kern_lwp.c revision 1.55.2.3 1 /* $NetBSD: kern_lwp.c,v 1.55.2.3 2007/02/18 13:32:34 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit (or thread) of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp".
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing in kernel simultaneously.
52 *
53 * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 * threads are distinct processes (system processes) with no user space
55 * component, which themselves may contain one or more LWPs.
56 *
57 * Execution states
58 *
59 * At any given time, an LWP has overall state that is described by
60 * lwp::l_stat. The states are broken into two sets below. The first
61 * set is guaranteed to represent the absolute, current state of the
62 * LWP:
63 *
64 * LSONPROC
65 *
66 * On processor: the LWP is executing on a CPU, either in the
67 * kernel or in user space.
68 *
69 * LSRUN
70 *
71 * Runnable: the LWP is parked on a run queue, and may soon be
72 * chosen to run by a idle processor, or by a processor that
73 * has been asked to preempt a currently runnning but lower
74 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 * then the LWP is not on a run queue, but may be soon.
76 *
77 * LSIDL
78 *
79 * Idle: the LWP has been created but has not yet executed.
80 * Whoever created the new LWP can be expected to set it to
81 * another state shortly.
82 *
83 * LSSUSPENDED:
84 *
85 * Suspended: the LWP has had its execution suspended by
86 * another LWP in the same process using the _lwp_suspend()
87 * system call. User-level LWPs also enter the suspended
88 * state when the system is shutting down.
89 *
90 * The second set represent a "statement of intent" on behalf of the
91 * LWP. The LWP may in fact be executing on a processor, may be
92 * sleeping, idle, or on a run queue. It is expected to take the
93 * necessary action to stop executing or become "running" again within
94 * a short timeframe.
95 *
96 * LSZOMB:
97 *
98 * Dead: the LWP has released most of its resources and is
99 * about to switch away into oblivion. When it switches away,
100 * its few remaining resources will be collected.
101 *
102 * LSSLEEP:
103 *
104 * Sleeping: the LWP has entered itself onto a sleep queue, and
105 * will switch away shortly to allow other LWPs to run on the
106 * CPU.
107 *
108 * LSSTOP:
109 *
110 * Stopped: the LWP has been stopped as a result of a job
111 * control signal, or as a result of the ptrace() interface.
112 * Stopped LWPs may run briefly within the kernel to handle
113 * signals that they receive, but will not return to user space
114 * until their process' state is changed away from stopped.
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP and LSSUSPENDED states may only be set
122 * when returning to user space in userret(), or when sleeping
123 * interruptably. Before setting those states, we try to ensure
124 * that the LWPs will release all kernel locks that they hold,
125 * and at a minimum try to ensure that the LWP can be set runnable
126 * again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Locking
145 *
146 * The majority of fields in 'struct lwp' are covered by a single,
147 * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 * each field are documented in sys/lwp.h.
149 *
150 * State transitions must be made with the LWP's general lock held. In
151 * a multiprocessor kernel, state transitions may cause the LWP's lock
152 * pointer to change. On uniprocessor kernels, most scheduler and
153 * synchronisation objects such as sleep queues and LWPs are protected
154 * by only one mutex (sched_mutex). In this case, LWPs' lock pointers
155 * will never change and will always reference sched_mutex.
156 *
157 * Manipulation of the general lock is not performed directly, but
158 * through calls to lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSIDL, LSZOMB
163 *
164 * Always covered by sched_mutex.
165 *
166 * LSONPROC, LSRUN:
167 *
168 * Always covered by sched_mutex, which protects the run queues
169 * and other miscellaneous items. If the scheduler is changed
170 * to use per-CPU run queues, this may become a per-CPU mutex.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a mutex associated with the sleep queue that the
175 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue mutex. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the mutex is sched_mutex.
183 *
184 * The lock order is as follows:
185 *
186 * sleepq_t::sq_mutex |---> sched_mutex
187 * tschain_t::tc_mutex |
188 *
189 * Each process has an scheduler state mutex (proc::p_smutex), and a
190 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
191 * so on. When an LWP is to be entered into or removed from one of the
192 * following states, p_mutex must be held and the process wide counters
193 * adjusted:
194 *
195 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
196 *
197 * Note that an LWP is considered running or likely to run soon if in
198 * one of the following states. This affects the value of p_nrlwps:
199 *
200 * LSRUN, LSONPROC, LSSLEEP
201 *
202 * p_smutex does not need to be held when transitioning among these
203 * three states.
204 */
205
206 #include <sys/cdefs.h>
207 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.55.2.3 2007/02/18 13:32:34 yamt Exp $");
208
209 #include "opt_multiprocessor.h"
210 #include "opt_lockdebug.h"
211
212 #define _LWP_API_PRIVATE
213
214 #include <sys/param.h>
215 #include <sys/systm.h>
216 #include <sys/pool.h>
217 #include <sys/proc.h>
218 #include <sys/syscallargs.h>
219 #include <sys/kauth.h>
220 #include <sys/sleepq.h>
221 #include <sys/lockdebug.h>
222 #include <sys/kmem.h>
223
224 #include <uvm/uvm_extern.h>
225
226 struct lwplist alllwp;
227
228 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
229 &pool_allocator_nointr);
230 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
231 &pool_allocator_nointr);
232
233 static specificdata_domain_t lwp_specificdata_domain;
234
235 #define LWP_DEBUG
236
237 #ifdef LWP_DEBUG
238 int lwp_debug = 0;
239 #define DPRINTF(x) if (lwp_debug) printf x
240 #else
241 #define DPRINTF(x)
242 #endif
243
244 void
245 lwpinit(void)
246 {
247
248 lwp_specificdata_domain = specificdata_domain_create();
249 KASSERT(lwp_specificdata_domain != NULL);
250 lwp_sys_init();
251 }
252
253 /*
254 * Set an suspended.
255 *
256 * Must be called with p_smutex held, and the LWP locked. Will unlock the
257 * LWP before return.
258 */
259 int
260 lwp_suspend(struct lwp *curl, struct lwp *t)
261 {
262 int error;
263
264 LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
265 LOCK_ASSERT(lwp_locked(t, NULL));
266
267 KASSERT(curl != t || curl->l_stat == LSONPROC);
268
269 /*
270 * If the current LWP has been told to exit, we must not suspend anyone
271 * else or deadlock could occur. We won't return to userspace.
272 */
273 if ((curl->l_stat & (L_WEXIT | L_WCORE)) != 0) {
274 lwp_unlock(t);
275 return (EDEADLK);
276 }
277
278 error = 0;
279
280 switch (t->l_stat) {
281 case LSRUN:
282 case LSONPROC:
283 t->l_flag |= L_WSUSPEND;
284 lwp_need_userret(t);
285 lwp_unlock(t);
286 break;
287
288 case LSSLEEP:
289 t->l_flag |= L_WSUSPEND;
290
291 /*
292 * Kick the LWP and try to get it to the kernel boundary
293 * so that it will release any locks that it holds.
294 * setrunnable() will release the lock.
295 */
296 if ((t->l_flag & L_SINTR) != 0)
297 setrunnable(t);
298 else
299 lwp_unlock(t);
300 break;
301
302 case LSSUSPENDED:
303 lwp_unlock(t);
304 break;
305
306 case LSSTOP:
307 t->l_flag |= L_WSUSPEND;
308 setrunnable(t);
309 break;
310
311 case LSIDL:
312 case LSZOMB:
313 error = EINTR; /* It's what Solaris does..... */
314 lwp_unlock(t);
315 break;
316 }
317
318 /*
319 * XXXLWP Wait for:
320 *
321 * o process exiting
322 * o target LWP suspended
323 * o target LWP not suspended and L_WSUSPEND clear
324 * o target LWP exited
325 */
326
327 return (error);
328 }
329
330 /*
331 * Restart a suspended LWP.
332 *
333 * Must be called with p_smutex held, and the LWP locked. Will unlock the
334 * LWP before return.
335 */
336 void
337 lwp_continue(struct lwp *l)
338 {
339
340 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
341 LOCK_ASSERT(lwp_locked(l, NULL));
342
343 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
344 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
345 l->l_wchan));
346
347 /* If rebooting or not suspended, then just bail out. */
348 if ((l->l_flag & L_WREBOOT) != 0) {
349 lwp_unlock(l);
350 return;
351 }
352
353 l->l_flag &= ~L_WSUSPEND;
354
355 if (l->l_stat != LSSUSPENDED) {
356 lwp_unlock(l);
357 return;
358 }
359
360 /* setrunnable() will release the lock. */
361 setrunnable(l);
362 }
363
364 /*
365 * Wait for an LWP within the current process to exit. If 'lid' is
366 * non-zero, we are waiting for a specific LWP.
367 *
368 * Must be called with p->p_smutex held.
369 */
370 int
371 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
372 {
373 struct proc *p = l->l_proc;
374 struct lwp *l2;
375 int nfound, error;
376
377 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
378 p->p_pid, l->l_lid, lid));
379
380 LOCK_ASSERT(mutex_owned(&p->p_smutex));
381
382 /*
383 * We try to check for deadlock:
384 *
385 * 1) If all other LWPs are waiting for exits or suspended.
386 * 2) If we are trying to wait on ourself.
387 *
388 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
389 * waits, not any-LWP waits) and detect that sort of deadlock, but
390 * we don't have a good place to store the lwp that is being waited
391 * for. wchan is already filled with &p->p_nlwps, and putting the
392 * lwp address in there for deadlock tracing would require exiting
393 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
394 * get threads sleeping on any LWP exiting.
395 */
396 if (lid == l->l_lid)
397 return EDEADLK;
398
399 p->p_nlwpwait++;
400
401 for (;;) {
402 /*
403 * Avoid a race between exit1() and sigexit(): if the
404 * process is dumping core, then we need to bail out: call
405 * into lwp_userret() where we will be suspended until the
406 * deed is done.
407 */
408 if ((p->p_sflag & PS_WCORE) != 0) {
409 mutex_exit(&p->p_smutex);
410 lwp_userret(l);
411 #ifdef DIAGNOSTIC
412 panic("lwp_wait1");
413 #endif
414 /* NOTREACHED */
415 }
416
417 /*
418 * First off, drain any detached LWP that is waiting to be
419 * reaped.
420 */
421 while ((l2 = p->p_zomblwp) != NULL) {
422 p->p_zomblwp = NULL;
423 lwp_free(l2, 0, 0); /* releases proc mutex */
424 mutex_enter(&p->p_smutex);
425 }
426
427 /*
428 * Now look for an LWP to collect. If the whole process is
429 * exiting, count detached LWPs as eligible to be collected,
430 * but don't drain them here.
431 */
432 nfound = 0;
433 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
434 if (l2 == l || (lid != 0 && l2->l_lid != lid))
435 continue;
436 if ((l2->l_prflag & LPR_DETACHED) != 0) {
437 nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
438 continue;
439 }
440 nfound++;
441
442 /* No need to lock the LWP in order to see LSZOMB. */
443 if (l2->l_stat != LSZOMB)
444 continue;
445
446 if (departed)
447 *departed = l2->l_lid;
448 lwp_free(l2, 0, 0);
449 mutex_enter(&p->p_smutex);
450 p->p_nlwpwait--;
451 return 0;
452 }
453
454 if (nfound == 0) {
455 error = ESRCH;
456 break;
457 }
458 if ((flags & LWPWAIT_EXITCONTROL) != 0) {
459 KASSERT(p->p_nlwps > 1);
460 cv_wait(&p->p_lwpcv, &p->p_smutex);
461 continue;
462 }
463 if ((p->p_sflag & PS_WEXIT) != 0 ||
464 p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
465 error = EDEADLK;
466 break;
467 }
468 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
469 break;
470 }
471
472 p->p_nlwpwait--;
473 return error;
474 }
475
476 /*
477 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
478 * The new LWP is created in state LSIDL and must be set running,
479 * suspended, or stopped by the caller.
480 */
481 int
482 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, boolean_t inmem,
483 int flags, void *stack, size_t stacksize,
484 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
485 {
486 struct lwp *l2, *isfree;
487 turnstile_t *ts;
488
489 /*
490 * First off, reap any detached LWP waiting to be collected.
491 * We can re-use its LWP structure and turnstile.
492 */
493 isfree = NULL;
494 if (p2->p_zomblwp != NULL) {
495 mutex_enter(&p2->p_smutex);
496 if ((isfree = p2->p_zomblwp) != NULL) {
497 p2->p_zomblwp = NULL;
498 lwp_free(isfree, 1, 0); /* releases proc mutex */
499 } else
500 mutex_exit(&p2->p_smutex);
501 }
502 if (isfree == NULL) {
503 l2 = pool_get(&lwp_pool, PR_WAITOK);
504 memset(l2, 0, sizeof(*l2));
505 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
506 } else {
507 l2 = isfree;
508 ts = l2->l_ts;
509 memset(l2, 0, sizeof(*l2));
510 l2->l_ts = ts;
511 }
512
513 l2->l_stat = LSIDL;
514 l2->l_proc = p2;
515 l2->l_refcnt = 1;
516 l2->l_priority = l1->l_priority;
517 l2->l_usrpri = l1->l_usrpri;
518 l2->l_mutex = &sched_mutex;
519 l2->l_cpu = l1->l_cpu;
520 l2->l_flag = inmem ? L_INMEM : 0;
521 lwp_initspecific(l2);
522
523 if (p2->p_flag & P_SYSTEM) {
524 /*
525 * Mark it as a system process and not a candidate for
526 * swapping.
527 */
528 l2->l_flag |= L_SYSTEM;
529 }
530
531 lwp_update_creds(l2);
532 callout_init(&l2->l_tsleep_ch);
533 cv_init(&l2->l_sigcv, "sigwait");
534 l2->l_syncobj = &sched_syncobj;
535
536 if (rnewlwpp != NULL)
537 *rnewlwpp = l2;
538
539 l2->l_addr = UAREA_TO_USER(uaddr);
540 uvm_lwp_fork(l1, l2, stack, stacksize, func,
541 (arg != NULL) ? arg : l2);
542
543 mutex_enter(&p2->p_smutex);
544
545 if ((flags & LWP_DETACHED) != 0) {
546 l2->l_prflag = LPR_DETACHED;
547 p2->p_ndlwps++;
548 } else
549 l2->l_prflag = 0;
550
551 l2->l_sigmask = l1->l_sigmask;
552 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
553 sigemptyset(&l2->l_sigpend.sp_set);
554
555 p2->p_nlwpid++;
556 if (p2->p_nlwpid == 0)
557 p2->p_nlwpid++;
558 l2->l_lid = p2->p_nlwpid;
559 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
560 p2->p_nlwps++;
561
562 mutex_exit(&p2->p_smutex);
563
564 mutex_enter(&proclist_mutex);
565 LIST_INSERT_HEAD(&alllwp, l2, l_list);
566 mutex_exit(&proclist_mutex);
567
568 if (p2->p_emul->e_lwp_fork)
569 (*p2->p_emul->e_lwp_fork)(l1, l2);
570
571 return (0);
572 }
573
574 /*
575 * Quit the process.
576 * this can only be used meaningfully if you're willing to switch away.
577 * Calling with l!=curlwp would be weird.
578 */
579 void
580 lwp_exit(struct lwp *l)
581 {
582 struct proc *p = l->l_proc;
583 struct lwp *l2;
584
585 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
586 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
587
588 /*
589 * Verify that we hold no locks other than the kernel lock.
590 */
591 #ifdef MULTIPROCESSOR
592 LOCKDEBUG_BARRIER(&kernel_lock, 0);
593 #else
594 LOCKDEBUG_BARRIER(NULL, 0);
595 #endif
596
597 /*
598 * If we are the last live LWP in a process, we need to exit the
599 * entire process. We do so with an exit status of zero, because
600 * it's a "controlled" exit, and because that's what Solaris does.
601 *
602 * We are not quite a zombie yet, but for accounting purposes we
603 * must increment the count of zombies here.
604 *
605 * Note: the last LWP's specificdata will be deleted here.
606 */
607 mutex_enter(&p->p_smutex);
608 if (p->p_nlwps - p->p_nzlwps == 1) {
609 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
610 p->p_pid, l->l_lid));
611 exit1(l, 0);
612 /* NOTREACHED */
613 }
614 p->p_nzlwps++;
615 mutex_exit(&p->p_smutex);
616
617 if (p->p_emul->e_lwp_exit)
618 (*p->p_emul->e_lwp_exit)(l);
619
620 /* Delete the specificdata while it's still safe to sleep. */
621 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
622
623 /*
624 * Release our cached credentials.
625 */
626 kauth_cred_free(l->l_cred);
627
628 /*
629 * Remove the LWP from the global list.
630 */
631 mutex_enter(&proclist_mutex);
632 LIST_REMOVE(l, l_list);
633 mutex_exit(&proclist_mutex);
634
635 /*
636 * Get rid of all references to the LWP that others (e.g. procfs)
637 * may have, and mark the LWP as a zombie. If the LWP is detached,
638 * mark it waiting for collection in the proc structure. Note that
639 * before we can do that, we need to free any other dead, deatched
640 * LWP waiting to meet its maker.
641 *
642 * XXXSMP disable preemption.
643 */
644 mutex_enter(&p->p_smutex);
645 lwp_drainrefs(l);
646
647 if ((l->l_prflag & LPR_DETACHED) != 0) {
648 while ((l2 = p->p_zomblwp) != NULL) {
649 p->p_zomblwp = NULL;
650 lwp_free(l2, 0, 0); /* releases proc mutex */
651 mutex_enter(&p->p_smutex);
652 }
653 p->p_zomblwp = l;
654 }
655
656 /*
657 * If we find a pending signal for the process and we have been
658 * asked to check for signals, then we loose: arrange to have
659 * all other LWPs in the process check for signals.
660 */
661 if ((l->l_flag & L_PENDSIG) != 0 &&
662 firstsig(&p->p_sigpend.sp_set) != 0) {
663 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
664 lwp_lock(l2);
665 l2->l_flag |= L_PENDSIG;
666 lwp_unlock(l2);
667 }
668 }
669
670 lwp_lock(l);
671 l->l_stat = LSZOMB;
672 lwp_unlock(l);
673 p->p_nrlwps--;
674 cv_broadcast(&p->p_lwpcv);
675 mutex_exit(&p->p_smutex);
676
677 /*
678 * We can no longer block. At this point, lwp_free() may already
679 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
680 *
681 * Free MD LWP resources.
682 */
683 #ifndef __NO_CPU_LWP_FREE
684 cpu_lwp_free(l, 0);
685 #endif
686 pmap_deactivate(l);
687
688 /*
689 * Release the kernel lock, signal another LWP to collect us,
690 * and switch away into oblivion.
691 */
692 #ifdef notyet
693 /* XXXSMP hold in lwp_userret() */
694 KERNEL_UNLOCK_LAST(l);
695 #else
696 KERNEL_UNLOCK_ALL(l, NULL);
697 #endif
698
699 lwp_exit_switchaway(l);
700 }
701
702 void
703 lwp_exit_switchaway(struct lwp *l)
704 {
705 struct cpu_info *ci;
706 struct lwp *idlelwp;
707
708 uvmexp.swtch++; /* XXXSMP unlocked */
709
710 ci = curcpu();
711 idlelwp = ci->ci_data.cpu_idlelwp;
712
713 idlelwp->l_stat = LSONPROC;
714 cpu_switchto(NULL, idlelwp);
715 }
716
717 /*
718 * Free a dead LWP's remaining resources.
719 *
720 * XXXLWP limits.
721 */
722 void
723 lwp_free(struct lwp *l, int recycle, int last)
724 {
725 struct proc *p = l->l_proc;
726 ksiginfoq_t kq;
727
728 /*
729 * If this was not the last LWP in the process, then adjust
730 * counters and unlock.
731 */
732 if (!last) {
733 /*
734 * Add the LWP's run time to the process' base value.
735 * This needs to co-incide with coming off p_lwps.
736 */
737 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
738 LIST_REMOVE(l, l_sibling);
739 p->p_nlwps--;
740 p->p_nzlwps--;
741 if ((l->l_prflag & LPR_DETACHED) != 0)
742 p->p_ndlwps--;
743 mutex_exit(&p->p_smutex);
744
745 #ifdef MULTIPROCESSOR
746 /*
747 * In the unlikely event that the LWP is still on the CPU,
748 * then spin until it has switched away. We need to release
749 * all locks to avoid deadlock against interrupt handlers on
750 * the target CPU.
751 */
752 if (l->l_cpu->ci_curlwp == l) {
753 int count;
754 KERNEL_UNLOCK_ALL(curlwp, &count);
755 while (l->l_cpu->ci_curlwp == l)
756 SPINLOCK_BACKOFF_HOOK;
757 KERNEL_LOCK(count, curlwp);
758 }
759 #endif
760 }
761
762 /*
763 * Destroy the LWP's remaining signal information.
764 */
765 ksiginfo_queue_init(&kq);
766 sigclear(&l->l_sigpend, NULL, &kq);
767 ksiginfo_queue_drain(&kq);
768 cv_destroy(&l->l_sigcv);
769
770 /*
771 * Free the LWP's turnstile and the LWP structure itself unless the
772 * caller wants to recycle them.
773 *
774 * We can't return turnstile0 to the pool (it didn't come from it),
775 * so if it comes up just drop it quietly and move on.
776 *
777 * We don't recycle the VM resources at this time.
778 */
779 KERNEL_LOCK(1, curlwp); /* XXXSMP */
780 if (!recycle && l->l_ts != &turnstile0)
781 pool_cache_put(&turnstile_cache, l->l_ts);
782 #ifndef __NO_CPU_LWP_FREE
783 cpu_lwp_free2(l);
784 #endif
785 uvm_lwp_exit(l);
786 if (!recycle)
787 pool_put(&lwp_pool, l);
788 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
789 }
790
791 /*
792 * Pick a LWP to represent the process for those operations which
793 * want information about a "process" that is actually associated
794 * with a LWP.
795 *
796 * If 'locking' is false, no locking or lock checks are performed.
797 * This is intended for use by DDB.
798 *
799 * We don't bother locking the LWP here, since code that uses this
800 * interface is broken by design and an exact match is not required.
801 */
802 struct lwp *
803 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
804 {
805 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
806 struct lwp *signalled;
807 int cnt;
808
809 if (locking) {
810 LOCK_ASSERT(mutex_owned(&p->p_smutex));
811 }
812
813 /* Trivial case: only one LWP */
814 if (p->p_nlwps == 1) {
815 l = LIST_FIRST(&p->p_lwps);
816 if (nrlwps)
817 *nrlwps = (l->l_stat == LSONPROC || LSRUN);
818 return l;
819 }
820
821 cnt = 0;
822 switch (p->p_stat) {
823 case SSTOP:
824 case SACTIVE:
825 /* Pick the most live LWP */
826 onproc = running = sleeping = stopped = suspended = NULL;
827 signalled = NULL;
828 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
829 if ((l->l_flag & L_IDLE) != 0) {
830 continue;
831 }
832 if (l->l_lid == p->p_sigctx.ps_lwp)
833 signalled = l;
834 switch (l->l_stat) {
835 case LSONPROC:
836 onproc = l;
837 cnt++;
838 break;
839 case LSRUN:
840 running = l;
841 cnt++;
842 break;
843 case LSSLEEP:
844 sleeping = l;
845 break;
846 case LSSTOP:
847 stopped = l;
848 break;
849 case LSSUSPENDED:
850 suspended = l;
851 break;
852 }
853 }
854 if (nrlwps)
855 *nrlwps = cnt;
856 if (signalled)
857 l = signalled;
858 else if (onproc)
859 l = onproc;
860 else if (running)
861 l = running;
862 else if (sleeping)
863 l = sleeping;
864 else if (stopped)
865 l = stopped;
866 else if (suspended)
867 l = suspended;
868 else
869 break;
870 return l;
871 if (nrlwps)
872 *nrlwps = 0;
873 l = LIST_FIRST(&p->p_lwps);
874 return l;
875 #ifdef DIAGNOSTIC
876 case SIDL:
877 case SZOMB:
878 case SDYING:
879 case SDEAD:
880 if (locking)
881 mutex_exit(&p->p_smutex);
882 /* We have more than one LWP and we're in SIDL?
883 * How'd that happen?
884 */
885 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
886 p->p_pid, p->p_comm, p->p_stat);
887 break;
888 default:
889 if (locking)
890 mutex_exit(&p->p_smutex);
891 panic("Process %d (%s) in unknown state %d",
892 p->p_pid, p->p_comm, p->p_stat);
893 #endif
894 }
895
896 if (locking)
897 mutex_exit(&p->p_smutex);
898 panic("proc_representative_lwp: couldn't find a lwp for process"
899 " %d (%s)", p->p_pid, p->p_comm);
900 /* NOTREACHED */
901 return NULL;
902 }
903
904 /*
905 * Look up a live LWP within the speicifed process, and return it locked.
906 *
907 * Must be called with p->p_smutex held.
908 */
909 struct lwp *
910 lwp_find(struct proc *p, int id)
911 {
912 struct lwp *l;
913
914 LOCK_ASSERT(mutex_owned(&p->p_smutex));
915
916 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
917 if (l->l_lid == id)
918 break;
919 }
920
921 /*
922 * No need to lock - all of these conditions will
923 * be visible with the process level mutex held.
924 */
925 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
926 l = NULL;
927
928 return l;
929 }
930
931 /*
932 * Update an LWP's cached credentials to mirror the process' master copy.
933 *
934 * This happens early in the syscall path, on user trap, and on LWP
935 * creation. A long-running LWP can also voluntarily choose to update
936 * it's credentials by calling this routine. This may be called from
937 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
938 */
939 void
940 lwp_update_creds(struct lwp *l)
941 {
942 kauth_cred_t oc;
943 struct proc *p;
944
945 p = l->l_proc;
946 oc = l->l_cred;
947
948 mutex_enter(&p->p_mutex);
949 kauth_cred_hold(p->p_cred);
950 l->l_cred = p->p_cred;
951 mutex_exit(&p->p_mutex);
952 if (oc != NULL) {
953 KERNEL_LOCK(1, l); /* XXXSMP */
954 kauth_cred_free(oc);
955 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
956 }
957 }
958
959 /*
960 * Verify that an LWP is locked, and optionally verify that the lock matches
961 * one we specify.
962 */
963 int
964 lwp_locked(struct lwp *l, kmutex_t *mtx)
965 {
966 kmutex_t *cur = l->l_mutex;
967
968 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
969 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
970 #else
971 return mutex_owned(cur);
972 #endif
973 }
974
975 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
976 /*
977 * Lock an LWP.
978 */
979 void
980 lwp_lock_retry(struct lwp *l, kmutex_t *old)
981 {
982
983 /*
984 * XXXgcc ignoring kmutex_t * volatile on i386
985 *
986 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
987 */
988 #if 1
989 while (l->l_mutex != old) {
990 #else
991 for (;;) {
992 #endif
993 mutex_spin_exit(old);
994 old = l->l_mutex;
995 mutex_spin_enter(old);
996
997 /*
998 * mutex_enter() will have posted a read barrier. Re-test
999 * l->l_mutex. If it has changed, we need to try again.
1000 */
1001 #if 1
1002 }
1003 #else
1004 } while (__predict_false(l->l_mutex != old));
1005 #endif
1006 }
1007 #endif
1008
1009 /*
1010 * Lend a new mutex to an LWP. The old mutex must be held.
1011 */
1012 void
1013 lwp_setlock(struct lwp *l, kmutex_t *new)
1014 {
1015
1016 LOCK_ASSERT(mutex_owned(l->l_mutex));
1017
1018 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1019 mb_write();
1020 l->l_mutex = new;
1021 #else
1022 (void)new;
1023 #endif
1024 }
1025
1026 /*
1027 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1028 * must be held.
1029 */
1030 void
1031 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1032 {
1033 kmutex_t *old;
1034
1035 LOCK_ASSERT(mutex_owned(l->l_mutex));
1036
1037 old = l->l_mutex;
1038 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1039 mb_write();
1040 l->l_mutex = new;
1041 #else
1042 (void)new;
1043 #endif
1044 mutex_spin_exit(old);
1045 }
1046
1047 /*
1048 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1049 * locked.
1050 */
1051 void
1052 lwp_relock(struct lwp *l, kmutex_t *new)
1053 {
1054 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1055 kmutex_t *old;
1056 #endif
1057
1058 LOCK_ASSERT(mutex_owned(l->l_mutex));
1059
1060 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1061 old = l->l_mutex;
1062 if (old != new) {
1063 mutex_spin_enter(new);
1064 l->l_mutex = new;
1065 mutex_spin_exit(old);
1066 }
1067 #else
1068 (void)new;
1069 #endif
1070 }
1071
1072 /*
1073 * Handle exceptions for mi_userret(). Called if a member of L_USERRET is
1074 * set.
1075 */
1076 void
1077 lwp_userret(struct lwp *l)
1078 {
1079 struct proc *p;
1080 void (*hook)(void);
1081 int sig;
1082
1083 p = l->l_proc;
1084
1085 /*
1086 * It should be safe to do this read unlocked on a multiprocessor
1087 * system..
1088 */
1089 while ((l->l_flag & L_USERRET) != 0) {
1090 /*
1091 * Process pending signals first, unless the process
1092 * is dumping core, where we will instead enter the
1093 * L_WSUSPEND case below.
1094 */
1095 if ((l->l_flag & (L_PENDSIG | L_WCORE)) == L_PENDSIG) {
1096 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1097 mutex_enter(&p->p_smutex);
1098 while ((sig = issignal(l)) != 0)
1099 postsig(sig);
1100 mutex_exit(&p->p_smutex);
1101 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1102 }
1103
1104 /*
1105 * Core-dump or suspend pending.
1106 *
1107 * In case of core dump, suspend ourselves, so that the
1108 * kernel stack and therefore the userland registers saved
1109 * in the trapframe are around for coredump() to write them
1110 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1111 * will write the core file out once all other LWPs are
1112 * suspended.
1113 */
1114 if ((l->l_flag & L_WSUSPEND) != 0) {
1115 mutex_enter(&p->p_smutex);
1116 p->p_nrlwps--;
1117 cv_broadcast(&p->p_lwpcv);
1118 lwp_lock(l);
1119 l->l_stat = LSSUSPENDED;
1120 mutex_exit(&p->p_smutex);
1121 mi_switch(l, NULL);
1122 }
1123
1124 /* Process is exiting. */
1125 if ((l->l_flag & L_WEXIT) != 0) {
1126 KERNEL_LOCK(1, l);
1127 lwp_exit(l);
1128 KASSERT(0);
1129 /* NOTREACHED */
1130 }
1131
1132 /* Call userret hook; used by Linux emulation. */
1133 if ((l->l_flag & L_WUSERRET) != 0) {
1134 lwp_lock(l);
1135 l->l_flag &= ~L_WUSERRET;
1136 lwp_unlock(l);
1137 hook = p->p_userret;
1138 p->p_userret = NULL;
1139 (*hook)();
1140 }
1141 }
1142 }
1143
1144 /*
1145 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1146 */
1147 void
1148 lwp_need_userret(struct lwp *l)
1149 {
1150 LOCK_ASSERT(lwp_locked(l, NULL));
1151
1152 /*
1153 * Since the tests in lwp_userret() are done unlocked, make sure
1154 * that the condition will be seen before forcing the LWP to enter
1155 * kernel mode.
1156 */
1157 mb_write();
1158
1159 if (l->l_priority > PUSER)
1160 lwp_changepri(l, PUSER);
1161 cpu_signotify(l);
1162 }
1163
1164 /*
1165 * Add one reference to an LWP. This will prevent the LWP from
1166 * exiting, thus keep the lwp structure and PCB around to inspect.
1167 */
1168 void
1169 lwp_addref(struct lwp *l)
1170 {
1171
1172 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
1173 KASSERT(l->l_stat != LSZOMB);
1174 KASSERT(l->l_refcnt != 0);
1175
1176 l->l_refcnt++;
1177 }
1178
1179 /*
1180 * Remove one reference to an LWP. If this is the last reference,
1181 * then we must finalize the LWP's death.
1182 */
1183 void
1184 lwp_delref(struct lwp *l)
1185 {
1186 struct proc *p = l->l_proc;
1187
1188 mutex_enter(&p->p_smutex);
1189 if (--l->l_refcnt == 0)
1190 cv_broadcast(&p->p_refcv);
1191 mutex_exit(&p->p_smutex);
1192 }
1193
1194 /*
1195 * Drain all references to the current LWP.
1196 */
1197 void
1198 lwp_drainrefs(struct lwp *l)
1199 {
1200 struct proc *p = l->l_proc;
1201
1202 LOCK_ASSERT(mutex_owned(&p->p_smutex));
1203 KASSERT(l->l_refcnt != 0);
1204
1205 l->l_refcnt--;
1206 while (l->l_refcnt != 0)
1207 cv_wait(&p->p_refcv, &p->p_smutex);
1208 }
1209
1210 /*
1211 * lwp_specific_key_create --
1212 * Create a key for subsystem lwp-specific data.
1213 */
1214 int
1215 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1216 {
1217
1218 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1219 }
1220
1221 /*
1222 * lwp_specific_key_delete --
1223 * Delete a key for subsystem lwp-specific data.
1224 */
1225 void
1226 lwp_specific_key_delete(specificdata_key_t key)
1227 {
1228
1229 specificdata_key_delete(lwp_specificdata_domain, key);
1230 }
1231
1232 /*
1233 * lwp_initspecific --
1234 * Initialize an LWP's specificdata container.
1235 */
1236 void
1237 lwp_initspecific(struct lwp *l)
1238 {
1239 int error;
1240
1241 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1242 KASSERT(error == 0);
1243 }
1244
1245 /*
1246 * lwp_finispecific --
1247 * Finalize an LWP's specificdata container.
1248 */
1249 void
1250 lwp_finispecific(struct lwp *l)
1251 {
1252
1253 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1254 }
1255
1256 /*
1257 * lwp_getspecific --
1258 * Return lwp-specific data corresponding to the specified key.
1259 *
1260 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1261 * only its OWN SPECIFIC DATA. If it is necessary to access another
1262 * LWP's specifc data, care must be taken to ensure that doing so
1263 * would not cause internal data structure inconsistency (i.e. caller
1264 * can guarantee that the target LWP is not inside an lwp_getspecific()
1265 * or lwp_setspecific() call).
1266 */
1267 void *
1268 lwp_getspecific(specificdata_key_t key)
1269 {
1270
1271 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1272 &curlwp->l_specdataref, key));
1273 }
1274
1275 void *
1276 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1277 {
1278
1279 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1280 &l->l_specdataref, key));
1281 }
1282
1283 /*
1284 * lwp_setspecific --
1285 * Set lwp-specific data corresponding to the specified key.
1286 */
1287 void
1288 lwp_setspecific(specificdata_key_t key, void *data)
1289 {
1290
1291 specificdata_setspecific(lwp_specificdata_domain,
1292 &curlwp->l_specdataref, key, data);
1293 }
1294