execution states
     58  *
     59  *	At any given time, an LWP has overall state that is described by
     60  *	lwp::l_stat.  The states are broken into two sets below.  The first
     61  *	set is guaranteed to represent the absolute, current state of the
     62  *	LWP:
     63  *
     64  * 	LSONPROC
     65  *
     66  * 		On processor: the LWP is executing on a CPU, either in the
     67  * 		kernel or in user space.
     68  *
     69  * 	LSRUN
     70  *
     71  * 		Runnable: the LWP is parked on a run queue, and may soon be
     72  * 		chosen to run by a idle processor, or by a processor that
     73  * 		has been asked to preempt a currently runnning but lower
     74  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     75  *		then the LWP is not on a run queue, but may be soon.
     76  *
     77  * 	LSIDL
     78  *
     79  * 		Idle: the LWP has been created but has not yet executed.
     80  * 		Whoever created the new LWP can be expected to set it to
     81  * 		another state shortly.
     82  *
     83  * 	LSSUSPENDED:
     84  *
     85  * 		Suspended: the LWP has had its execution suspended by
     86  *		another LWP in the same process using the _lwp_suspend()
     87  *		system call.  User-level LWPs also enter the suspended
     88  *		state when the system is shutting down.
     89  *
     90  *	The second set represent a "statement of intent" on behalf of the
     91  *	LWP.  The LWP may in fact be executing on a processor, may be
     92  *	sleeping, idle, or on a run queue. It is expected to take the
     93  *	necessary action to stop executing or become "running" again within
     94  *	a short timeframe.
     95  *
     96  * 	LSZOMB:
     97  *
     98  * 		Dead: the LWP has released most of its resources and is
     99  * 		about to switch away into oblivion.  When it switches away,
    100  * 		its few remaining resources will be collected.
    101  *
    102  * 	LSSLEEP:
    103  *
    104  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    105  * 		will switch away shortly to allow other LWPs to run on the
    106  * 		CPU.
    107  *
    108  * 	LSSTOP:
    109  *
    110  * 		Stopped: the LWP has been stopped as a result of a job
    111  * 		control signal, or as a result of the ptrace() interface.
    112  * 		Stopped LWPs may run briefly within the kernel to handle
    113  * 		signals that they receive, but will not return to user space
    114  * 		until their process' state is changed away from stopped.
    115  * 		Single LWPs within a process can not be set stopped
    116  * 		selectively: all actions that can stop or continue LWPs
    117  * 		occur at the process level.
    118  *
    119  * State transitions
    120  *
    121  *	Note that the LSSTOP and LSSUSPENDED states may only be set
    122  *	when returning to user space in userret(), or when sleeping
    123  *	interruptably.  Before setting those states, we try to ensure
    124  *	that the LWPs will release all kernel locks that they hold,
    125  *	and at a minimum try to ensure that the LWP can be set runnable
    126  *	again by a signal.
    127  *
    128  *	LWPs may transition states in the following ways:
    129  *
    130  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131  *	            > STOPPED			    > SLEEP
    132  *	            > SUSPENDED			    > STOPPED
    133  *						    > SUSPENDED
    134  *						    > ZOMB
    135  *
    136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  *	            > SLEEP			    > SLEEP
    138  *
    139  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  *		    > RUN		            > SUSPENDED
    141  *		    > STOPPED                       > STOPPED
    142  *		    > SUSPENDED
    143  *
    144  * Locking
    145  *
    146  *	The majority of fields in 'struct lwp' are covered by a single,
    147  *	general spin mutex pointed to by lwp::l_mutex.  The locks covering
    148  *	each field are documented in sys/lwp.h.
    149  *
    150  *	State transitions must be made with the LWP's general lock held.  In
    151  *	a multiprocessor kernel, state transitions may cause the LWP's lock
    152  *	pointer to change.  On uniprocessor kernels, most scheduler and
    153  *	synchronisation objects such as sleep queues and LWPs are protected
    154  *	by only one mutex (sched_mutex).  In this case, LWPs' lock pointers
    155  *	will never change and will always reference sched_mutex.
    156  *
    157  *	Manipulation of the general lock is not performed directly, but
    158  *	through calls to lwp_lock(), lwp_relock() and similar.
    159  *
    160  *	States and their associated locks:
    161  *
    162  *	LSIDL, LSZOMB
    163  *
    164  *		Always covered by sched_mutex.
    165  *
    166  *	LSONPROC, LSRUN:
    167  *
    168  *		Always covered by sched_mutex, which protects the run queues
    169  *		and other miscellaneous items.  If the scheduler is changed
    170  *		to use per-CPU run queues, this may become a per-CPU mutex.
    171  *
    172  *	LSSLEEP:
    173  *
    174  *		Covered by a mutex associated with the sleep queue that the
    175  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    176  *
    177  *	LSSTOP, LSSUSPENDED:
    178  *
    179  *		If the LWP was previously sleeping (l_wchan != NULL), then
    180  *		l_mutex references the sleep queue mutex.  If the LWP was
    181  *		runnable or on the CPU when halted, or has been removed from
    182  *		the sleep queue since halted, then the mutex is sched_mutex.
    183  *
    184  *	The lock order is as follows:
    185  *
    186  *		sleepq_t::sq_mutex  |---> sched_mutex
    187  *		tschain_t::tc_mutex |
    188  *
    189  *	Each process has an scheduler state mutex (proc::p_smutex), and a
    190  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    191  *	so on.  When an LWP is to be entered into or removed from one of the
    192  *	following states, p_mutex must be held and the process wide counters
    193  *	adjusted:
    194  *
    195  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    196  *
    197  *	Note that an LWP is considered running or likely to run soon if in
    198  *	one of the following states.  This affects the value of p_nrlwps:
    199  *
    200  *		LSRUN, LSONPROC, LSSLEEP
    201  *
    202  *	p_smutex does not need to be held when transitioning among these
    203  *	three states.
    204  */
    205 
    206 #include <sys/cdefs.h>
    207 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.55.2.2 2007/02/18 13:09:03 yamt Exp $");
    208 
    209 #include "opt_multiprocessor.h"
    210 #include "opt_lockdebug.h"
    211 
    212 #define _LWP_API_PRIVATE
    213 
    214 #include <sys/param.h>
    215 #include <sys/systm.h>
    216 #include <sys/pool.h>
    217 #include <sys/proc.h>
    218 #include <sys/syscallargs.h>
    219 #include <sys/kauth.h>
    220 #include <sys/sleepq.h>
    221 #include <sys/lockdebug.h>
    222 #include <sys/kmem.h>
    223 
    224 #include <uvm/uvm_extern.h>
    225 
    226 struct lwplist	alllwp;
    227 
    228 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    229     &pool_allocator_nointr);
    230 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    231     &pool_allocator_nointr);
    232 
    233 static specificdata_domain_t lwp_specificdata_domain;
    234 
    235 #define LWP_DEBUG
    236 
    237 #ifdef LWP_DEBUG
    238 int lwp_debug = 0;
    239 #define DPRINTF(x) if (lwp_debug) printf x
    240 #else
    241 #define DPRINTF(x)
    242 #endif
    243 
    244 void
    245 lwpinit(void)
    246 {
    247 
    248 	lwp_specificdata_domain = specificdata_domain_create();
    249 	KASSERT(lwp_specificdata_domain != NULL);
    250 	lwp_sys_init();
    251 }
    252 
    253 /*
    254  * Set an suspended.
    255  *
    256  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    257  * LWP before return.
    258  */
    259 int
    260 lwp_suspend(struct lwp *curl, struct lwp *t)
    261 {
    262 	int error;
    263 
    264 	LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
    265 	LOCK_ASSERT(lwp_locked(t, NULL));
    266 
    267 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    268 
    269 	/*
    270 	 * If the current LWP has been told to exit, we must not suspend anyone
    271 	 * else or deadlock could occur.  We won't return to userspace.
    272 	 */
    273 	if ((curl->l_stat & (L_WEXIT | L_WCORE)) != 0) {
    274 		lwp_unlock(t);
    275 		return (EDEADLK);
    276 	}
    277 
    278 	error = 0;
    279 
    280 	switch (t->l_stat) {
    281 	case LSRUN:
    282 	case LSONPROC:
    283 		t->l_flag |= L_WSUSPEND;
    284 		lwp_need_userret(t);
    285 		lwp_unlock(t);
    286 		break;
    287 
    288 	case LSSLEEP:
    289 		t->l_flag |= L_WSUSPEND;
    290 
    291 		/*
    292 		 * Kick the LWP and try to get it to the kernel boundary
    293 		 * so that it will release any locks that it holds.
    294 		 * setrunnable() will release the lock.
    295 		 */
    296 		if ((t->l_flag & L_SINTR) != 0)
    297 			setrunnable(t);
    298 		else
    299 			lwp_unlock(t);
    300 		break;
    301 
    302 	case LSSUSPENDED:
    303 		lwp_unlock(t);
    304 		break;
    305 
    306 	case LSSTOP:
    307 		t->l_flag |= L_WSUSPEND;
    308 		setrunnable(t);
    309 		break;
    310 
    311 	case LSIDL:
    312 	case LSZOMB:
    313 		error = EINTR; /* It's what Solaris does..... */
    314 		lwp_unlock(t);
    315 		break;
    316 	}
    317 
    318 	/*
    319 	 * XXXLWP Wait for:
    320 	 *
    321 	 * o process exiting
    322 	 * o target LWP suspended
    323 	 * o target LWP not suspended and L_WSUSPEND clear
    324 	 * o target LWP exited
    325 	 */
    326 
    327 	 return (error);
    328 }
    329 
    330 /*
    331  * Restart a suspended LWP.
    332  *
    333  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    334  * LWP before return.
    335  */
    336 void
    337 lwp_continue(struct lwp *l)
    338 {
    339 
    340 	LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
    341 	LOCK_ASSERT(lwp_locked(l, NULL));
    342 
    343 	DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
    344 	    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
    345 	    l->l_wchan));
    346 
    347 	/* If rebooting or not suspended, then just bail out. */
    348 	if ((l->l_flag & L_WREBOOT) != 0) {
    349 		lwp_unlock(l);
    350 		return;
    351 	}
    352 
    353 	l->l_flag &= ~L_WSUSPEND;
    354 
    355 	if (l->l_stat != LSSUSPENDED) {
    356 		lwp_unlock(l);
    357 		return;
    358 	}
    359 
    360 	/* setrunnable() will release the lock. */
    361 	setrunnable(l);
    362 }
    363 
    364 /*
    365  * Wait for an LWP within the current process to exit.  If 'lid' is
    366  * non-zero, we are waiting for a specific LWP.
    367  *
    368  * Must be called with p->p_smutex held.
    369  */
    370 int
    371 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    372 {
    373 	struct proc *p = l->l_proc;
    374 	struct lwp *l2;
    375 	int nfound, error;
    376 
    377 	DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
    378 	    p->p_pid, l->l_lid, lid));
    379 
    380 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    381 
    382 	/*
    383 	 * We try to check for deadlock:
    384 	 *
    385 	 * 1) If all other LWPs are waiting for exits or suspended.
    386 	 * 2) If we are trying to wait on ourself.
    387 	 *
    388 	 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
    389 	 * waits, not any-LWP waits) and detect that sort of deadlock, but
    390 	 * we don't have a good place to store the lwp that is being waited
    391 	 * for. wchan is already filled with &p->p_nlwps, and putting the
    392 	 * lwp address in there for deadlock tracing would require exiting
    393 	 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
    394 	 * get threads sleeping on any LWP exiting.
    395 	 */
    396 	if (lid == l->l_lid)
    397 		return EDEADLK;
    398 
    399 	p->p_nlwpwait++;
    400 
    401 	for (;;) {
    402 		/*
    403 		 * Avoid a race between exit1() and sigexit(): if the
    404 		 * process is dumping core, then we need to bail out: call
    405 		 * into lwp_userret() where we will be suspended until the
    406 		 * deed is done.
    407 		 */
    408 		if ((p->p_sflag & PS_WCORE) != 0) {
    409 			mutex_exit(&p->p_smutex);
    410 			lwp_userret(l);
    411 #ifdef DIAGNOSTIC
    412 			panic("lwp_wait1");
    413 #endif
    414 			/* NOTREACHED */
    415 		}
    416 
    417 		/*
    418 		 * First off, drain any detached LWP that is waiting to be
    419 		 * reaped.
    420 		 */
    421 		while ((l2 = p->p_zomblwp) != NULL) {
    422 			p->p_zomblwp = NULL;
    423 			lwp_free(l2, 0, 0);	/* releases proc mutex */
    424 			mutex_enter(&p->p_smutex);
    425 		}
    426 
    427 		/*
    428 		 * Now look for an LWP to collect.  If the whole process is
    429 		 * exiting, count detached LWPs as eligible to be collected,
    430 		 * but don't drain them here.
    431 		 */
    432 		nfound = 0;
    433 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    434 			if (l2 == l || (lid != 0 && l2->l_lid != lid))
    435 				continue;
    436 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    437 				nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
    438 				continue;
    439 			}
    440 			nfound++;
    441 
    442 			/* No need to lock the LWP in order to see LSZOMB. */
    443 			if (l2->l_stat != LSZOMB)
    444 				continue;
    445 
    446 			if (departed)
    447 				*departed = l2->l_lid;
    448 			lwp_free(l2, 0, 0);
    449 			mutex_enter(&p->p_smutex);
    450 			p->p_nlwpwait--;
    451 			return 0;
    452 		}
    453 
    454 		if (nfound == 0) {
    455 			error = ESRCH;
    456 			break;
    457 		}
    458 		if ((flags & LWPWAIT_EXITCONTROL) != 0) {
    459 			KASSERT(p->p_nlwps > 1);
    460 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    461 			continue;
    462 		}
    463 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    464 		    p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
    465 			error = EDEADLK;
    466 			break;
    467 		}
    468 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    469 			break;
    470 	}
    471 
    472 	p->p_nlwpwait--;
    473 	return error;
    474 }
    475 
    476 /*
    477  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    478  * The new LWP is created in state LSIDL and must be set running,
    479  * suspended, or stopped by the caller.
    480  */
    481 int
    482 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, boolean_t inmem,
    483     int flags, void *stack, size_t stacksize,
    484     void (*func)(void *), void *arg, struct lwp **rnewlwpp)
    485 {
    486 	struct lwp *l2, *isfree;
    487 	turnstile_t *ts;
    488 
    489 	/*
    490 	 * First off, reap any detached LWP waiting to be collected.
    491 	 * We can re-use its LWP structure and turnstile.
    492 	 */
    493 	isfree = NULL;
    494 	if (p2->p_zomblwp != NULL) {
    495 		mutex_enter(&p2->p_smutex);
    496 		if ((isfree = p2->p_zomblwp) != NULL) {
    497 			p2->p_zomblwp = NULL;
    498 			lwp_free(isfree, 1, 0);	/* releases proc mutex */
    499 		} else
    500 			mutex_exit(&p2->p_smutex);
    501 	}
    502 	if (isfree == NULL) {
    503 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    504 		memset(l2, 0, sizeof(*l2));
    505 		l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
    506 	} else {
    507 		l2 = isfree;
    508 		ts = l2->l_ts;
    509 		memset(l2, 0, sizeof(*l2));
    510 		l2->l_ts = ts;
    511 	}
    512 
    513 	l2->l_stat = LSIDL;
    514 	l2->l_proc = p2;
    515 	l2->l_refcnt = 1;
    516 	l2->l_priority = l1->l_priority;
    517 	l2->l_usrpri = l1->l_usrpri;
    518 	l2->l_mutex = &sched_mutex;
    519 	l2->l_cpu = l1->l_cpu;
    520 	l2->l_flag = inmem ? L_INMEM : 0;
    521 	lwp_initspecific(l2);
    522 
    523 	if (p2->p_flag & P_SYSTEM) {
    524 		/*
    525 		 * Mark it as a system process and not a candidate for
    526 		 * swapping.
    527 		 */
    528 		l2->l_flag |= L_SYSTEM;
    529 	}
    530 
    531 	lwp_update_creds(l2);
    532 	callout_init(&l2->l_tsleep_ch);
    533 	cv_init(&l2->l_sigcv, "sigwait");
    534 	l2->l_syncobj = &sched_syncobj;
    535 
    536 	if (rnewlwpp != NULL)
    537 		*rnewlwpp = l2;
    538 
    539 	l2->l_addr = UAREA_TO_USER(uaddr);
    540 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    541 	    (arg != NULL) ? arg : l2);
    542 
    543 	mutex_enter(&p2->p_smutex);
    544 
    545 	if ((flags & LWP_DETACHED) != 0) {
    546 		l2->l_prflag = LPR_DETACHED;
    547 		p2->p_ndlwps++;
    548 	} else
    549 		l2->l_prflag = 0;
    550 
    551 	l2->l_sigmask = l1->l_sigmask;
    552 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    553 	sigemptyset(&l2->l_sigpend.sp_set);
    554 
    555 	p2->p_nlwpid++;
    556 	if (p2->p_nlwpid == 0)
    557 		p2->p_nlwpid++;
    558 	l2->l_lid = p2->p_nlwpid;
    559 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    560 	p2->p_nlwps++;
    561 
    562 	mutex_exit(&p2->p_smutex);
    563 
    564 	mutex_enter(&proclist_mutex);
    565 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    566 	mutex_exit(&proclist_mutex);
    567 
    568 	if (p2->p_emul->e_lwp_fork)
    569 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    570 
    571 	return (0);
    572 }
    573 
    574 /*
    575  * Quit the process.
    576  * this can only be used meaningfully if you're willing to switch away.
    577  * Calling with l!=curlwp would be weird.
    578  */
    579 void
    580 lwp_exit(struct lwp *l)
    581 {
    582 	struct proc *p = l->l_proc;
    583 	struct lwp *l2;
    584 
    585 	DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
    586 	DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
    587 
    588 	/*
    589 	 * Verify that we hold no locks other than the kernel lock.
    590 	 */
    591 #ifdef MULTIPROCESSOR
    592 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    593 #else
    594 	LOCKDEBUG_BARRIER(NULL, 0);
    595 #endif
    596 
    597 	/*
    598 	 * If we are the last live LWP in a process, we need to exit the
    599 	 * entire process.  We do so with an exit status of zero, because
    600 	 * it's a "controlled" exit, and because that's what Solaris does.
    601 	 *
    602 	 * We are not quite a zombie yet, but for accounting purposes we
    603 	 * must increment the count of zombies here.
    604 	 *
    605 	 * Note: the last LWP's specificdata will be deleted here.
    606 	 */
    607 	mutex_enter(&p->p_smutex);
    608 	if (p->p_nlwps - p->p_nzlwps == 1) {
    609 		DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
    610 		    p->p_pid, l->l_lid));
    611 		exit1(l, 0);
    612 		/* NOTREACHED */
    613 	}
    614 	p->p_nzlwps++;
    615 	mutex_exit(&p->p_smutex);
    616 
    617 	if (p->p_emul->e_lwp_exit)
    618 		(*p->p_emul->e_lwp_exit)(l);
    619 
    620 	/* Delete the specificdata while it's still safe to sleep. */
    621 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    622 
    623 	/*
    624 	 * Release our cached credentials.
    625 	 */
    626 	kauth_cred_free(l->l_cred);
    627 
    628 	/*
    629 	 * Remove the LWP from the global list.
    630 	 */
    631 	mutex_enter(&proclist_mutex);
    632 	LIST_REMOVE(l, l_list);
    633 	mutex_exit(&proclist_mutex);
    634 
    635 	/*
    636 	 * Get rid of all references to the LWP that others (e.g. procfs)
    637 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    638 	 * mark it waiting for collection in the proc structure.  Note that
    639 	 * before we can do that, we need to free any other dead, deatched
    640 	 * LWP waiting to meet its maker.
    641 	 *
    642 	 * XXXSMP disable preemption.
    643 	 */
    644 	mutex_enter(&p->p_smutex);
    645 	lwp_drainrefs(l);
    646 
    647 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    648 		while ((l2 = p->p_zomblwp) != NULL) {
    649 			p->p_zomblwp = NULL;
    650 			lwp_free(l2, 0, 0);	/* releases proc mutex */
    651 			mutex_enter(&p->p_smutex);
    652 		}
    653 		p->p_zomblwp = l;
    654 	}
    655 
    656 	/*
    657 	 * If we find a pending signal for the process and we have been
    658 	 * asked to check for signals, then we loose: arrange to have
    659 	 * all other LWPs in the process check for signals.
    660 	 */
    661 	if ((l->l_flag & L_PENDSIG) != 0 &&
    662 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    663 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    664 			lwp_lock(l2);
    665 			l2->l_flag |= L_PENDSIG;
    666 			lwp_unlock(l2);
    667 		}
    668 	}
    669 
    670 	lwp_lock(l);
    671 	l->l_stat = LSZOMB;
    672 	lwp_unlock(l);
    673 	p->p_nrlwps--;
    674 	cv_broadcast(&p->p_lwpcv);
    675 	mutex_exit(&p->p_smutex);
    676 
    677 	/*
    678 	 * We can no longer block.  At this point, lwp_free() may already
    679 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    680 	 *
    681 	 * Free MD LWP resources.
    682 	 */
    683 #ifndef __NO_CPU_LWP_FREE
    684 	cpu_lwp_free(l, 0);
    685 #endif
    686 	pmap_deactivate(l);
    687 
    688 	/*
    689 	 * Release the kernel lock, signal another LWP to collect us,
    690 	 * and switch away into oblivion.
    691 	 */
    692 #ifdef notyet
    693 	/* XXXSMP hold in lwp_userret() */
    694 	KERNEL_UNLOCK_LAST(l);
    695 #else
    696 	KERNEL_UNLOCK_ALL(l, NULL);
    697 #endif
    698 
    699 	lwp_exit_switchaway(l);
    700 }
    701 
    702 void
    703 lwp_exit_switchaway(struct lwp *l)
    704 {
    705 	struct cpu_info *ci;
    706 	struct lwp *idlelwp;
    707 
    708 	uvmexp.swtch++; /* XXXSMP unlocked */
    709 
    710 	ci = curcpu();
    711 	idlelwp = ci->ci_data.cpu_idlelwp;
    712 
    713 	idlelwp->l_stat = LSONPROC;
    714 	cpu_switchto(NULL, idlelwp);
    715 }
    716 
    717 /*
    718  * We are called from cpu_exit() once it is safe to schedule the dead LWP's
    719  * resources to be freed (i.e., once we've switched to the idle PCB for the
    720  * current CPU).
    721  */
    722 void
    723 lwp_exit2(struct lwp *l)
    724 {
    725 	/* XXXSMP re-enable preemption */
    726 }
    727 
    728 /*
    729  * Free a dead LWP's remaining resources.
    730  *
    731  * XXXLWP limits.
    732  */
    733 void
    734 lwp_free(struct lwp *l, int recycle, int last)
    735 {
    736 	struct proc *p = l->l_proc;
    737 	ksiginfoq_t kq;
    738 
    739 	/*
    740 	 * If this was not the last LWP in the process, then adjust
    741 	 * counters and unlock.
    742 	 */
    743 	if (!last) {
    744 		/*
    745 		 * Add the LWP's run time to the process' base value.
    746 		 * This needs to co-incide with coming off p_lwps.
    747 		 */
    748 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    749 		LIST_REMOVE(l, l_sibling);
    750 		p->p_nlwps--;
    751 		p->p_nzlwps--;
    752 		if ((l->l_prflag & LPR_DETACHED) != 0)
    753 			p->p_ndlwps--;
    754 		mutex_exit(&p->p_smutex);
    755 
    756 #ifdef MULTIPROCESSOR
    757 		/*
    758 		 * In the unlikely event that the LWP is still on the CPU,
    759 		 * then spin until it has switched away.  We need to release
    760 		 * all locks to avoid deadlock against interrupt handlers on
    761 		 * the target CPU.
    762 		 */
    763 		if (l->l_cpu->ci_curlwp == l) {
    764 			int count;
    765 			KERNEL_UNLOCK_ALL(curlwp, &count);
    766 			while (l->l_cpu->ci_curlwp == l)
    767 				SPINLOCK_BACKOFF_HOOK;
    768 			KERNEL_LOCK(count, curlwp);
    769 		}
    770 #endif
    771 	}
    772 
    773 	/*
    774 	 * Destroy the LWP's remaining signal information.
    775 	 */
    776 	ksiginfo_queue_init(&kq);
    777 	sigclear(&l->l_sigpend, NULL, &kq);
    778 	ksiginfo_queue_drain(&kq);
    779 	cv_destroy(&l->l_sigcv);
    780 
    781 	/*
    782 	 * Free the LWP's turnstile and the LWP structure itself unless the
    783 	 * caller wants to recycle them.
    784 	 *
    785 	 * We can't return turnstile0 to the pool (it didn't come from it),
    786 	 * so if it comes up just drop it quietly and move on.
    787 	 *
    788 	 * We don't recycle the VM resources at this time.
    789 	 */
    790 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    791 	if (!recycle && l->l_ts != &turnstile0)
    792 		pool_cache_put(&turnstile_cache, l->l_ts);
    793 #ifndef __NO_CPU_LWP_FREE
    794 	cpu_lwp_free2(l);
    795 #endif
    796 	uvm_lwp_exit(l);
    797 	if (!recycle)
    798 		pool_put(&lwp_pool, l);
    799 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    800 }
    801 
    802 /*
    803  * Pick a LWP to represent the process for those operations which
    804  * want information about a "process" that is actually associated
    805  * with a LWP.
    806  *
    807  * If 'locking' is false, no locking or lock checks are performed.
    808  * This is intended for use by DDB.
    809  *
    810  * We don't bother locking the LWP here, since code that uses this
    811  * interface is broken by design and an exact match is not required.
    812  */
    813 struct lwp *
    814 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    815 {
    816 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    817 	struct lwp *signalled;
    818 	int cnt;
    819 
    820 	if (locking) {
    821 		LOCK_ASSERT(mutex_owned(&p->p_smutex));
    822 	}
    823 
    824 	/* Trivial case: only one LWP */
    825 	if (p->p_nlwps == 1) {
    826 		l = LIST_FIRST(&p->p_lwps);
    827 		if (nrlwps)
    828 			*nrlwps = (l->l_stat == LSONPROC || LSRUN);
    829 		return l;
    830 	}
    831 
    832 	cnt = 0;
    833 	switch (p->p_stat) {
    834 	case SSTOP:
    835 	case SACTIVE:
    836 		/* Pick the most live LWP */
    837 		onproc = running = sleeping = stopped = suspended = NULL;
    838 		signalled = NULL;
    839 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    840 			if ((l->l_flag & L_IDLE) != 0) {
    841 				continue;
    842 			}
    843 			if (l->l_lid == p->p_sigctx.ps_lwp)
    844 				signalled = l;
    845 			switch (l->l_stat) {
    846 			case LSONPROC:
    847 				onproc = l;
    848 				cnt++;
    849 				break;
    850 			case LSRUN:
    851 				running = l;
    852 				cnt++;
    853 				break;
    854 			case LSSLEEP:
    855 				sleeping = l;
    856 				break;
    857 			case LSSTOP:
    858 				stopped = l;
    859 				break;
    860 			case LSSUSPENDED:
    861 				suspended = l;
    862 				break;
    863 			}
    864 		}
    865 		if (nrlwps)
    866 			*nrlwps = cnt;
    867 		if (signalled)
    868 			l = signalled;
    869 		else if (onproc)
    870 			l = onproc;
    871 		else if (running)
    872 			l = running;
    873 		else if (sleeping)
    874 			l = sleeping;
    875 		else if (stopped)
    876 			l = stopped;
    877 		else if (suspended)
    878 			l = suspended;
    879 		else
    880 			break;
    881 		return l;
    882 		if (nrlwps)
    883 			*nrlwps = 0;
    884 		l = LIST_FIRST(&p->p_lwps);
    885 		return l;
    886 #ifdef DIAGNOSTIC
    887 	case SIDL:
    888 	case SZOMB:
    889 	case SDYING:
    890 	case SDEAD:
    891 		if (locking)
    892 			mutex_exit(&p->p_smutex);
    893 		/* We have more than one LWP and we're in SIDL?
    894 		 * How'd that happen?
    895 		 */
    896 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
    897 		    p->p_pid, p->p_comm, p->p_stat);
    898 		break;
    899 	default:
    900 		if (locking)
    901 			mutex_exit(&p->p_smutex);
    902 		panic("Process %d (%s) in unknown state %d",
    903 		    p->p_pid, p->p_comm, p->p_stat);
    904 #endif
    905 	}
    906 
    907 	if (locking)
    908 		mutex_exit(&p->p_smutex);
    909 	panic("proc_representative_lwp: couldn't find a lwp for process"
    910 		" %d (%s)", p->p_pid, p->p_comm);
    911 	/* NOTREACHED */
    912 	return NULL;
    913 }
    914 
    915 /*
    916  * Look up a live LWP within the speicifed process, and return it locked.
    917  *
    918  * Must be called with p->p_smutex held.
    919  */
    920 struct lwp *
    921 lwp_find(struct proc *p, int id)
    922 {
    923 	struct lwp *l;
    924 
    925 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    926 
    927 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    928 		if (l->l_lid == id)
    929 			break;
    930 	}
    931 
    932 	/*
    933 	 * No need to lock - all of these conditions will
    934 	 * be visible with the process level mutex held.
    935 	 */
    936 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
    937 		l = NULL;
    938 
    939 	return l;
    940 }
    941 
    942 /*
    943  * Update an LWP's cached credentials to mirror the process' master copy.
    944  *
    945  * This happens early in the syscall path, on user trap, and on LWP
    946  * creation.  A long-running LWP can also voluntarily choose to update
    947  * it's credentials by calling this routine.  This may be called from
    948  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
    949  */
    950 void
    951 lwp_update_creds(struct lwp *l)
    952 {
    953 	kauth_cred_t oc;
    954 	struct proc *p;
    955 
    956 	p = l->l_proc;
    957 	oc = l->l_cred;
    958 
    959 	mutex_enter(&p->p_mutex);
    960 	kauth_cred_hold(p->p_cred);
    961 	l->l_cred = p->p_cred;
    962 	mutex_exit(&p->p_mutex);
    963 	if (oc != NULL) {
    964 		KERNEL_LOCK(1, l);	/* XXXSMP */
    965 		kauth_cred_free(oc);
    966 		KERNEL_UNLOCK_ONE(l);	/* XXXSMP */
    967 	}
    968 }
    969 
    970 /*
    971  * Verify that an LWP is locked, and optionally verify that the lock matches
    972  * one we specify.
    973  */
    974 int
    975 lwp_locked(struct lwp *l, kmutex_t *mtx)
    976 {
    977 	kmutex_t *cur = l->l_mutex;
    978 
    979 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    980 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
    981 #else
    982 	return mutex_owned(cur);
    983 #endif
    984 }
    985 
    986 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    987 /*
    988  * Lock an LWP.
    989  */
    990 void
    991 lwp_lock_retry(struct lwp *l, kmutex_t *old)
    992 {
    993 
    994 	/*
    995 	 * XXXgcc ignoring kmutex_t * volatile on i386
    996 	 *
    997 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
    998 	 */
    999 #if 1
   1000 	while (l->l_mutex != old) {
   1001 #else
   1002 	for (;;) {
   1003 #endif
   1004 		mutex_spin_exit(old);
   1005 		old = l->l_mutex;
   1006 		mutex_spin_enter(old);
   1007 
   1008 		/*
   1009 		 * mutex_enter() will have posted a read barrier.  Re-test
   1010 		 * l->l_mutex.  If it has changed, we need to try again.
   1011 		 */
   1012 #if 1
   1013 	}
   1014 #else
   1015 	} while (__predict_false(l->l_mutex != old));
   1016 #endif
   1017 }
   1018 #endif
   1019 
   1020 /*
   1021  * Lend a new mutex to an LWP.  The old mutex must be held.
   1022  */
   1023 void
   1024 lwp_setlock(struct lwp *l, kmutex_t *new)
   1025 {
   1026 
   1027 	LOCK_ASSERT(mutex_owned(l->l_mutex));
   1028 
   1029 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1030 	mb_write();
   1031 	l->l_mutex = new;
   1032 #else
   1033 	(void)new;
   1034 #endif
   1035 }
   1036 
   1037 /*
   1038  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1039  * must be held.
   1040  */
   1041 void
   1042 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1043 {
   1044 	kmutex_t *old;
   1045 
   1046 	LOCK_ASSERT(mutex_owned(l->l_mutex));
   1047 
   1048 	old = l->l_mutex;
   1049 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1050 	mb_write();
   1051 	l->l_mutex = new;
   1052 #else
   1053 	(void)new;
   1054 #endif
   1055 	mutex_spin_exit(old);
   1056 }
   1057 
   1058 /*
   1059  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1060  * locked.
   1061  */
   1062 void
   1063 lwp_relock(struct lwp *l, kmutex_t *new)
   1064 {
   1065 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1066 	kmutex_t *old;
   1067 #endif
   1068 
   1069 	LOCK_ASSERT(mutex_owned(l->l_mutex));
   1070 
   1071 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1072 	old = l->l_mutex;
   1073 	if (old != new) {
   1074 		mutex_spin_enter(new);
   1075 		l->l_mutex = new;
   1076 		mutex_spin_exit(old);
   1077 	}
   1078 #else
   1079 	(void)new;
   1080 #endif
   1081 }
   1082 
   1083 /*
   1084  * Handle exceptions for mi_userret().  Called if a member of L_USERRET is
   1085  * set.
   1086  */
   1087 void
   1088 lwp_userret(struct lwp *l)
   1089 {
   1090 	struct proc *p;
   1091 	void (*hook)(void);
   1092 	int sig;
   1093 
   1094 	p = l->l_proc;
   1095 
   1096 	/*
   1097 	 * It should be safe to do this read unlocked on a multiprocessor
   1098 	 * system..
   1099 	 */
   1100 	while ((l->l_flag & L_USERRET) != 0) {
   1101 		/*
   1102 		 * Process pending signals first, unless the process
   1103 		 * is dumping core, where we will instead enter the
   1104 		 * L_WSUSPEND case below.
   1105 		 */
   1106 		if ((l->l_flag & (L_PENDSIG | L_WCORE)) == L_PENDSIG) {
   1107 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1108 			mutex_enter(&p->p_smutex);
   1109 			while ((sig = issignal(l)) != 0)
   1110 				postsig(sig);
   1111 			mutex_exit(&p->p_smutex);
   1112 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1113 		}
   1114 
   1115 		/*
   1116 		 * Core-dump or suspend pending.
   1117 		 *
   1118 		 * In case of core dump, suspend ourselves, so that the
   1119 		 * kernel stack and therefore the userland registers saved
   1120 		 * in the trapframe are around for coredump() to write them
   1121 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1122 		 * will write the core file out once all other LWPs are
   1123 		 * suspended.
   1124 		 */
   1125 		if ((l->l_flag & L_WSUSPEND) != 0) {
   1126 			mutex_enter(&p->p_smutex);
   1127 			p->p_nrlwps--;
   1128 			cv_broadcast(&p->p_lwpcv);
   1129 			lwp_lock(l);
   1130 			l->l_stat = LSSUSPENDED;
   1131 			mutex_exit(&p->p_smutex);
   1132 			mi_switch(l, NULL);
   1133 		}
   1134 
   1135 		/* Process is exiting. */
   1136 		if ((l->l_flag & L_WEXIT) != 0) {
   1137 			KERNEL_LOCK(1, l);
   1138 			lwp_exit(l);
   1139 			KASSERT(0);
   1140 			/* NOTREACHED */
   1141 		}
   1142 
   1143 		/* Call userret hook; used by Linux emulation. */
   1144 		if ((l->l_flag & L_WUSERRET) != 0) {
   1145 			lwp_lock(l);
   1146 			l->l_flag &= ~L_WUSERRET;
   1147 			lwp_unlock(l);
   1148 			hook = p->p_userret;
   1149 			p->p_userret = NULL;
   1150 			(*hook)();
   1151 		}
   1152 	}
   1153 }
   1154 
   1155 /*
   1156  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1157  */
   1158 void
   1159 lwp_need_userret(struct lwp *l)
   1160 {
   1161 	LOCK_ASSERT(lwp_locked(l, NULL));
   1162 
   1163 	/*
   1164 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1165 	 * that the condition will be seen before forcing the LWP to enter
   1166 	 * kernel mode.
   1167 	 */
   1168 	mb_write();
   1169 
   1170 	if (l->l_priority > PUSER)
   1171 		lwp_changepri(l, PUSER);
   1172 	cpu_signotify(l);
   1173 }
   1174 
   1175 /*
   1176  * Add one reference to an LWP.  This will prevent the LWP from
   1177  * exiting, thus keep the lwp structure and PCB around to inspect.
   1178  */
   1179 void
   1180 lwp_addref(struct lwp *l)
   1181 {
   1182 
   1183 	LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
   1184 	KASSERT(l->l_stat != LSZOMB);
   1185 	KASSERT(l->l_refcnt != 0);
   1186 
   1187 	l->l_refcnt++;
   1188 }
   1189 
   1190 /*
   1191  * Remove one reference to an LWP.  If this is the last reference,
   1192  * then we must finalize the LWP's death.
   1193  */
   1194 void
   1195 lwp_delref(struct lwp *l)
   1196 {
   1197 	struct proc *p = l->l_proc;
   1198 
   1199 	mutex_enter(&p->p_smutex);
   1200 	if (--l->l_refcnt == 0)
   1201 		cv_broadcast(&p->p_refcv);
   1202 	mutex_exit(&p->p_smutex);
   1203 }
   1204 
   1205 /*
   1206  * Drain all references to the current LWP.
   1207  */
   1208 void
   1209 lwp_drainrefs(struct lwp *l)
   1210 {
   1211 	struct proc *p = l->l_proc;
   1212 
   1213 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
   1214 	KASSERT(l->l_refcnt != 0);
   1215 
   1216 	l->l_refcnt--;
   1217 	while (l->l_refcnt != 0)
   1218 		cv_wait(&p->p_refcv, &p->p_smutex);
   1219 }
   1220 
   1221 /*
   1222  * lwp_specific_key_create --
   1223  *	Create a key for subsystem lwp-specific data.
   1224  */
   1225 int
   1226 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1227 {
   1228 
   1229 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1230 }
   1231 
   1232 /*
   1233  * lwp_specific_key_delete --
   1234  *	Delete a key for subsystem lwp-specific data.
   1235  */
   1236 void
   1237 lwp_specific_key_delete(specificdata_key_t key)
   1238 {
   1239 
   1240 	specificdata_key_delete(lwp_specificdata_domain, key);
   1241 }
   1242 
   1243 /*
   1244  * lwp_initspecific --
   1245  *	Initialize an LWP's specificdata container.
   1246  */
   1247 void
   1248 lwp_initspecific(struct lwp *l)
   1249 {
   1250 	int error;
   1251 
   1252 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1253 	KASSERT(error == 0);
   1254 }
   1255 
   1256 /*
   1257  * lwp_finispecific --
   1258  *	Finalize an LWP's specificdata container.
   1259  */
   1260 void
   1261 lwp_finispecific(struct lwp *l)
   1262 {
   1263 
   1264 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1265 }
   1266 
   1267 /*
   1268  * lwp_getspecific --
   1269  *	Return lwp-specific data corresponding to the specified key.
   1270  *
   1271  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1272  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1273  *	LWP's specifc data, care must be taken to ensure that doing so
   1274  *	would not cause internal data structure inconsistency (i.e. caller
   1275  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1276  *	or lwp_setspecific() call).
   1277  */
   1278 void *
   1279 lwp_getspecific(specificdata_key_t key)
   1280 {
   1281 
   1282 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1283 						  &curlwp->l_specdataref, key));
   1284 }
   1285 
   1286 void *
   1287 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1288 {
   1289 
   1290 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1291 						  &l->l_specdataref, key));
   1292 }
   1293 
   1294 /*
   1295  * lwp_setspecific --
   1296  *	Set lwp-specific data corresponding to the specified key.
   1297  */
   1298 void
   1299 lwp_setspecific(specificdata_key_t key, void *data)
   1300 {
   1301 
   1302 	specificdata_setspecific(lwp_specificdata_domain,
   1303 				 &curlwp->l_specdataref, key, data);
   1304 }
   1305