kern_lwp.c revision 1.55.2.4 1 /* $NetBSD: kern_lwp.c,v 1.55.2.4 2007/02/25 13:57:15 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit (or thread) of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp".
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing in kernel simultaneously.
52 *
53 * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 * threads are distinct processes (system processes) with no user space
55 * component, which themselves may contain one or more LWPs.
56 *
57 * Execution states
58 *
59 * At any given time, an LWP has overall state that is described by
60 * lwp::l_stat. The states are broken into two sets below. The first
61 * set is guaranteed to represent the absolute, current state of the
62 * LWP:
63 *
64 * LSONPROC
65 *
66 * On processor: the LWP is executing on a CPU, either in the
67 * kernel or in user space.
68 *
69 * LSRUN
70 *
71 * Runnable: the LWP is parked on a run queue, and may soon be
72 * chosen to run by a idle processor, or by a processor that
73 * has been asked to preempt a currently runnning but lower
74 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 * then the LWP is not on a run queue, but may be soon.
76 *
77 * LSIDL
78 *
79 * Idle: the LWP has been created but has not yet executed.
80 * Whoever created the new LWP can be expected to set it to
81 * another state shortly.
82 *
83 * LSSUSPENDED:
84 *
85 * Suspended: the LWP has had its execution suspended by
86 * another LWP in the same process using the _lwp_suspend()
87 * system call. User-level LWPs also enter the suspended
88 * state when the system is shutting down.
89 *
90 * The second set represent a "statement of intent" on behalf of the
91 * LWP. The LWP may in fact be executing on a processor, may be
92 * sleeping, idle, or on a run queue. It is expected to take the
93 * necessary action to stop executing or become "running" again within
94 * a short timeframe.
95 *
96 * LSZOMB:
97 *
98 * Dead: the LWP has released most of its resources and is
99 * about to switch away into oblivion. When it switches away,
100 * its few remaining resources will be collected.
101 *
102 * LSSLEEP:
103 *
104 * Sleeping: the LWP has entered itself onto a sleep queue, and
105 * will switch away shortly to allow other LWPs to run on the
106 * CPU.
107 *
108 * LSSTOP:
109 *
110 * Stopped: the LWP has been stopped as a result of a job
111 * control signal, or as a result of the ptrace() interface.
112 * Stopped LWPs may run briefly within the kernel to handle
113 * signals that they receive, but will not return to user space
114 * until their process' state is changed away from stopped.
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP and LSSUSPENDED states may only be set
122 * when returning to user space in userret(), or when sleeping
123 * interruptably. Before setting those states, we try to ensure
124 * that the LWPs will release all kernel locks that they hold,
125 * and at a minimum try to ensure that the LWP can be set runnable
126 * again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Locking
145 *
146 * The majority of fields in 'struct lwp' are covered by a single,
147 * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 * each field are documented in sys/lwp.h.
149 *
150 * State transitions must be made with the LWP's general lock held. In
151 * a multiprocessor kernel, state transitions may cause the LWP's lock
152 * pointer to change. On uniprocessor kernels, most scheduler and
153 * synchronisation objects such as sleep queues and LWPs are protected
154 * by only one mutex (sched_mutex). In this case, LWPs' lock pointers
155 * will never change and will always reference sched_mutex.
156 *
157 * Manipulation of the general lock is not performed directly, but
158 * through calls to lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSIDL, LSZOMB
163 *
164 * Always covered by sched_mutex.
165 *
166 * LSONPROC, LSRUN:
167 *
168 * Always covered by sched_mutex, which protects the run queues
169 * and other miscellaneous items. If the scheduler is changed
170 * to use per-CPU run queues, this may become a per-CPU mutex.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a mutex associated with the sleep queue that the
175 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue mutex. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the mutex is sched_mutex.
183 *
184 * The lock order is as follows:
185 *
186 * sleepq_t::sq_mutex |---> sched_mutex
187 * tschain_t::tc_mutex |
188 *
189 * Each process has an scheduler state mutex (proc::p_smutex), and a
190 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
191 * so on. When an LWP is to be entered into or removed from one of the
192 * following states, p_mutex must be held and the process wide counters
193 * adjusted:
194 *
195 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
196 *
197 * Note that an LWP is considered running or likely to run soon if in
198 * one of the following states. This affects the value of p_nrlwps:
199 *
200 * LSRUN, LSONPROC, LSSLEEP
201 *
202 * p_smutex does not need to be held when transitioning among these
203 * three states.
204 */
205
206 #include <sys/cdefs.h>
207 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.55.2.4 2007/02/25 13:57:15 yamt Exp $");
208
209 #include "opt_multiprocessor.h"
210 #include "opt_lockdebug.h"
211
212 #define _LWP_API_PRIVATE
213
214 #include <sys/param.h>
215 #include <sys/systm.h>
216 #include <sys/cpu.h>
217 #include <sys/pool.h>
218 #include <sys/proc.h>
219 #include <sys/syscallargs.h>
220 #include <sys/kauth.h>
221 #include <sys/sleepq.h>
222 #include <sys/lockdebug.h>
223 #include <sys/kmem.h>
224
225 #include <uvm/uvm_extern.h>
226
227 struct lwplist alllwp;
228
229 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
230 &pool_allocator_nointr);
231 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
232 &pool_allocator_nointr);
233
234 static specificdata_domain_t lwp_specificdata_domain;
235
236 #define LWP_DEBUG
237
238 #ifdef LWP_DEBUG
239 int lwp_debug = 0;
240 #define DPRINTF(x) if (lwp_debug) printf x
241 #else
242 #define DPRINTF(x)
243 #endif
244
245 void
246 lwpinit(void)
247 {
248
249 lwp_specificdata_domain = specificdata_domain_create();
250 KASSERT(lwp_specificdata_domain != NULL);
251 lwp_sys_init();
252 }
253
254 /*
255 * Set an suspended.
256 *
257 * Must be called with p_smutex held, and the LWP locked. Will unlock the
258 * LWP before return.
259 */
260 int
261 lwp_suspend(struct lwp *curl, struct lwp *t)
262 {
263 int error;
264
265 LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
266 LOCK_ASSERT(lwp_locked(t, NULL));
267
268 KASSERT(curl != t || curl->l_stat == LSONPROC);
269
270 /*
271 * If the current LWP has been told to exit, we must not suspend anyone
272 * else or deadlock could occur. We won't return to userspace.
273 */
274 if ((curl->l_stat & (L_WEXIT | L_WCORE)) != 0) {
275 lwp_unlock(t);
276 return (EDEADLK);
277 }
278
279 error = 0;
280
281 switch (t->l_stat) {
282 case LSRUN:
283 case LSONPROC:
284 t->l_flag |= L_WSUSPEND;
285 lwp_need_userret(t);
286 lwp_unlock(t);
287 break;
288
289 case LSSLEEP:
290 t->l_flag |= L_WSUSPEND;
291
292 /*
293 * Kick the LWP and try to get it to the kernel boundary
294 * so that it will release any locks that it holds.
295 * setrunnable() will release the lock.
296 */
297 if ((t->l_flag & L_SINTR) != 0)
298 setrunnable(t);
299 else
300 lwp_unlock(t);
301 break;
302
303 case LSSUSPENDED:
304 lwp_unlock(t);
305 break;
306
307 case LSSTOP:
308 t->l_flag |= L_WSUSPEND;
309 setrunnable(t);
310 break;
311
312 case LSIDL:
313 case LSZOMB:
314 error = EINTR; /* It's what Solaris does..... */
315 lwp_unlock(t);
316 break;
317 }
318
319 /*
320 * XXXLWP Wait for:
321 *
322 * o process exiting
323 * o target LWP suspended
324 * o target LWP not suspended and L_WSUSPEND clear
325 * o target LWP exited
326 */
327
328 return (error);
329 }
330
331 /*
332 * Restart a suspended LWP.
333 *
334 * Must be called with p_smutex held, and the LWP locked. Will unlock the
335 * LWP before return.
336 */
337 void
338 lwp_continue(struct lwp *l)
339 {
340
341 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
342 LOCK_ASSERT(lwp_locked(l, NULL));
343
344 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
345 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
346 l->l_wchan));
347
348 /* If rebooting or not suspended, then just bail out. */
349 if ((l->l_flag & L_WREBOOT) != 0) {
350 lwp_unlock(l);
351 return;
352 }
353
354 l->l_flag &= ~L_WSUSPEND;
355
356 if (l->l_stat != LSSUSPENDED) {
357 lwp_unlock(l);
358 return;
359 }
360
361 /* setrunnable() will release the lock. */
362 setrunnable(l);
363 }
364
365 /*
366 * Wait for an LWP within the current process to exit. If 'lid' is
367 * non-zero, we are waiting for a specific LWP.
368 *
369 * Must be called with p->p_smutex held.
370 */
371 int
372 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
373 {
374 struct proc *p = l->l_proc;
375 struct lwp *l2;
376 int nfound, error;
377
378 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
379 p->p_pid, l->l_lid, lid));
380
381 LOCK_ASSERT(mutex_owned(&p->p_smutex));
382
383 /*
384 * We try to check for deadlock:
385 *
386 * 1) If all other LWPs are waiting for exits or suspended.
387 * 2) If we are trying to wait on ourself.
388 *
389 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
390 * waits, not any-LWP waits) and detect that sort of deadlock, but
391 * we don't have a good place to store the lwp that is being waited
392 * for. wchan is already filled with &p->p_nlwps, and putting the
393 * lwp address in there for deadlock tracing would require exiting
394 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
395 * get threads sleeping on any LWP exiting.
396 */
397 if (lid == l->l_lid)
398 return EDEADLK;
399
400 p->p_nlwpwait++;
401
402 for (;;) {
403 /*
404 * Avoid a race between exit1() and sigexit(): if the
405 * process is dumping core, then we need to bail out: call
406 * into lwp_userret() where we will be suspended until the
407 * deed is done.
408 */
409 if ((p->p_sflag & PS_WCORE) != 0) {
410 mutex_exit(&p->p_smutex);
411 lwp_userret(l);
412 #ifdef DIAGNOSTIC
413 panic("lwp_wait1");
414 #endif
415 /* NOTREACHED */
416 }
417
418 /*
419 * First off, drain any detached LWP that is waiting to be
420 * reaped.
421 */
422 while ((l2 = p->p_zomblwp) != NULL) {
423 p->p_zomblwp = NULL;
424 lwp_free(l2, 0, 0); /* releases proc mutex */
425 mutex_enter(&p->p_smutex);
426 }
427
428 /*
429 * Now look for an LWP to collect. If the whole process is
430 * exiting, count detached LWPs as eligible to be collected,
431 * but don't drain them here.
432 */
433 nfound = 0;
434 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
435 if (l2 == l || (lid != 0 && l2->l_lid != lid))
436 continue;
437 if ((l2->l_prflag & LPR_DETACHED) != 0) {
438 nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
439 continue;
440 }
441 nfound++;
442
443 /* No need to lock the LWP in order to see LSZOMB. */
444 if (l2->l_stat != LSZOMB)
445 continue;
446
447 if (departed)
448 *departed = l2->l_lid;
449 lwp_free(l2, 0, 0);
450 mutex_enter(&p->p_smutex);
451 p->p_nlwpwait--;
452 return 0;
453 }
454
455 if (nfound == 0) {
456 error = ESRCH;
457 break;
458 }
459 if ((flags & LWPWAIT_EXITCONTROL) != 0) {
460 KASSERT(p->p_nlwps > 1);
461 cv_wait(&p->p_lwpcv, &p->p_smutex);
462 continue;
463 }
464 if ((p->p_sflag & PS_WEXIT) != 0 ||
465 p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
466 error = EDEADLK;
467 break;
468 }
469 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
470 break;
471 }
472
473 p->p_nlwpwait--;
474 return error;
475 }
476
477 /*
478 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
479 * The new LWP is created in state LSIDL and must be set running,
480 * suspended, or stopped by the caller.
481 */
482 int
483 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, boolean_t inmem,
484 int flags, void *stack, size_t stacksize,
485 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
486 {
487 struct lwp *l2, *isfree;
488 turnstile_t *ts;
489
490 /*
491 * First off, reap any detached LWP waiting to be collected.
492 * We can re-use its LWP structure and turnstile.
493 */
494 isfree = NULL;
495 if (p2->p_zomblwp != NULL) {
496 mutex_enter(&p2->p_smutex);
497 if ((isfree = p2->p_zomblwp) != NULL) {
498 p2->p_zomblwp = NULL;
499 lwp_free(isfree, 1, 0); /* releases proc mutex */
500 } else
501 mutex_exit(&p2->p_smutex);
502 }
503 if (isfree == NULL) {
504 l2 = pool_get(&lwp_pool, PR_WAITOK);
505 memset(l2, 0, sizeof(*l2));
506 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
507 } else {
508 l2 = isfree;
509 ts = l2->l_ts;
510 memset(l2, 0, sizeof(*l2));
511 l2->l_ts = ts;
512 }
513
514 l2->l_stat = LSIDL;
515 l2->l_proc = p2;
516 l2->l_refcnt = 1;
517 l2->l_priority = l1->l_priority;
518 l2->l_usrpri = l1->l_usrpri;
519 l2->l_mutex = &sched_mutex;
520 l2->l_cpu = l1->l_cpu;
521 l2->l_flag = inmem ? L_INMEM : 0;
522 lwp_initspecific(l2);
523
524 if (p2->p_flag & P_SYSTEM) {
525 /*
526 * Mark it as a system process and not a candidate for
527 * swapping.
528 */
529 l2->l_flag |= L_SYSTEM;
530 }
531
532 lwp_update_creds(l2);
533 callout_init(&l2->l_tsleep_ch);
534 cv_init(&l2->l_sigcv, "sigwait");
535 l2->l_syncobj = &sched_syncobj;
536
537 if (rnewlwpp != NULL)
538 *rnewlwpp = l2;
539
540 l2->l_addr = UAREA_TO_USER(uaddr);
541 uvm_lwp_fork(l1, l2, stack, stacksize, func,
542 (arg != NULL) ? arg : l2);
543
544 mutex_enter(&p2->p_smutex);
545
546 if ((flags & LWP_DETACHED) != 0) {
547 l2->l_prflag = LPR_DETACHED;
548 p2->p_ndlwps++;
549 } else
550 l2->l_prflag = 0;
551
552 l2->l_sigmask = l1->l_sigmask;
553 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
554 sigemptyset(&l2->l_sigpend.sp_set);
555
556 p2->p_nlwpid++;
557 if (p2->p_nlwpid == 0)
558 p2->p_nlwpid++;
559 l2->l_lid = p2->p_nlwpid;
560 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
561 p2->p_nlwps++;
562
563 mutex_exit(&p2->p_smutex);
564
565 mutex_enter(&proclist_mutex);
566 LIST_INSERT_HEAD(&alllwp, l2, l_list);
567 mutex_exit(&proclist_mutex);
568
569 if (p2->p_emul->e_lwp_fork)
570 (*p2->p_emul->e_lwp_fork)(l1, l2);
571
572 return (0);
573 }
574
575 /*
576 * Quit the process.
577 * this can only be used meaningfully if you're willing to switch away.
578 * Calling with l!=curlwp would be weird.
579 */
580 void
581 lwp_exit(struct lwp *l)
582 {
583 struct proc *p = l->l_proc;
584 struct lwp *l2;
585
586 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
587 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
588
589 /*
590 * Verify that we hold no locks other than the kernel lock.
591 */
592 #ifdef MULTIPROCESSOR
593 LOCKDEBUG_BARRIER(&kernel_lock, 0);
594 #else
595 LOCKDEBUG_BARRIER(NULL, 0);
596 #endif
597
598 /*
599 * If we are the last live LWP in a process, we need to exit the
600 * entire process. We do so with an exit status of zero, because
601 * it's a "controlled" exit, and because that's what Solaris does.
602 *
603 * We are not quite a zombie yet, but for accounting purposes we
604 * must increment the count of zombies here.
605 *
606 * Note: the last LWP's specificdata will be deleted here.
607 */
608 mutex_enter(&p->p_smutex);
609 if (p->p_nlwps - p->p_nzlwps == 1) {
610 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
611 p->p_pid, l->l_lid));
612 exit1(l, 0);
613 /* NOTREACHED */
614 }
615 p->p_nzlwps++;
616 mutex_exit(&p->p_smutex);
617
618 if (p->p_emul->e_lwp_exit)
619 (*p->p_emul->e_lwp_exit)(l);
620
621 /* Delete the specificdata while it's still safe to sleep. */
622 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
623
624 /*
625 * Release our cached credentials.
626 */
627 kauth_cred_free(l->l_cred);
628
629 /*
630 * Remove the LWP from the global list.
631 */
632 mutex_enter(&proclist_mutex);
633 LIST_REMOVE(l, l_list);
634 mutex_exit(&proclist_mutex);
635
636 /*
637 * Get rid of all references to the LWP that others (e.g. procfs)
638 * may have, and mark the LWP as a zombie. If the LWP is detached,
639 * mark it waiting for collection in the proc structure. Note that
640 * before we can do that, we need to free any other dead, deatched
641 * LWP waiting to meet its maker.
642 *
643 * XXXSMP disable preemption.
644 */
645 mutex_enter(&p->p_smutex);
646 lwp_drainrefs(l);
647
648 if ((l->l_prflag & LPR_DETACHED) != 0) {
649 while ((l2 = p->p_zomblwp) != NULL) {
650 p->p_zomblwp = NULL;
651 lwp_free(l2, 0, 0); /* releases proc mutex */
652 mutex_enter(&p->p_smutex);
653 }
654 p->p_zomblwp = l;
655 }
656
657 /*
658 * If we find a pending signal for the process and we have been
659 * asked to check for signals, then we loose: arrange to have
660 * all other LWPs in the process check for signals.
661 */
662 if ((l->l_flag & L_PENDSIG) != 0 &&
663 firstsig(&p->p_sigpend.sp_set) != 0) {
664 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
665 lwp_lock(l2);
666 l2->l_flag |= L_PENDSIG;
667 lwp_unlock(l2);
668 }
669 }
670
671 lwp_lock(l);
672 l->l_stat = LSZOMB;
673 lwp_unlock(l);
674 p->p_nrlwps--;
675 cv_broadcast(&p->p_lwpcv);
676 mutex_exit(&p->p_smutex);
677
678 /*
679 * We can no longer block. At this point, lwp_free() may already
680 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
681 *
682 * Free MD LWP resources.
683 */
684 #ifndef __NO_CPU_LWP_FREE
685 cpu_lwp_free(l, 0);
686 #endif
687 pmap_deactivate(l);
688
689 /*
690 * Release the kernel lock, signal another LWP to collect us,
691 * and switch away into oblivion.
692 */
693 #ifdef notyet
694 /* XXXSMP hold in lwp_userret() */
695 KERNEL_UNLOCK_LAST(l);
696 #else
697 KERNEL_UNLOCK_ALL(l, NULL);
698 #endif
699
700 lwp_exit_switchaway(l);
701 }
702
703 void
704 lwp_exit_switchaway(struct lwp *l)
705 {
706 struct cpu_info *ci;
707 struct lwp *idlelwp;
708
709 uvmexp.swtch++; /* XXXSMP unlocked */
710
711 ci = curcpu();
712 idlelwp = ci->ci_data.cpu_idlelwp;
713
714 idlelwp->l_stat = LSONPROC;
715 cpu_switchto(NULL, idlelwp);
716 }
717
718 /*
719 * Free a dead LWP's remaining resources.
720 *
721 * XXXLWP limits.
722 */
723 void
724 lwp_free(struct lwp *l, int recycle, int last)
725 {
726 struct proc *p = l->l_proc;
727 ksiginfoq_t kq;
728
729 /*
730 * If this was not the last LWP in the process, then adjust
731 * counters and unlock.
732 */
733 if (!last) {
734 /*
735 * Add the LWP's run time to the process' base value.
736 * This needs to co-incide with coming off p_lwps.
737 */
738 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
739 LIST_REMOVE(l, l_sibling);
740 p->p_nlwps--;
741 p->p_nzlwps--;
742 if ((l->l_prflag & LPR_DETACHED) != 0)
743 p->p_ndlwps--;
744 mutex_exit(&p->p_smutex);
745
746 #ifdef MULTIPROCESSOR
747 /*
748 * In the unlikely event that the LWP is still on the CPU,
749 * then spin until it has switched away. We need to release
750 * all locks to avoid deadlock against interrupt handlers on
751 * the target CPU.
752 */
753 if (l->l_cpu->ci_curlwp == l) {
754 int count;
755 KERNEL_UNLOCK_ALL(curlwp, &count);
756 while (l->l_cpu->ci_curlwp == l)
757 SPINLOCK_BACKOFF_HOOK;
758 KERNEL_LOCK(count, curlwp);
759 }
760 #endif
761 }
762
763 /*
764 * Destroy the LWP's remaining signal information.
765 */
766 ksiginfo_queue_init(&kq);
767 sigclear(&l->l_sigpend, NULL, &kq);
768 ksiginfo_queue_drain(&kq);
769 cv_destroy(&l->l_sigcv);
770
771 /*
772 * Free the LWP's turnstile and the LWP structure itself unless the
773 * caller wants to recycle them.
774 *
775 * We can't return turnstile0 to the pool (it didn't come from it),
776 * so if it comes up just drop it quietly and move on.
777 *
778 * We don't recycle the VM resources at this time.
779 */
780 KERNEL_LOCK(1, curlwp); /* XXXSMP */
781 if (!recycle && l->l_ts != &turnstile0)
782 pool_cache_put(&turnstile_cache, l->l_ts);
783 #ifndef __NO_CPU_LWP_FREE
784 cpu_lwp_free2(l);
785 #endif
786 uvm_lwp_exit(l);
787 if (!recycle)
788 pool_put(&lwp_pool, l);
789 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
790 }
791
792 /*
793 * Pick a LWP to represent the process for those operations which
794 * want information about a "process" that is actually associated
795 * with a LWP.
796 *
797 * If 'locking' is false, no locking or lock checks are performed.
798 * This is intended for use by DDB.
799 *
800 * We don't bother locking the LWP here, since code that uses this
801 * interface is broken by design and an exact match is not required.
802 */
803 struct lwp *
804 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
805 {
806 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
807 struct lwp *signalled;
808 int cnt;
809
810 if (locking) {
811 LOCK_ASSERT(mutex_owned(&p->p_smutex));
812 }
813
814 /* Trivial case: only one LWP */
815 if (p->p_nlwps == 1) {
816 l = LIST_FIRST(&p->p_lwps);
817 if (nrlwps)
818 *nrlwps = (l->l_stat == LSONPROC || LSRUN);
819 return l;
820 }
821
822 cnt = 0;
823 switch (p->p_stat) {
824 case SSTOP:
825 case SACTIVE:
826 /* Pick the most live LWP */
827 onproc = running = sleeping = stopped = suspended = NULL;
828 signalled = NULL;
829 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
830 if ((l->l_flag & L_IDLE) != 0) {
831 continue;
832 }
833 if (l->l_lid == p->p_sigctx.ps_lwp)
834 signalled = l;
835 switch (l->l_stat) {
836 case LSONPROC:
837 onproc = l;
838 cnt++;
839 break;
840 case LSRUN:
841 running = l;
842 cnt++;
843 break;
844 case LSSLEEP:
845 sleeping = l;
846 break;
847 case LSSTOP:
848 stopped = l;
849 break;
850 case LSSUSPENDED:
851 suspended = l;
852 break;
853 }
854 }
855 if (nrlwps)
856 *nrlwps = cnt;
857 if (signalled)
858 l = signalled;
859 else if (onproc)
860 l = onproc;
861 else if (running)
862 l = running;
863 else if (sleeping)
864 l = sleeping;
865 else if (stopped)
866 l = stopped;
867 else if (suspended)
868 l = suspended;
869 else
870 break;
871 return l;
872 if (nrlwps)
873 *nrlwps = 0;
874 l = LIST_FIRST(&p->p_lwps);
875 return l;
876 #ifdef DIAGNOSTIC
877 case SIDL:
878 case SZOMB:
879 case SDYING:
880 case SDEAD:
881 if (locking)
882 mutex_exit(&p->p_smutex);
883 /* We have more than one LWP and we're in SIDL?
884 * How'd that happen?
885 */
886 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
887 p->p_pid, p->p_comm, p->p_stat);
888 break;
889 default:
890 if (locking)
891 mutex_exit(&p->p_smutex);
892 panic("Process %d (%s) in unknown state %d",
893 p->p_pid, p->p_comm, p->p_stat);
894 #endif
895 }
896
897 if (locking)
898 mutex_exit(&p->p_smutex);
899 panic("proc_representative_lwp: couldn't find a lwp for process"
900 " %d (%s)", p->p_pid, p->p_comm);
901 /* NOTREACHED */
902 return NULL;
903 }
904
905 /*
906 * Look up a live LWP within the speicifed process, and return it locked.
907 *
908 * Must be called with p->p_smutex held.
909 */
910 struct lwp *
911 lwp_find(struct proc *p, int id)
912 {
913 struct lwp *l;
914
915 LOCK_ASSERT(mutex_owned(&p->p_smutex));
916
917 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
918 if (l->l_lid == id)
919 break;
920 }
921
922 /*
923 * No need to lock - all of these conditions will
924 * be visible with the process level mutex held.
925 */
926 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
927 l = NULL;
928
929 return l;
930 }
931
932 /*
933 * Update an LWP's cached credentials to mirror the process' master copy.
934 *
935 * This happens early in the syscall path, on user trap, and on LWP
936 * creation. A long-running LWP can also voluntarily choose to update
937 * it's credentials by calling this routine. This may be called from
938 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
939 */
940 void
941 lwp_update_creds(struct lwp *l)
942 {
943 kauth_cred_t oc;
944 struct proc *p;
945
946 p = l->l_proc;
947 oc = l->l_cred;
948
949 mutex_enter(&p->p_mutex);
950 kauth_cred_hold(p->p_cred);
951 l->l_cred = p->p_cred;
952 mutex_exit(&p->p_mutex);
953 if (oc != NULL) {
954 KERNEL_LOCK(1, l); /* XXXSMP */
955 kauth_cred_free(oc);
956 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
957 }
958 }
959
960 /*
961 * Verify that an LWP is locked, and optionally verify that the lock matches
962 * one we specify.
963 */
964 int
965 lwp_locked(struct lwp *l, kmutex_t *mtx)
966 {
967 kmutex_t *cur = l->l_mutex;
968
969 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
970 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
971 #else
972 return mutex_owned(cur);
973 #endif
974 }
975
976 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
977 /*
978 * Lock an LWP.
979 */
980 void
981 lwp_lock_retry(struct lwp *l, kmutex_t *old)
982 {
983
984 /*
985 * XXXgcc ignoring kmutex_t * volatile on i386
986 *
987 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
988 */
989 #if 1
990 while (l->l_mutex != old) {
991 #else
992 for (;;) {
993 #endif
994 mutex_spin_exit(old);
995 old = l->l_mutex;
996 mutex_spin_enter(old);
997
998 /*
999 * mutex_enter() will have posted a read barrier. Re-test
1000 * l->l_mutex. If it has changed, we need to try again.
1001 */
1002 #if 1
1003 }
1004 #else
1005 } while (__predict_false(l->l_mutex != old));
1006 #endif
1007 }
1008 #endif
1009
1010 /*
1011 * Lend a new mutex to an LWP. The old mutex must be held.
1012 */
1013 void
1014 lwp_setlock(struct lwp *l, kmutex_t *new)
1015 {
1016
1017 LOCK_ASSERT(mutex_owned(l->l_mutex));
1018
1019 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1020 mb_write();
1021 l->l_mutex = new;
1022 #else
1023 (void)new;
1024 #endif
1025 }
1026
1027 /*
1028 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1029 * must be held.
1030 */
1031 void
1032 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1033 {
1034 kmutex_t *old;
1035
1036 LOCK_ASSERT(mutex_owned(l->l_mutex));
1037
1038 old = l->l_mutex;
1039 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1040 mb_write();
1041 l->l_mutex = new;
1042 #else
1043 (void)new;
1044 #endif
1045 mutex_spin_exit(old);
1046 }
1047
1048 /*
1049 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1050 * locked.
1051 */
1052 void
1053 lwp_relock(struct lwp *l, kmutex_t *new)
1054 {
1055 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1056 kmutex_t *old;
1057 #endif
1058
1059 LOCK_ASSERT(mutex_owned(l->l_mutex));
1060
1061 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1062 old = l->l_mutex;
1063 if (old != new) {
1064 mutex_spin_enter(new);
1065 l->l_mutex = new;
1066 mutex_spin_exit(old);
1067 }
1068 #else
1069 (void)new;
1070 #endif
1071 }
1072
1073 /*
1074 * Handle exceptions for mi_userret(). Called if a member of L_USERRET is
1075 * set.
1076 */
1077 void
1078 lwp_userret(struct lwp *l)
1079 {
1080 struct proc *p;
1081 void (*hook)(void);
1082 int sig;
1083
1084 p = l->l_proc;
1085
1086 /*
1087 * It should be safe to do this read unlocked on a multiprocessor
1088 * system..
1089 */
1090 while ((l->l_flag & L_USERRET) != 0) {
1091 /*
1092 * Process pending signals first, unless the process
1093 * is dumping core, where we will instead enter the
1094 * L_WSUSPEND case below.
1095 */
1096 if ((l->l_flag & (L_PENDSIG | L_WCORE)) == L_PENDSIG) {
1097 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1098 mutex_enter(&p->p_smutex);
1099 while ((sig = issignal(l)) != 0)
1100 postsig(sig);
1101 mutex_exit(&p->p_smutex);
1102 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1103 }
1104
1105 /*
1106 * Core-dump or suspend pending.
1107 *
1108 * In case of core dump, suspend ourselves, so that the
1109 * kernel stack and therefore the userland registers saved
1110 * in the trapframe are around for coredump() to write them
1111 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1112 * will write the core file out once all other LWPs are
1113 * suspended.
1114 */
1115 if ((l->l_flag & L_WSUSPEND) != 0) {
1116 mutex_enter(&p->p_smutex);
1117 p->p_nrlwps--;
1118 cv_broadcast(&p->p_lwpcv);
1119 lwp_lock(l);
1120 l->l_stat = LSSUSPENDED;
1121 mutex_exit(&p->p_smutex);
1122 mi_switch(l, NULL);
1123 }
1124
1125 /* Process is exiting. */
1126 if ((l->l_flag & L_WEXIT) != 0) {
1127 KERNEL_LOCK(1, l);
1128 lwp_exit(l);
1129 KASSERT(0);
1130 /* NOTREACHED */
1131 }
1132
1133 /* Call userret hook; used by Linux emulation. */
1134 if ((l->l_flag & L_WUSERRET) != 0) {
1135 lwp_lock(l);
1136 l->l_flag &= ~L_WUSERRET;
1137 lwp_unlock(l);
1138 hook = p->p_userret;
1139 p->p_userret = NULL;
1140 (*hook)();
1141 }
1142 }
1143 }
1144
1145 /*
1146 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1147 */
1148 void
1149 lwp_need_userret(struct lwp *l)
1150 {
1151 LOCK_ASSERT(lwp_locked(l, NULL));
1152
1153 /*
1154 * Since the tests in lwp_userret() are done unlocked, make sure
1155 * that the condition will be seen before forcing the LWP to enter
1156 * kernel mode.
1157 */
1158 mb_write();
1159
1160 if (l->l_priority > PUSER)
1161 lwp_changepri(l, PUSER);
1162 cpu_signotify(l);
1163 }
1164
1165 /*
1166 * Add one reference to an LWP. This will prevent the LWP from
1167 * exiting, thus keep the lwp structure and PCB around to inspect.
1168 */
1169 void
1170 lwp_addref(struct lwp *l)
1171 {
1172
1173 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
1174 KASSERT(l->l_stat != LSZOMB);
1175 KASSERT(l->l_refcnt != 0);
1176
1177 l->l_refcnt++;
1178 }
1179
1180 /*
1181 * Remove one reference to an LWP. If this is the last reference,
1182 * then we must finalize the LWP's death.
1183 */
1184 void
1185 lwp_delref(struct lwp *l)
1186 {
1187 struct proc *p = l->l_proc;
1188
1189 mutex_enter(&p->p_smutex);
1190 if (--l->l_refcnt == 0)
1191 cv_broadcast(&p->p_refcv);
1192 mutex_exit(&p->p_smutex);
1193 }
1194
1195 /*
1196 * Drain all references to the current LWP.
1197 */
1198 void
1199 lwp_drainrefs(struct lwp *l)
1200 {
1201 struct proc *p = l->l_proc;
1202
1203 LOCK_ASSERT(mutex_owned(&p->p_smutex));
1204 KASSERT(l->l_refcnt != 0);
1205
1206 l->l_refcnt--;
1207 while (l->l_refcnt != 0)
1208 cv_wait(&p->p_refcv, &p->p_smutex);
1209 }
1210
1211 /*
1212 * lwp_specific_key_create --
1213 * Create a key for subsystem lwp-specific data.
1214 */
1215 int
1216 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1217 {
1218
1219 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1220 }
1221
1222 /*
1223 * lwp_specific_key_delete --
1224 * Delete a key for subsystem lwp-specific data.
1225 */
1226 void
1227 lwp_specific_key_delete(specificdata_key_t key)
1228 {
1229
1230 specificdata_key_delete(lwp_specificdata_domain, key);
1231 }
1232
1233 /*
1234 * lwp_initspecific --
1235 * Initialize an LWP's specificdata container.
1236 */
1237 void
1238 lwp_initspecific(struct lwp *l)
1239 {
1240 int error;
1241
1242 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1243 KASSERT(error == 0);
1244 }
1245
1246 /*
1247 * lwp_finispecific --
1248 * Finalize an LWP's specificdata container.
1249 */
1250 void
1251 lwp_finispecific(struct lwp *l)
1252 {
1253
1254 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1255 }
1256
1257 /*
1258 * lwp_getspecific --
1259 * Return lwp-specific data corresponding to the specified key.
1260 *
1261 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1262 * only its OWN SPECIFIC DATA. If it is necessary to access another
1263 * LWP's specifc data, care must be taken to ensure that doing so
1264 * would not cause internal data structure inconsistency (i.e. caller
1265 * can guarantee that the target LWP is not inside an lwp_getspecific()
1266 * or lwp_setspecific() call).
1267 */
1268 void *
1269 lwp_getspecific(specificdata_key_t key)
1270 {
1271
1272 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1273 &curlwp->l_specdataref, key));
1274 }
1275
1276 void *
1277 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1278 {
1279
1280 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1281 &l->l_specdataref, key));
1282 }
1283
1284 /*
1285 * lwp_setspecific --
1286 * Set lwp-specific data corresponding to the specified key.
1287 */
1288 void
1289 lwp_setspecific(specificdata_key_t key, void *data)
1290 {
1291
1292 specificdata_setspecific(lwp_specificdata_domain,
1293 &curlwp->l_specdataref, key, data);
1294 }
1295