kern_lwp.c revision 1.55.2.2 1 /* $NetBSD: kern_lwp.c,v 1.55.2.2 2007/02/18 13:09:03 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit (or thread) of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp".
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing in kernel simultaneously.
52 *
53 * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 * threads are distinct processes (system processes) with no user space
55 * component, which themselves may contain one or more LWPs.
56 *
57 * Execution states
58 *
59 * At any given time, an LWP has overall state that is described by
60 * lwp::l_stat. The states are broken into two sets below. The first
61 * set is guaranteed to represent the absolute, current state of the
62 * LWP:
63 *
64 * LSONPROC
65 *
66 * On processor: the LWP is executing on a CPU, either in the
67 * kernel or in user space.
68 *
69 * LSRUN
70 *
71 * Runnable: the LWP is parked on a run queue, and may soon be
72 * chosen to run by a idle processor, or by a processor that
73 * has been asked to preempt a currently runnning but lower
74 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 * then the LWP is not on a run queue, but may be soon.
76 *
77 * LSIDL
78 *
79 * Idle: the LWP has been created but has not yet executed.
80 * Whoever created the new LWP can be expected to set it to
81 * another state shortly.
82 *
83 * LSSUSPENDED:
84 *
85 * Suspended: the LWP has had its execution suspended by
86 * another LWP in the same process using the _lwp_suspend()
87 * system call. User-level LWPs also enter the suspended
88 * state when the system is shutting down.
89 *
90 * The second set represent a "statement of intent" on behalf of the
91 * LWP. The LWP may in fact be executing on a processor, may be
92 * sleeping, idle, or on a run queue. It is expected to take the
93 * necessary action to stop executing or become "running" again within
94 * a short timeframe.
95 *
96 * LSZOMB:
97 *
98 * Dead: the LWP has released most of its resources and is
99 * about to switch away into oblivion. When it switches away,
100 * its few remaining resources will be collected.
101 *
102 * LSSLEEP:
103 *
104 * Sleeping: the LWP has entered itself onto a sleep queue, and
105 * will switch away shortly to allow other LWPs to run on the
106 * CPU.
107 *
108 * LSSTOP:
109 *
110 * Stopped: the LWP has been stopped as a result of a job
111 * control signal, or as a result of the ptrace() interface.
112 * Stopped LWPs may run briefly within the kernel to handle
113 * signals that they receive, but will not return to user space
114 * until their process' state is changed away from stopped.
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP and LSSUSPENDED states may only be set
122 * when returning to user space in userret(), or when sleeping
123 * interruptably. Before setting those states, we try to ensure
124 * that the LWPs will release all kernel locks that they hold,
125 * and at a minimum try to ensure that the LWP can be set runnable
126 * again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Locking
145 *
146 * The majority of fields in 'struct lwp' are covered by a single,
147 * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 * each field are documented in sys/lwp.h.
149 *
150 * State transitions must be made with the LWP's general lock held. In
151 * a multiprocessor kernel, state transitions may cause the LWP's lock
152 * pointer to change. On uniprocessor kernels, most scheduler and
153 * synchronisation objects such as sleep queues and LWPs are protected
154 * by only one mutex (sched_mutex). In this case, LWPs' lock pointers
155 * will never change and will always reference sched_mutex.
156 *
157 * Manipulation of the general lock is not performed directly, but
158 * through calls to lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSIDL, LSZOMB
163 *
164 * Always covered by sched_mutex.
165 *
166 * LSONPROC, LSRUN:
167 *
168 * Always covered by sched_mutex, which protects the run queues
169 * and other miscellaneous items. If the scheduler is changed
170 * to use per-CPU run queues, this may become a per-CPU mutex.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a mutex associated with the sleep queue that the
175 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue mutex. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the mutex is sched_mutex.
183 *
184 * The lock order is as follows:
185 *
186 * sleepq_t::sq_mutex |---> sched_mutex
187 * tschain_t::tc_mutex |
188 *
189 * Each process has an scheduler state mutex (proc::p_smutex), and a
190 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
191 * so on. When an LWP is to be entered into or removed from one of the
192 * following states, p_mutex must be held and the process wide counters
193 * adjusted:
194 *
195 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
196 *
197 * Note that an LWP is considered running or likely to run soon if in
198 * one of the following states. This affects the value of p_nrlwps:
199 *
200 * LSRUN, LSONPROC, LSSLEEP
201 *
202 * p_smutex does not need to be held when transitioning among these
203 * three states.
204 */
205
206 #include <sys/cdefs.h>
207 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.55.2.2 2007/02/18 13:09:03 yamt Exp $");
208
209 #include "opt_multiprocessor.h"
210 #include "opt_lockdebug.h"
211
212 #define _LWP_API_PRIVATE
213
214 #include <sys/param.h>
215 #include <sys/systm.h>
216 #include <sys/pool.h>
217 #include <sys/proc.h>
218 #include <sys/syscallargs.h>
219 #include <sys/kauth.h>
220 #include <sys/sleepq.h>
221 #include <sys/lockdebug.h>
222 #include <sys/kmem.h>
223
224 #include <uvm/uvm_extern.h>
225
226 struct lwplist alllwp;
227
228 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
229 &pool_allocator_nointr);
230 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
231 &pool_allocator_nointr);
232
233 static specificdata_domain_t lwp_specificdata_domain;
234
235 #define LWP_DEBUG
236
237 #ifdef LWP_DEBUG
238 int lwp_debug = 0;
239 #define DPRINTF(x) if (lwp_debug) printf x
240 #else
241 #define DPRINTF(x)
242 #endif
243
244 void
245 lwpinit(void)
246 {
247
248 lwp_specificdata_domain = specificdata_domain_create();
249 KASSERT(lwp_specificdata_domain != NULL);
250 lwp_sys_init();
251 }
252
253 /*
254 * Set an suspended.
255 *
256 * Must be called with p_smutex held, and the LWP locked. Will unlock the
257 * LWP before return.
258 */
259 int
260 lwp_suspend(struct lwp *curl, struct lwp *t)
261 {
262 int error;
263
264 LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
265 LOCK_ASSERT(lwp_locked(t, NULL));
266
267 KASSERT(curl != t || curl->l_stat == LSONPROC);
268
269 /*
270 * If the current LWP has been told to exit, we must not suspend anyone
271 * else or deadlock could occur. We won't return to userspace.
272 */
273 if ((curl->l_stat & (L_WEXIT | L_WCORE)) != 0) {
274 lwp_unlock(t);
275 return (EDEADLK);
276 }
277
278 error = 0;
279
280 switch (t->l_stat) {
281 case LSRUN:
282 case LSONPROC:
283 t->l_flag |= L_WSUSPEND;
284 lwp_need_userret(t);
285 lwp_unlock(t);
286 break;
287
288 case LSSLEEP:
289 t->l_flag |= L_WSUSPEND;
290
291 /*
292 * Kick the LWP and try to get it to the kernel boundary
293 * so that it will release any locks that it holds.
294 * setrunnable() will release the lock.
295 */
296 if ((t->l_flag & L_SINTR) != 0)
297 setrunnable(t);
298 else
299 lwp_unlock(t);
300 break;
301
302 case LSSUSPENDED:
303 lwp_unlock(t);
304 break;
305
306 case LSSTOP:
307 t->l_flag |= L_WSUSPEND;
308 setrunnable(t);
309 break;
310
311 case LSIDL:
312 case LSZOMB:
313 error = EINTR; /* It's what Solaris does..... */
314 lwp_unlock(t);
315 break;
316 }
317
318 /*
319 * XXXLWP Wait for:
320 *
321 * o process exiting
322 * o target LWP suspended
323 * o target LWP not suspended and L_WSUSPEND clear
324 * o target LWP exited
325 */
326
327 return (error);
328 }
329
330 /*
331 * Restart a suspended LWP.
332 *
333 * Must be called with p_smutex held, and the LWP locked. Will unlock the
334 * LWP before return.
335 */
336 void
337 lwp_continue(struct lwp *l)
338 {
339
340 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
341 LOCK_ASSERT(lwp_locked(l, NULL));
342
343 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
344 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
345 l->l_wchan));
346
347 /* If rebooting or not suspended, then just bail out. */
348 if ((l->l_flag & L_WREBOOT) != 0) {
349 lwp_unlock(l);
350 return;
351 }
352
353 l->l_flag &= ~L_WSUSPEND;
354
355 if (l->l_stat != LSSUSPENDED) {
356 lwp_unlock(l);
357 return;
358 }
359
360 /* setrunnable() will release the lock. */
361 setrunnable(l);
362 }
363
364 /*
365 * Wait for an LWP within the current process to exit. If 'lid' is
366 * non-zero, we are waiting for a specific LWP.
367 *
368 * Must be called with p->p_smutex held.
369 */
370 int
371 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
372 {
373 struct proc *p = l->l_proc;
374 struct lwp *l2;
375 int nfound, error;
376
377 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
378 p->p_pid, l->l_lid, lid));
379
380 LOCK_ASSERT(mutex_owned(&p->p_smutex));
381
382 /*
383 * We try to check for deadlock:
384 *
385 * 1) If all other LWPs are waiting for exits or suspended.
386 * 2) If we are trying to wait on ourself.
387 *
388 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
389 * waits, not any-LWP waits) and detect that sort of deadlock, but
390 * we don't have a good place to store the lwp that is being waited
391 * for. wchan is already filled with &p->p_nlwps, and putting the
392 * lwp address in there for deadlock tracing would require exiting
393 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
394 * get threads sleeping on any LWP exiting.
395 */
396 if (lid == l->l_lid)
397 return EDEADLK;
398
399 p->p_nlwpwait++;
400
401 for (;;) {
402 /*
403 * Avoid a race between exit1() and sigexit(): if the
404 * process is dumping core, then we need to bail out: call
405 * into lwp_userret() where we will be suspended until the
406 * deed is done.
407 */
408 if ((p->p_sflag & PS_WCORE) != 0) {
409 mutex_exit(&p->p_smutex);
410 lwp_userret(l);
411 #ifdef DIAGNOSTIC
412 panic("lwp_wait1");
413 #endif
414 /* NOTREACHED */
415 }
416
417 /*
418 * First off, drain any detached LWP that is waiting to be
419 * reaped.
420 */
421 while ((l2 = p->p_zomblwp) != NULL) {
422 p->p_zomblwp = NULL;
423 lwp_free(l2, 0, 0); /* releases proc mutex */
424 mutex_enter(&p->p_smutex);
425 }
426
427 /*
428 * Now look for an LWP to collect. If the whole process is
429 * exiting, count detached LWPs as eligible to be collected,
430 * but don't drain them here.
431 */
432 nfound = 0;
433 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
434 if (l2 == l || (lid != 0 && l2->l_lid != lid))
435 continue;
436 if ((l2->l_prflag & LPR_DETACHED) != 0) {
437 nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
438 continue;
439 }
440 nfound++;
441
442 /* No need to lock the LWP in order to see LSZOMB. */
443 if (l2->l_stat != LSZOMB)
444 continue;
445
446 if (departed)
447 *departed = l2->l_lid;
448 lwp_free(l2, 0, 0);
449 mutex_enter(&p->p_smutex);
450 p->p_nlwpwait--;
451 return 0;
452 }
453
454 if (nfound == 0) {
455 error = ESRCH;
456 break;
457 }
458 if ((flags & LWPWAIT_EXITCONTROL) != 0) {
459 KASSERT(p->p_nlwps > 1);
460 cv_wait(&p->p_lwpcv, &p->p_smutex);
461 continue;
462 }
463 if ((p->p_sflag & PS_WEXIT) != 0 ||
464 p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
465 error = EDEADLK;
466 break;
467 }
468 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
469 break;
470 }
471
472 p->p_nlwpwait--;
473 return error;
474 }
475
476 /*
477 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
478 * The new LWP is created in state LSIDL and must be set running,
479 * suspended, or stopped by the caller.
480 */
481 int
482 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, boolean_t inmem,
483 int flags, void *stack, size_t stacksize,
484 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
485 {
486 struct lwp *l2, *isfree;
487 turnstile_t *ts;
488
489 /*
490 * First off, reap any detached LWP waiting to be collected.
491 * We can re-use its LWP structure and turnstile.
492 */
493 isfree = NULL;
494 if (p2->p_zomblwp != NULL) {
495 mutex_enter(&p2->p_smutex);
496 if ((isfree = p2->p_zomblwp) != NULL) {
497 p2->p_zomblwp = NULL;
498 lwp_free(isfree, 1, 0); /* releases proc mutex */
499 } else
500 mutex_exit(&p2->p_smutex);
501 }
502 if (isfree == NULL) {
503 l2 = pool_get(&lwp_pool, PR_WAITOK);
504 memset(l2, 0, sizeof(*l2));
505 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
506 } else {
507 l2 = isfree;
508 ts = l2->l_ts;
509 memset(l2, 0, sizeof(*l2));
510 l2->l_ts = ts;
511 }
512
513 l2->l_stat = LSIDL;
514 l2->l_proc = p2;
515 l2->l_refcnt = 1;
516 l2->l_priority = l1->l_priority;
517 l2->l_usrpri = l1->l_usrpri;
518 l2->l_mutex = &sched_mutex;
519 l2->l_cpu = l1->l_cpu;
520 l2->l_flag = inmem ? L_INMEM : 0;
521 lwp_initspecific(l2);
522
523 if (p2->p_flag & P_SYSTEM) {
524 /*
525 * Mark it as a system process and not a candidate for
526 * swapping.
527 */
528 l2->l_flag |= L_SYSTEM;
529 }
530
531 lwp_update_creds(l2);
532 callout_init(&l2->l_tsleep_ch);
533 cv_init(&l2->l_sigcv, "sigwait");
534 l2->l_syncobj = &sched_syncobj;
535
536 if (rnewlwpp != NULL)
537 *rnewlwpp = l2;
538
539 l2->l_addr = UAREA_TO_USER(uaddr);
540 uvm_lwp_fork(l1, l2, stack, stacksize, func,
541 (arg != NULL) ? arg : l2);
542
543 mutex_enter(&p2->p_smutex);
544
545 if ((flags & LWP_DETACHED) != 0) {
546 l2->l_prflag = LPR_DETACHED;
547 p2->p_ndlwps++;
548 } else
549 l2->l_prflag = 0;
550
551 l2->l_sigmask = l1->l_sigmask;
552 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
553 sigemptyset(&l2->l_sigpend.sp_set);
554
555 p2->p_nlwpid++;
556 if (p2->p_nlwpid == 0)
557 p2->p_nlwpid++;
558 l2->l_lid = p2->p_nlwpid;
559 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
560 p2->p_nlwps++;
561
562 mutex_exit(&p2->p_smutex);
563
564 mutex_enter(&proclist_mutex);
565 LIST_INSERT_HEAD(&alllwp, l2, l_list);
566 mutex_exit(&proclist_mutex);
567
568 if (p2->p_emul->e_lwp_fork)
569 (*p2->p_emul->e_lwp_fork)(l1, l2);
570
571 return (0);
572 }
573
574 /*
575 * Quit the process.
576 * this can only be used meaningfully if you're willing to switch away.
577 * Calling with l!=curlwp would be weird.
578 */
579 void
580 lwp_exit(struct lwp *l)
581 {
582 struct proc *p = l->l_proc;
583 struct lwp *l2;
584
585 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
586 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
587
588 /*
589 * Verify that we hold no locks other than the kernel lock.
590 */
591 #ifdef MULTIPROCESSOR
592 LOCKDEBUG_BARRIER(&kernel_lock, 0);
593 #else
594 LOCKDEBUG_BARRIER(NULL, 0);
595 #endif
596
597 /*
598 * If we are the last live LWP in a process, we need to exit the
599 * entire process. We do so with an exit status of zero, because
600 * it's a "controlled" exit, and because that's what Solaris does.
601 *
602 * We are not quite a zombie yet, but for accounting purposes we
603 * must increment the count of zombies here.
604 *
605 * Note: the last LWP's specificdata will be deleted here.
606 */
607 mutex_enter(&p->p_smutex);
608 if (p->p_nlwps - p->p_nzlwps == 1) {
609 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
610 p->p_pid, l->l_lid));
611 exit1(l, 0);
612 /* NOTREACHED */
613 }
614 p->p_nzlwps++;
615 mutex_exit(&p->p_smutex);
616
617 if (p->p_emul->e_lwp_exit)
618 (*p->p_emul->e_lwp_exit)(l);
619
620 /* Delete the specificdata while it's still safe to sleep. */
621 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
622
623 /*
624 * Release our cached credentials.
625 */
626 kauth_cred_free(l->l_cred);
627
628 /*
629 * Remove the LWP from the global list.
630 */
631 mutex_enter(&proclist_mutex);
632 LIST_REMOVE(l, l_list);
633 mutex_exit(&proclist_mutex);
634
635 /*
636 * Get rid of all references to the LWP that others (e.g. procfs)
637 * may have, and mark the LWP as a zombie. If the LWP is detached,
638 * mark it waiting for collection in the proc structure. Note that
639 * before we can do that, we need to free any other dead, deatched
640 * LWP waiting to meet its maker.
641 *
642 * XXXSMP disable preemption.
643 */
644 mutex_enter(&p->p_smutex);
645 lwp_drainrefs(l);
646
647 if ((l->l_prflag & LPR_DETACHED) != 0) {
648 while ((l2 = p->p_zomblwp) != NULL) {
649 p->p_zomblwp = NULL;
650 lwp_free(l2, 0, 0); /* releases proc mutex */
651 mutex_enter(&p->p_smutex);
652 }
653 p->p_zomblwp = l;
654 }
655
656 /*
657 * If we find a pending signal for the process and we have been
658 * asked to check for signals, then we loose: arrange to have
659 * all other LWPs in the process check for signals.
660 */
661 if ((l->l_flag & L_PENDSIG) != 0 &&
662 firstsig(&p->p_sigpend.sp_set) != 0) {
663 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
664 lwp_lock(l2);
665 l2->l_flag |= L_PENDSIG;
666 lwp_unlock(l2);
667 }
668 }
669
670 lwp_lock(l);
671 l->l_stat = LSZOMB;
672 lwp_unlock(l);
673 p->p_nrlwps--;
674 cv_broadcast(&p->p_lwpcv);
675 mutex_exit(&p->p_smutex);
676
677 /*
678 * We can no longer block. At this point, lwp_free() may already
679 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
680 *
681 * Free MD LWP resources.
682 */
683 #ifndef __NO_CPU_LWP_FREE
684 cpu_lwp_free(l, 0);
685 #endif
686 pmap_deactivate(l);
687
688 /*
689 * Release the kernel lock, signal another LWP to collect us,
690 * and switch away into oblivion.
691 */
692 #ifdef notyet
693 /* XXXSMP hold in lwp_userret() */
694 KERNEL_UNLOCK_LAST(l);
695 #else
696 KERNEL_UNLOCK_ALL(l, NULL);
697 #endif
698
699 lwp_exit_switchaway(l);
700 }
701
702 void
703 lwp_exit_switchaway(struct lwp *l)
704 {
705 struct cpu_info *ci;
706 struct lwp *idlelwp;
707
708 uvmexp.swtch++; /* XXXSMP unlocked */
709
710 ci = curcpu();
711 idlelwp = ci->ci_data.cpu_idlelwp;
712
713 idlelwp->l_stat = LSONPROC;
714 cpu_switchto(NULL, idlelwp);
715 }
716
717 /*
718 * We are called from cpu_exit() once it is safe to schedule the dead LWP's
719 * resources to be freed (i.e., once we've switched to the idle PCB for the
720 * current CPU).
721 */
722 void
723 lwp_exit2(struct lwp *l)
724 {
725 /* XXXSMP re-enable preemption */
726 }
727
728 /*
729 * Free a dead LWP's remaining resources.
730 *
731 * XXXLWP limits.
732 */
733 void
734 lwp_free(struct lwp *l, int recycle, int last)
735 {
736 struct proc *p = l->l_proc;
737 ksiginfoq_t kq;
738
739 /*
740 * If this was not the last LWP in the process, then adjust
741 * counters and unlock.
742 */
743 if (!last) {
744 /*
745 * Add the LWP's run time to the process' base value.
746 * This needs to co-incide with coming off p_lwps.
747 */
748 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
749 LIST_REMOVE(l, l_sibling);
750 p->p_nlwps--;
751 p->p_nzlwps--;
752 if ((l->l_prflag & LPR_DETACHED) != 0)
753 p->p_ndlwps--;
754 mutex_exit(&p->p_smutex);
755
756 #ifdef MULTIPROCESSOR
757 /*
758 * In the unlikely event that the LWP is still on the CPU,
759 * then spin until it has switched away. We need to release
760 * all locks to avoid deadlock against interrupt handlers on
761 * the target CPU.
762 */
763 if (l->l_cpu->ci_curlwp == l) {
764 int count;
765 KERNEL_UNLOCK_ALL(curlwp, &count);
766 while (l->l_cpu->ci_curlwp == l)
767 SPINLOCK_BACKOFF_HOOK;
768 KERNEL_LOCK(count, curlwp);
769 }
770 #endif
771 }
772
773 /*
774 * Destroy the LWP's remaining signal information.
775 */
776 ksiginfo_queue_init(&kq);
777 sigclear(&l->l_sigpend, NULL, &kq);
778 ksiginfo_queue_drain(&kq);
779 cv_destroy(&l->l_sigcv);
780
781 /*
782 * Free the LWP's turnstile and the LWP structure itself unless the
783 * caller wants to recycle them.
784 *
785 * We can't return turnstile0 to the pool (it didn't come from it),
786 * so if it comes up just drop it quietly and move on.
787 *
788 * We don't recycle the VM resources at this time.
789 */
790 KERNEL_LOCK(1, curlwp); /* XXXSMP */
791 if (!recycle && l->l_ts != &turnstile0)
792 pool_cache_put(&turnstile_cache, l->l_ts);
793 #ifndef __NO_CPU_LWP_FREE
794 cpu_lwp_free2(l);
795 #endif
796 uvm_lwp_exit(l);
797 if (!recycle)
798 pool_put(&lwp_pool, l);
799 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
800 }
801
802 /*
803 * Pick a LWP to represent the process for those operations which
804 * want information about a "process" that is actually associated
805 * with a LWP.
806 *
807 * If 'locking' is false, no locking or lock checks are performed.
808 * This is intended for use by DDB.
809 *
810 * We don't bother locking the LWP here, since code that uses this
811 * interface is broken by design and an exact match is not required.
812 */
813 struct lwp *
814 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
815 {
816 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
817 struct lwp *signalled;
818 int cnt;
819
820 if (locking) {
821 LOCK_ASSERT(mutex_owned(&p->p_smutex));
822 }
823
824 /* Trivial case: only one LWP */
825 if (p->p_nlwps == 1) {
826 l = LIST_FIRST(&p->p_lwps);
827 if (nrlwps)
828 *nrlwps = (l->l_stat == LSONPROC || LSRUN);
829 return l;
830 }
831
832 cnt = 0;
833 switch (p->p_stat) {
834 case SSTOP:
835 case SACTIVE:
836 /* Pick the most live LWP */
837 onproc = running = sleeping = stopped = suspended = NULL;
838 signalled = NULL;
839 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
840 if ((l->l_flag & L_IDLE) != 0) {
841 continue;
842 }
843 if (l->l_lid == p->p_sigctx.ps_lwp)
844 signalled = l;
845 switch (l->l_stat) {
846 case LSONPROC:
847 onproc = l;
848 cnt++;
849 break;
850 case LSRUN:
851 running = l;
852 cnt++;
853 break;
854 case LSSLEEP:
855 sleeping = l;
856 break;
857 case LSSTOP:
858 stopped = l;
859 break;
860 case LSSUSPENDED:
861 suspended = l;
862 break;
863 }
864 }
865 if (nrlwps)
866 *nrlwps = cnt;
867 if (signalled)
868 l = signalled;
869 else if (onproc)
870 l = onproc;
871 else if (running)
872 l = running;
873 else if (sleeping)
874 l = sleeping;
875 else if (stopped)
876 l = stopped;
877 else if (suspended)
878 l = suspended;
879 else
880 break;
881 return l;
882 if (nrlwps)
883 *nrlwps = 0;
884 l = LIST_FIRST(&p->p_lwps);
885 return l;
886 #ifdef DIAGNOSTIC
887 case SIDL:
888 case SZOMB:
889 case SDYING:
890 case SDEAD:
891 if (locking)
892 mutex_exit(&p->p_smutex);
893 /* We have more than one LWP and we're in SIDL?
894 * How'd that happen?
895 */
896 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
897 p->p_pid, p->p_comm, p->p_stat);
898 break;
899 default:
900 if (locking)
901 mutex_exit(&p->p_smutex);
902 panic("Process %d (%s) in unknown state %d",
903 p->p_pid, p->p_comm, p->p_stat);
904 #endif
905 }
906
907 if (locking)
908 mutex_exit(&p->p_smutex);
909 panic("proc_representative_lwp: couldn't find a lwp for process"
910 " %d (%s)", p->p_pid, p->p_comm);
911 /* NOTREACHED */
912 return NULL;
913 }
914
915 /*
916 * Look up a live LWP within the speicifed process, and return it locked.
917 *
918 * Must be called with p->p_smutex held.
919 */
920 struct lwp *
921 lwp_find(struct proc *p, int id)
922 {
923 struct lwp *l;
924
925 LOCK_ASSERT(mutex_owned(&p->p_smutex));
926
927 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
928 if (l->l_lid == id)
929 break;
930 }
931
932 /*
933 * No need to lock - all of these conditions will
934 * be visible with the process level mutex held.
935 */
936 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
937 l = NULL;
938
939 return l;
940 }
941
942 /*
943 * Update an LWP's cached credentials to mirror the process' master copy.
944 *
945 * This happens early in the syscall path, on user trap, and on LWP
946 * creation. A long-running LWP can also voluntarily choose to update
947 * it's credentials by calling this routine. This may be called from
948 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
949 */
950 void
951 lwp_update_creds(struct lwp *l)
952 {
953 kauth_cred_t oc;
954 struct proc *p;
955
956 p = l->l_proc;
957 oc = l->l_cred;
958
959 mutex_enter(&p->p_mutex);
960 kauth_cred_hold(p->p_cred);
961 l->l_cred = p->p_cred;
962 mutex_exit(&p->p_mutex);
963 if (oc != NULL) {
964 KERNEL_LOCK(1, l); /* XXXSMP */
965 kauth_cred_free(oc);
966 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
967 }
968 }
969
970 /*
971 * Verify that an LWP is locked, and optionally verify that the lock matches
972 * one we specify.
973 */
974 int
975 lwp_locked(struct lwp *l, kmutex_t *mtx)
976 {
977 kmutex_t *cur = l->l_mutex;
978
979 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
980 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
981 #else
982 return mutex_owned(cur);
983 #endif
984 }
985
986 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
987 /*
988 * Lock an LWP.
989 */
990 void
991 lwp_lock_retry(struct lwp *l, kmutex_t *old)
992 {
993
994 /*
995 * XXXgcc ignoring kmutex_t * volatile on i386
996 *
997 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
998 */
999 #if 1
1000 while (l->l_mutex != old) {
1001 #else
1002 for (;;) {
1003 #endif
1004 mutex_spin_exit(old);
1005 old = l->l_mutex;
1006 mutex_spin_enter(old);
1007
1008 /*
1009 * mutex_enter() will have posted a read barrier. Re-test
1010 * l->l_mutex. If it has changed, we need to try again.
1011 */
1012 #if 1
1013 }
1014 #else
1015 } while (__predict_false(l->l_mutex != old));
1016 #endif
1017 }
1018 #endif
1019
1020 /*
1021 * Lend a new mutex to an LWP. The old mutex must be held.
1022 */
1023 void
1024 lwp_setlock(struct lwp *l, kmutex_t *new)
1025 {
1026
1027 LOCK_ASSERT(mutex_owned(l->l_mutex));
1028
1029 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1030 mb_write();
1031 l->l_mutex = new;
1032 #else
1033 (void)new;
1034 #endif
1035 }
1036
1037 /*
1038 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1039 * must be held.
1040 */
1041 void
1042 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1043 {
1044 kmutex_t *old;
1045
1046 LOCK_ASSERT(mutex_owned(l->l_mutex));
1047
1048 old = l->l_mutex;
1049 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1050 mb_write();
1051 l->l_mutex = new;
1052 #else
1053 (void)new;
1054 #endif
1055 mutex_spin_exit(old);
1056 }
1057
1058 /*
1059 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1060 * locked.
1061 */
1062 void
1063 lwp_relock(struct lwp *l, kmutex_t *new)
1064 {
1065 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1066 kmutex_t *old;
1067 #endif
1068
1069 LOCK_ASSERT(mutex_owned(l->l_mutex));
1070
1071 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1072 old = l->l_mutex;
1073 if (old != new) {
1074 mutex_spin_enter(new);
1075 l->l_mutex = new;
1076 mutex_spin_exit(old);
1077 }
1078 #else
1079 (void)new;
1080 #endif
1081 }
1082
1083 /*
1084 * Handle exceptions for mi_userret(). Called if a member of L_USERRET is
1085 * set.
1086 */
1087 void
1088 lwp_userret(struct lwp *l)
1089 {
1090 struct proc *p;
1091 void (*hook)(void);
1092 int sig;
1093
1094 p = l->l_proc;
1095
1096 /*
1097 * It should be safe to do this read unlocked on a multiprocessor
1098 * system..
1099 */
1100 while ((l->l_flag & L_USERRET) != 0) {
1101 /*
1102 * Process pending signals first, unless the process
1103 * is dumping core, where we will instead enter the
1104 * L_WSUSPEND case below.
1105 */
1106 if ((l->l_flag & (L_PENDSIG | L_WCORE)) == L_PENDSIG) {
1107 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1108 mutex_enter(&p->p_smutex);
1109 while ((sig = issignal(l)) != 0)
1110 postsig(sig);
1111 mutex_exit(&p->p_smutex);
1112 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1113 }
1114
1115 /*
1116 * Core-dump or suspend pending.
1117 *
1118 * In case of core dump, suspend ourselves, so that the
1119 * kernel stack and therefore the userland registers saved
1120 * in the trapframe are around for coredump() to write them
1121 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1122 * will write the core file out once all other LWPs are
1123 * suspended.
1124 */
1125 if ((l->l_flag & L_WSUSPEND) != 0) {
1126 mutex_enter(&p->p_smutex);
1127 p->p_nrlwps--;
1128 cv_broadcast(&p->p_lwpcv);
1129 lwp_lock(l);
1130 l->l_stat = LSSUSPENDED;
1131 mutex_exit(&p->p_smutex);
1132 mi_switch(l, NULL);
1133 }
1134
1135 /* Process is exiting. */
1136 if ((l->l_flag & L_WEXIT) != 0) {
1137 KERNEL_LOCK(1, l);
1138 lwp_exit(l);
1139 KASSERT(0);
1140 /* NOTREACHED */
1141 }
1142
1143 /* Call userret hook; used by Linux emulation. */
1144 if ((l->l_flag & L_WUSERRET) != 0) {
1145 lwp_lock(l);
1146 l->l_flag &= ~L_WUSERRET;
1147 lwp_unlock(l);
1148 hook = p->p_userret;
1149 p->p_userret = NULL;
1150 (*hook)();
1151 }
1152 }
1153 }
1154
1155 /*
1156 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1157 */
1158 void
1159 lwp_need_userret(struct lwp *l)
1160 {
1161 LOCK_ASSERT(lwp_locked(l, NULL));
1162
1163 /*
1164 * Since the tests in lwp_userret() are done unlocked, make sure
1165 * that the condition will be seen before forcing the LWP to enter
1166 * kernel mode.
1167 */
1168 mb_write();
1169
1170 if (l->l_priority > PUSER)
1171 lwp_changepri(l, PUSER);
1172 cpu_signotify(l);
1173 }
1174
1175 /*
1176 * Add one reference to an LWP. This will prevent the LWP from
1177 * exiting, thus keep the lwp structure and PCB around to inspect.
1178 */
1179 void
1180 lwp_addref(struct lwp *l)
1181 {
1182
1183 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
1184 KASSERT(l->l_stat != LSZOMB);
1185 KASSERT(l->l_refcnt != 0);
1186
1187 l->l_refcnt++;
1188 }
1189
1190 /*
1191 * Remove one reference to an LWP. If this is the last reference,
1192 * then we must finalize the LWP's death.
1193 */
1194 void
1195 lwp_delref(struct lwp *l)
1196 {
1197 struct proc *p = l->l_proc;
1198
1199 mutex_enter(&p->p_smutex);
1200 if (--l->l_refcnt == 0)
1201 cv_broadcast(&p->p_refcv);
1202 mutex_exit(&p->p_smutex);
1203 }
1204
1205 /*
1206 * Drain all references to the current LWP.
1207 */
1208 void
1209 lwp_drainrefs(struct lwp *l)
1210 {
1211 struct proc *p = l->l_proc;
1212
1213 LOCK_ASSERT(mutex_owned(&p->p_smutex));
1214 KASSERT(l->l_refcnt != 0);
1215
1216 l->l_refcnt--;
1217 while (l->l_refcnt != 0)
1218 cv_wait(&p->p_refcv, &p->p_smutex);
1219 }
1220
1221 /*
1222 * lwp_specific_key_create --
1223 * Create a key for subsystem lwp-specific data.
1224 */
1225 int
1226 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1227 {
1228
1229 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1230 }
1231
1232 /*
1233 * lwp_specific_key_delete --
1234 * Delete a key for subsystem lwp-specific data.
1235 */
1236 void
1237 lwp_specific_key_delete(specificdata_key_t key)
1238 {
1239
1240 specificdata_key_delete(lwp_specificdata_domain, key);
1241 }
1242
1243 /*
1244 * lwp_initspecific --
1245 * Initialize an LWP's specificdata container.
1246 */
1247 void
1248 lwp_initspecific(struct lwp *l)
1249 {
1250 int error;
1251
1252 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1253 KASSERT(error == 0);
1254 }
1255
1256 /*
1257 * lwp_finispecific --
1258 * Finalize an LWP's specificdata container.
1259 */
1260 void
1261 lwp_finispecific(struct lwp *l)
1262 {
1263
1264 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1265 }
1266
1267 /*
1268 * lwp_getspecific --
1269 * Return lwp-specific data corresponding to the specified key.
1270 *
1271 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1272 * only its OWN SPECIFIC DATA. If it is necessary to access another
1273 * LWP's specifc data, care must be taken to ensure that doing so
1274 * would not cause internal data structure inconsistency (i.e. caller
1275 * can guarantee that the target LWP is not inside an lwp_getspecific()
1276 * or lwp_setspecific() call).
1277 */
1278 void *
1279 lwp_getspecific(specificdata_key_t key)
1280 {
1281
1282 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1283 &curlwp->l_specdataref, key));
1284 }
1285
1286 void *
1287 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1288 {
1289
1290 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1291 &l->l_specdataref, key));
1292 }
1293
1294 /*
1295 * lwp_setspecific --
1296 * Set lwp-specific data corresponding to the specified key.
1297 */
1298 void
1299 lwp_setspecific(specificdata_key_t key, void *data)
1300 {
1301
1302 specificdata_setspecific(lwp_specificdata_domain,
1303 &curlwp->l_specdataref, key, data);
1304 }
1305