kern_lwp.c revision 1.55.2.5 1 /* $NetBSD: kern_lwp.c,v 1.55.2.5 2007/02/27 16:54:22 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit (or thread) of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp".
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing in kernel simultaneously.
52 *
53 * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 * threads are distinct processes (system processes) with no user space
55 * component, which themselves may contain one or more LWPs.
56 *
57 * Execution states
58 *
59 * At any given time, an LWP has overall state that is described by
60 * lwp::l_stat. The states are broken into two sets below. The first
61 * set is guaranteed to represent the absolute, current state of the
62 * LWP:
63 *
64 * LSONPROC
65 *
66 * On processor: the LWP is executing on a CPU, either in the
67 * kernel or in user space.
68 *
69 * LSRUN
70 *
71 * Runnable: the LWP is parked on a run queue, and may soon be
72 * chosen to run by a idle processor, or by a processor that
73 * has been asked to preempt a currently runnning but lower
74 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 * then the LWP is not on a run queue, but may be soon.
76 *
77 * LSIDL
78 *
79 * Idle: the LWP has been created but has not yet executed.
80 * Whoever created the new LWP can be expected to set it to
81 * another state shortly.
82 *
83 * LSSUSPENDED:
84 *
85 * Suspended: the LWP has had its execution suspended by
86 * another LWP in the same process using the _lwp_suspend()
87 * system call. User-level LWPs also enter the suspended
88 * state when the system is shutting down.
89 *
90 * The second set represent a "statement of intent" on behalf of the
91 * LWP. The LWP may in fact be executing on a processor, may be
92 * sleeping, idle, or on a run queue. It is expected to take the
93 * necessary action to stop executing or become "running" again within
94 * a short timeframe.
95 *
96 * LSZOMB:
97 *
98 * Dead: the LWP has released most of its resources and is
99 * about to switch away into oblivion. When it switches away,
100 * its few remaining resources will be collected.
101 *
102 * LSSLEEP:
103 *
104 * Sleeping: the LWP has entered itself onto a sleep queue, and
105 * will switch away shortly to allow other LWPs to run on the
106 * CPU.
107 *
108 * LSSTOP:
109 *
110 * Stopped: the LWP has been stopped as a result of a job
111 * control signal, or as a result of the ptrace() interface.
112 * Stopped LWPs may run briefly within the kernel to handle
113 * signals that they receive, but will not return to user space
114 * until their process' state is changed away from stopped.
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP and LSSUSPENDED states may only be set
122 * when returning to user space in userret(), or when sleeping
123 * interruptably. Before setting those states, we try to ensure
124 * that the LWPs will release all kernel locks that they hold,
125 * and at a minimum try to ensure that the LWP can be set runnable
126 * again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Locking
145 *
146 * The majority of fields in 'struct lwp' are covered by a single,
147 * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 * each field are documented in sys/lwp.h.
149 *
150 * State transitions must be made with the LWP's general lock held. In
151 * a multiprocessor kernel, state transitions may cause the LWP's lock
152 * pointer to change. On uniprocessor kernels, most scheduler and
153 * synchronisation objects such as sleep queues and LWPs are protected
154 * by only one mutex (sched_mutex). In this case, LWPs' lock pointers
155 * will never change and will always reference sched_mutex.
156 *
157 * Manipulation of the general lock is not performed directly, but
158 * through calls to lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSIDL, LSZOMB
163 *
164 * Always covered by sched_mutex.
165 *
166 * LSONPROC, LSRUN:
167 *
168 * Always covered by sched_mutex, which protects the run queues
169 * and other miscellaneous items. If the scheduler is changed
170 * to use per-CPU run queues, this may become a per-CPU mutex.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a mutex associated with the sleep queue that the
175 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue mutex. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the mutex is sched_mutex.
183 *
184 * The lock order is as follows:
185 *
186 * sleepq_t::sq_mutex |---> sched_mutex
187 * tschain_t::tc_mutex |
188 *
189 * Each process has an scheduler state mutex (proc::p_smutex), and a
190 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
191 * so on. When an LWP is to be entered into or removed from one of the
192 * following states, p_mutex must be held and the process wide counters
193 * adjusted:
194 *
195 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
196 *
197 * Note that an LWP is considered running or likely to run soon if in
198 * one of the following states. This affects the value of p_nrlwps:
199 *
200 * LSRUN, LSONPROC, LSSLEEP
201 *
202 * p_smutex does not need to be held when transitioning among these
203 * three states.
204 */
205
206 #include <sys/cdefs.h>
207 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.55.2.5 2007/02/27 16:54:22 yamt Exp $");
208
209 #include "opt_multiprocessor.h"
210 #include "opt_lockdebug.h"
211
212 #define _LWP_API_PRIVATE
213
214 #include <sys/param.h>
215 #include <sys/systm.h>
216 #include <sys/cpu.h>
217 #include <sys/pool.h>
218 #include <sys/proc.h>
219 #include <sys/syscallargs.h>
220 #include <sys/syscall_stats.h>
221 #include <sys/kauth.h>
222 #include <sys/sleepq.h>
223 #include <sys/lockdebug.h>
224 #include <sys/kmem.h>
225
226 #include <uvm/uvm_extern.h>
227
228 struct lwplist alllwp;
229
230 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
231 &pool_allocator_nointr);
232 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
233 &pool_allocator_nointr);
234
235 static specificdata_domain_t lwp_specificdata_domain;
236
237 #define LWP_DEBUG
238
239 #ifdef LWP_DEBUG
240 int lwp_debug = 0;
241 #define DPRINTF(x) if (lwp_debug) printf x
242 #else
243 #define DPRINTF(x)
244 #endif
245
246 void
247 lwpinit(void)
248 {
249
250 lwp_specificdata_domain = specificdata_domain_create();
251 KASSERT(lwp_specificdata_domain != NULL);
252 lwp_sys_init();
253 }
254
255 /*
256 * Set an suspended.
257 *
258 * Must be called with p_smutex held, and the LWP locked. Will unlock the
259 * LWP before return.
260 */
261 int
262 lwp_suspend(struct lwp *curl, struct lwp *t)
263 {
264 int error;
265
266 LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
267 LOCK_ASSERT(lwp_locked(t, NULL));
268
269 KASSERT(curl != t || curl->l_stat == LSONPROC);
270
271 /*
272 * If the current LWP has been told to exit, we must not suspend anyone
273 * else or deadlock could occur. We won't return to userspace.
274 */
275 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
276 lwp_unlock(t);
277 return (EDEADLK);
278 }
279
280 error = 0;
281
282 switch (t->l_stat) {
283 case LSRUN:
284 case LSONPROC:
285 t->l_flag |= LW_WSUSPEND;
286 lwp_need_userret(t);
287 lwp_unlock(t);
288 break;
289
290 case LSSLEEP:
291 t->l_flag |= LW_WSUSPEND;
292
293 /*
294 * Kick the LWP and try to get it to the kernel boundary
295 * so that it will release any locks that it holds.
296 * setrunnable() will release the lock.
297 */
298 if ((t->l_flag & LW_SINTR) != 0)
299 setrunnable(t);
300 else
301 lwp_unlock(t);
302 break;
303
304 case LSSUSPENDED:
305 lwp_unlock(t);
306 break;
307
308 case LSSTOP:
309 t->l_flag |= LW_WSUSPEND;
310 setrunnable(t);
311 break;
312
313 case LSIDL:
314 case LSZOMB:
315 error = EINTR; /* It's what Solaris does..... */
316 lwp_unlock(t);
317 break;
318 }
319
320 /*
321 * XXXLWP Wait for:
322 *
323 * o process exiting
324 * o target LWP suspended
325 * o target LWP not suspended and L_WSUSPEND clear
326 * o target LWP exited
327 */
328
329 return (error);
330 }
331
332 /*
333 * Restart a suspended LWP.
334 *
335 * Must be called with p_smutex held, and the LWP locked. Will unlock the
336 * LWP before return.
337 */
338 void
339 lwp_continue(struct lwp *l)
340 {
341
342 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
343 LOCK_ASSERT(lwp_locked(l, NULL));
344
345 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
346 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
347 l->l_wchan));
348
349 /* If rebooting or not suspended, then just bail out. */
350 if ((l->l_flag & LW_WREBOOT) != 0) {
351 lwp_unlock(l);
352 return;
353 }
354
355 l->l_flag &= ~LW_WSUSPEND;
356
357 if (l->l_stat != LSSUSPENDED) {
358 lwp_unlock(l);
359 return;
360 }
361
362 /* setrunnable() will release the lock. */
363 setrunnable(l);
364 }
365
366 /*
367 * Wait for an LWP within the current process to exit. If 'lid' is
368 * non-zero, we are waiting for a specific LWP.
369 *
370 * Must be called with p->p_smutex held.
371 */
372 int
373 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
374 {
375 struct proc *p = l->l_proc;
376 struct lwp *l2;
377 int nfound, error;
378
379 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
380 p->p_pid, l->l_lid, lid));
381
382 LOCK_ASSERT(mutex_owned(&p->p_smutex));
383
384 /*
385 * We try to check for deadlock:
386 *
387 * 1) If all other LWPs are waiting for exits or suspended.
388 * 2) If we are trying to wait on ourself.
389 *
390 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
391 * waits, not any-LWP waits) and detect that sort of deadlock, but
392 * we don't have a good place to store the lwp that is being waited
393 * for. wchan is already filled with &p->p_nlwps, and putting the
394 * lwp address in there for deadlock tracing would require exiting
395 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
396 * get threads sleeping on any LWP exiting.
397 */
398 if (lid == l->l_lid)
399 return EDEADLK;
400
401 p->p_nlwpwait++;
402
403 for (;;) {
404 /*
405 * Avoid a race between exit1() and sigexit(): if the
406 * process is dumping core, then we need to bail out: call
407 * into lwp_userret() where we will be suspended until the
408 * deed is done.
409 */
410 if ((p->p_sflag & PS_WCORE) != 0) {
411 mutex_exit(&p->p_smutex);
412 lwp_userret(l);
413 #ifdef DIAGNOSTIC
414 panic("lwp_wait1");
415 #endif
416 /* NOTREACHED */
417 }
418
419 /*
420 * First off, drain any detached LWP that is waiting to be
421 * reaped.
422 */
423 while ((l2 = p->p_zomblwp) != NULL) {
424 p->p_zomblwp = NULL;
425 lwp_free(l2, 0, 0); /* releases proc mutex */
426 mutex_enter(&p->p_smutex);
427 }
428
429 /*
430 * Now look for an LWP to collect. If the whole process is
431 * exiting, count detached LWPs as eligible to be collected,
432 * but don't drain them here.
433 */
434 nfound = 0;
435 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
436 if (l2 == l || (lid != 0 && l2->l_lid != lid))
437 continue;
438 if ((l2->l_prflag & LPR_DETACHED) != 0) {
439 nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
440 continue;
441 }
442 nfound++;
443
444 /* No need to lock the LWP in order to see LSZOMB. */
445 if (l2->l_stat != LSZOMB)
446 continue;
447
448 if (departed)
449 *departed = l2->l_lid;
450 lwp_free(l2, 0, 0);
451 mutex_enter(&p->p_smutex);
452 p->p_nlwpwait--;
453 return 0;
454 }
455
456 if (nfound == 0) {
457 error = ESRCH;
458 break;
459 }
460 if ((flags & LWPWAIT_EXITCONTROL) != 0) {
461 KASSERT(p->p_nlwps > 1);
462 cv_wait(&p->p_lwpcv, &p->p_smutex);
463 continue;
464 }
465 if ((p->p_sflag & PS_WEXIT) != 0 ||
466 p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
467 error = EDEADLK;
468 break;
469 }
470 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
471 break;
472 }
473
474 p->p_nlwpwait--;
475 return error;
476 }
477
478 /*
479 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
480 * The new LWP is created in state LSIDL and must be set running,
481 * suspended, or stopped by the caller.
482 */
483 int
484 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
485 int flags, void *stack, size_t stacksize,
486 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
487 {
488 struct lwp *l2, *isfree;
489 turnstile_t *ts;
490
491 /*
492 * First off, reap any detached LWP waiting to be collected.
493 * We can re-use its LWP structure and turnstile.
494 */
495 isfree = NULL;
496 if (p2->p_zomblwp != NULL) {
497 mutex_enter(&p2->p_smutex);
498 if ((isfree = p2->p_zomblwp) != NULL) {
499 p2->p_zomblwp = NULL;
500 lwp_free(isfree, 1, 0); /* releases proc mutex */
501 } else
502 mutex_exit(&p2->p_smutex);
503 }
504 if (isfree == NULL) {
505 l2 = pool_get(&lwp_pool, PR_WAITOK);
506 memset(l2, 0, sizeof(*l2));
507 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
508 SLIST_INIT(&l2->l_pi_lenders);
509 } else {
510 l2 = isfree;
511 ts = l2->l_ts;
512 KASSERT(l2->l_inheritedprio == MAXPRI);
513 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
514 memset(l2, 0, sizeof(*l2));
515 l2->l_ts = ts;
516 }
517
518 l2->l_stat = LSIDL;
519 l2->l_proc = p2;
520 l2->l_refcnt = 1;
521 l2->l_priority = l1->l_priority;
522 l2->l_usrpri = l1->l_usrpri;
523 l2->l_inheritedprio = MAXPRI;
524 l2->l_mutex = &sched_mutex;
525 l2->l_cpu = l1->l_cpu;
526 l2->l_flag = inmem ? LW_INMEM : 0;
527 lwp_initspecific(l2);
528
529 if (p2->p_flag & PK_SYSTEM) {
530 /*
531 * Mark it as a system process and not a candidate for
532 * swapping.
533 */
534 l2->l_flag |= LW_SYSTEM;
535 }
536
537 lwp_update_creds(l2);
538 callout_init(&l2->l_tsleep_ch);
539 cv_init(&l2->l_sigcv, "sigwait");
540 l2->l_syncobj = &sched_syncobj;
541
542 if (rnewlwpp != NULL)
543 *rnewlwpp = l2;
544
545 l2->l_addr = UAREA_TO_USER(uaddr);
546 uvm_lwp_fork(l1, l2, stack, stacksize, func,
547 (arg != NULL) ? arg : l2);
548
549 mutex_enter(&p2->p_smutex);
550
551 if ((flags & LWP_DETACHED) != 0) {
552 l2->l_prflag = LPR_DETACHED;
553 p2->p_ndlwps++;
554 } else
555 l2->l_prflag = 0;
556
557 l2->l_sigmask = l1->l_sigmask;
558 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
559 sigemptyset(&l2->l_sigpend.sp_set);
560
561 p2->p_nlwpid++;
562 if (p2->p_nlwpid == 0)
563 p2->p_nlwpid++;
564 l2->l_lid = p2->p_nlwpid;
565 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
566 p2->p_nlwps++;
567
568 mutex_exit(&p2->p_smutex);
569
570 mutex_enter(&proclist_mutex);
571 LIST_INSERT_HEAD(&alllwp, l2, l_list);
572 mutex_exit(&proclist_mutex);
573
574 SYSCALL_TIME_LWP_INIT(l2);
575
576 if (p2->p_emul->e_lwp_fork)
577 (*p2->p_emul->e_lwp_fork)(l1, l2);
578
579 return (0);
580 }
581
582 /*
583 * Quit the process.
584 * this can only be used meaningfully if you're willing to switch away.
585 * Calling with l!=curlwp would be weird.
586 */
587 void
588 lwp_exit(struct lwp *l)
589 {
590 struct proc *p = l->l_proc;
591 struct lwp *l2;
592
593 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
594 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
595
596 /*
597 * Verify that we hold no locks other than the kernel lock.
598 */
599 #ifdef MULTIPROCESSOR
600 LOCKDEBUG_BARRIER(&kernel_lock, 0);
601 #else
602 LOCKDEBUG_BARRIER(NULL, 0);
603 #endif
604
605 /*
606 * If we are the last live LWP in a process, we need to exit the
607 * entire process. We do so with an exit status of zero, because
608 * it's a "controlled" exit, and because that's what Solaris does.
609 *
610 * We are not quite a zombie yet, but for accounting purposes we
611 * must increment the count of zombies here.
612 *
613 * Note: the last LWP's specificdata will be deleted here.
614 */
615 mutex_enter(&p->p_smutex);
616 if (p->p_nlwps - p->p_nzlwps == 1) {
617 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
618 p->p_pid, l->l_lid));
619 exit1(l, 0);
620 /* NOTREACHED */
621 }
622 p->p_nzlwps++;
623 mutex_exit(&p->p_smutex);
624
625 if (p->p_emul->e_lwp_exit)
626 (*p->p_emul->e_lwp_exit)(l);
627
628 /* Delete the specificdata while it's still safe to sleep. */
629 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
630
631 /*
632 * Release our cached credentials.
633 */
634 kauth_cred_free(l->l_cred);
635
636 /*
637 * Remove the LWP from the global list.
638 */
639 mutex_enter(&proclist_mutex);
640 LIST_REMOVE(l, l_list);
641 mutex_exit(&proclist_mutex);
642
643 /*
644 * Get rid of all references to the LWP that others (e.g. procfs)
645 * may have, and mark the LWP as a zombie. If the LWP is detached,
646 * mark it waiting for collection in the proc structure. Note that
647 * before we can do that, we need to free any other dead, deatched
648 * LWP waiting to meet its maker.
649 *
650 * XXXSMP disable preemption.
651 */
652 mutex_enter(&p->p_smutex);
653 lwp_drainrefs(l);
654
655 if ((l->l_prflag & LPR_DETACHED) != 0) {
656 while ((l2 = p->p_zomblwp) != NULL) {
657 p->p_zomblwp = NULL;
658 lwp_free(l2, 0, 0); /* releases proc mutex */
659 mutex_enter(&p->p_smutex);
660 }
661 p->p_zomblwp = l;
662 }
663
664 /*
665 * If we find a pending signal for the process and we have been
666 * asked to check for signals, then we loose: arrange to have
667 * all other LWPs in the process check for signals.
668 */
669 if ((l->l_flag & LW_PENDSIG) != 0 &&
670 firstsig(&p->p_sigpend.sp_set) != 0) {
671 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
672 lwp_lock(l2);
673 l2->l_flag |= LW_PENDSIG;
674 lwp_unlock(l2);
675 }
676 }
677
678 lwp_lock(l);
679 l->l_stat = LSZOMB;
680 lwp_unlock(l);
681 p->p_nrlwps--;
682 cv_broadcast(&p->p_lwpcv);
683 mutex_exit(&p->p_smutex);
684
685 /*
686 * We can no longer block. At this point, lwp_free() may already
687 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
688 *
689 * Free MD LWP resources.
690 */
691 #ifndef __NO_CPU_LWP_FREE
692 cpu_lwp_free(l, 0);
693 #endif
694 pmap_deactivate(l);
695
696 /*
697 * Release the kernel lock, signal another LWP to collect us,
698 * and switch away into oblivion.
699 */
700 #ifdef notyet
701 /* XXXSMP hold in lwp_userret() */
702 KERNEL_UNLOCK_LAST(l);
703 #else
704 KERNEL_UNLOCK_ALL(l, NULL);
705 #endif
706
707 lwp_exit_switchaway(l);
708 }
709
710 void
711 lwp_exit_switchaway(struct lwp *l)
712 {
713 struct cpu_info *ci;
714 struct lwp *idlelwp;
715
716 uvmexp.swtch++; /* XXXSMP unlocked */
717
718 ci = curcpu();
719 idlelwp = ci->ci_data.cpu_idlelwp;
720
721 idlelwp->l_stat = LSONPROC;
722 cpu_switchto(NULL, idlelwp);
723 }
724
725 /*
726 * Free a dead LWP's remaining resources.
727 *
728 * XXXLWP limits.
729 */
730 void
731 lwp_free(struct lwp *l, int recycle, int last)
732 {
733 struct proc *p = l->l_proc;
734 ksiginfoq_t kq;
735
736 /*
737 * If this was not the last LWP in the process, then adjust
738 * counters and unlock.
739 */
740 if (!last) {
741 /*
742 * Add the LWP's run time to the process' base value.
743 * This needs to co-incide with coming off p_lwps.
744 */
745 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
746 LIST_REMOVE(l, l_sibling);
747 p->p_nlwps--;
748 p->p_nzlwps--;
749 if ((l->l_prflag & LPR_DETACHED) != 0)
750 p->p_ndlwps--;
751 mutex_exit(&p->p_smutex);
752
753 #ifdef MULTIPROCESSOR
754 /*
755 * In the unlikely event that the LWP is still on the CPU,
756 * then spin until it has switched away. We need to release
757 * all locks to avoid deadlock against interrupt handlers on
758 * the target CPU.
759 */
760 if (l->l_cpu->ci_curlwp == l) {
761 int count;
762 KERNEL_UNLOCK_ALL(curlwp, &count);
763 while (l->l_cpu->ci_curlwp == l)
764 SPINLOCK_BACKOFF_HOOK;
765 KERNEL_LOCK(count, curlwp);
766 }
767 #endif
768 }
769
770 /*
771 * Destroy the LWP's remaining signal information.
772 */
773 ksiginfo_queue_init(&kq);
774 sigclear(&l->l_sigpend, NULL, &kq);
775 ksiginfo_queue_drain(&kq);
776 cv_destroy(&l->l_sigcv);
777
778 /*
779 * Free the LWP's turnstile and the LWP structure itself unless the
780 * caller wants to recycle them.
781 *
782 * We can't return turnstile0 to the pool (it didn't come from it),
783 * so if it comes up just drop it quietly and move on.
784 *
785 * We don't recycle the VM resources at this time.
786 */
787 KERNEL_LOCK(1, curlwp); /* XXXSMP */
788 if (!recycle && l->l_ts != &turnstile0)
789 pool_cache_put(&turnstile_cache, l->l_ts);
790 #ifndef __NO_CPU_LWP_FREE
791 cpu_lwp_free2(l);
792 #endif
793 uvm_lwp_exit(l);
794 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
795 KASSERT(l->l_inheritedprio == MAXPRI);
796 if (!recycle)
797 pool_put(&lwp_pool, l);
798 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
799 }
800
801 /*
802 * Pick a LWP to represent the process for those operations which
803 * want information about a "process" that is actually associated
804 * with a LWP.
805 *
806 * If 'locking' is false, no locking or lock checks are performed.
807 * This is intended for use by DDB.
808 *
809 * We don't bother locking the LWP here, since code that uses this
810 * interface is broken by design and an exact match is not required.
811 */
812 struct lwp *
813 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
814 {
815 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
816 struct lwp *signalled;
817 int cnt;
818
819 if (locking) {
820 LOCK_ASSERT(mutex_owned(&p->p_smutex));
821 }
822
823 /* Trivial case: only one LWP */
824 if (p->p_nlwps == 1) {
825 l = LIST_FIRST(&p->p_lwps);
826 if (nrlwps)
827 *nrlwps = (l->l_stat == LSONPROC || LSRUN);
828 return l;
829 }
830
831 cnt = 0;
832 switch (p->p_stat) {
833 case SSTOP:
834 case SACTIVE:
835 /* Pick the most live LWP */
836 onproc = running = sleeping = stopped = suspended = NULL;
837 signalled = NULL;
838 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
839 if ((l->l_flag & LW_IDLE) != 0) {
840 continue;
841 }
842 if (l->l_lid == p->p_sigctx.ps_lwp)
843 signalled = l;
844 switch (l->l_stat) {
845 case LSONPROC:
846 onproc = l;
847 cnt++;
848 break;
849 case LSRUN:
850 running = l;
851 cnt++;
852 break;
853 case LSSLEEP:
854 sleeping = l;
855 break;
856 case LSSTOP:
857 stopped = l;
858 break;
859 case LSSUSPENDED:
860 suspended = l;
861 break;
862 }
863 }
864 if (nrlwps)
865 *nrlwps = cnt;
866 if (signalled)
867 l = signalled;
868 else if (onproc)
869 l = onproc;
870 else if (running)
871 l = running;
872 else if (sleeping)
873 l = sleeping;
874 else if (stopped)
875 l = stopped;
876 else if (suspended)
877 l = suspended;
878 else
879 break;
880 return l;
881 if (nrlwps)
882 *nrlwps = 0;
883 l = LIST_FIRST(&p->p_lwps);
884 return l;
885 #ifdef DIAGNOSTIC
886 case SIDL:
887 case SZOMB:
888 case SDYING:
889 case SDEAD:
890 if (locking)
891 mutex_exit(&p->p_smutex);
892 /* We have more than one LWP and we're in SIDL?
893 * How'd that happen?
894 */
895 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
896 p->p_pid, p->p_comm, p->p_stat);
897 break;
898 default:
899 if (locking)
900 mutex_exit(&p->p_smutex);
901 panic("Process %d (%s) in unknown state %d",
902 p->p_pid, p->p_comm, p->p_stat);
903 #endif
904 }
905
906 if (locking)
907 mutex_exit(&p->p_smutex);
908 panic("proc_representative_lwp: couldn't find a lwp for process"
909 " %d (%s)", p->p_pid, p->p_comm);
910 /* NOTREACHED */
911 return NULL;
912 }
913
914 /*
915 * Look up a live LWP within the speicifed process, and return it locked.
916 *
917 * Must be called with p->p_smutex held.
918 */
919 struct lwp *
920 lwp_find(struct proc *p, int id)
921 {
922 struct lwp *l;
923
924 LOCK_ASSERT(mutex_owned(&p->p_smutex));
925
926 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
927 if (l->l_lid == id)
928 break;
929 }
930
931 /*
932 * No need to lock - all of these conditions will
933 * be visible with the process level mutex held.
934 */
935 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
936 l = NULL;
937
938 return l;
939 }
940
941 /*
942 * Update an LWP's cached credentials to mirror the process' master copy.
943 *
944 * This happens early in the syscall path, on user trap, and on LWP
945 * creation. A long-running LWP can also voluntarily choose to update
946 * it's credentials by calling this routine. This may be called from
947 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
948 */
949 void
950 lwp_update_creds(struct lwp *l)
951 {
952 kauth_cred_t oc;
953 struct proc *p;
954
955 p = l->l_proc;
956 oc = l->l_cred;
957
958 mutex_enter(&p->p_mutex);
959 kauth_cred_hold(p->p_cred);
960 l->l_cred = p->p_cred;
961 mutex_exit(&p->p_mutex);
962 if (oc != NULL) {
963 KERNEL_LOCK(1, l); /* XXXSMP */
964 kauth_cred_free(oc);
965 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
966 }
967 }
968
969 /*
970 * Verify that an LWP is locked, and optionally verify that the lock matches
971 * one we specify.
972 */
973 int
974 lwp_locked(struct lwp *l, kmutex_t *mtx)
975 {
976 kmutex_t *cur = l->l_mutex;
977
978 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
979 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
980 #else
981 return mutex_owned(cur);
982 #endif
983 }
984
985 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
986 /*
987 * Lock an LWP.
988 */
989 void
990 lwp_lock_retry(struct lwp *l, kmutex_t *old)
991 {
992
993 /*
994 * XXXgcc ignoring kmutex_t * volatile on i386
995 *
996 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
997 */
998 #if 1
999 while (l->l_mutex != old) {
1000 #else
1001 for (;;) {
1002 #endif
1003 mutex_spin_exit(old);
1004 old = l->l_mutex;
1005 mutex_spin_enter(old);
1006
1007 /*
1008 * mutex_enter() will have posted a read barrier. Re-test
1009 * l->l_mutex. If it has changed, we need to try again.
1010 */
1011 #if 1
1012 }
1013 #else
1014 } while (__predict_false(l->l_mutex != old));
1015 #endif
1016 }
1017 #endif
1018
1019 /*
1020 * Lend a new mutex to an LWP. The old mutex must be held.
1021 */
1022 void
1023 lwp_setlock(struct lwp *l, kmutex_t *new)
1024 {
1025
1026 LOCK_ASSERT(mutex_owned(l->l_mutex));
1027
1028 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1029 mb_write();
1030 l->l_mutex = new;
1031 #else
1032 (void)new;
1033 #endif
1034 }
1035
1036 /*
1037 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1038 * must be held.
1039 */
1040 void
1041 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1042 {
1043 kmutex_t *old;
1044
1045 LOCK_ASSERT(mutex_owned(l->l_mutex));
1046
1047 old = l->l_mutex;
1048 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1049 mb_write();
1050 l->l_mutex = new;
1051 #else
1052 (void)new;
1053 #endif
1054 mutex_spin_exit(old);
1055 }
1056
1057 /*
1058 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1059 * locked.
1060 */
1061 void
1062 lwp_relock(struct lwp *l, kmutex_t *new)
1063 {
1064 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1065 kmutex_t *old;
1066 #endif
1067
1068 LOCK_ASSERT(mutex_owned(l->l_mutex));
1069
1070 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1071 old = l->l_mutex;
1072 if (old != new) {
1073 mutex_spin_enter(new);
1074 l->l_mutex = new;
1075 mutex_spin_exit(old);
1076 }
1077 #else
1078 (void)new;
1079 #endif
1080 }
1081
1082 int
1083 lwp_trylock(struct lwp *l)
1084 {
1085 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1086 kmutex_t *old;
1087
1088 for (;;) {
1089 if (!mutex_tryenter(old = l->l_mutex))
1090 return 0;
1091 if (__predict_true(l->l_mutex == old))
1092 return 1;
1093 mutex_spin_exit(old);
1094 }
1095 #else
1096 return mutex_tryenter(l->l_mutex);
1097 #endif
1098 }
1099
1100 /*
1101 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1102 * set.
1103 */
1104 void
1105 lwp_userret(struct lwp *l)
1106 {
1107 struct proc *p;
1108 void (*hook)(void);
1109 int sig;
1110
1111 p = l->l_proc;
1112
1113 /*
1114 * It should be safe to do this read unlocked on a multiprocessor
1115 * system..
1116 */
1117 while ((l->l_flag & LW_USERRET) != 0) {
1118 /*
1119 * Process pending signals first, unless the process
1120 * is dumping core, where we will instead enter the
1121 * L_WSUSPEND case below.
1122 */
1123 if ((l->l_flag & (LW_PENDSIG | LW_WCORE)) == LW_PENDSIG) {
1124 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1125 mutex_enter(&p->p_smutex);
1126 while ((sig = issignal(l)) != 0)
1127 postsig(sig);
1128 mutex_exit(&p->p_smutex);
1129 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1130 }
1131
1132 /*
1133 * Core-dump or suspend pending.
1134 *
1135 * In case of core dump, suspend ourselves, so that the
1136 * kernel stack and therefore the userland registers saved
1137 * in the trapframe are around for coredump() to write them
1138 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1139 * will write the core file out once all other LWPs are
1140 * suspended.
1141 */
1142 if ((l->l_flag & LW_WSUSPEND) != 0) {
1143 mutex_enter(&p->p_smutex);
1144 p->p_nrlwps--;
1145 cv_broadcast(&p->p_lwpcv);
1146 lwp_lock(l);
1147 l->l_stat = LSSUSPENDED;
1148 mutex_exit(&p->p_smutex);
1149 mi_switch(l, NULL);
1150 }
1151
1152 /* Process is exiting. */
1153 if ((l->l_flag & LW_WEXIT) != 0) {
1154 KERNEL_LOCK(1, l);
1155 lwp_exit(l);
1156 KASSERT(0);
1157 /* NOTREACHED */
1158 }
1159
1160 /* Call userret hook; used by Linux emulation. */
1161 if ((l->l_flag & LW_WUSERRET) != 0) {
1162 lwp_lock(l);
1163 l->l_flag &= ~LW_WUSERRET;
1164 lwp_unlock(l);
1165 hook = p->p_userret;
1166 p->p_userret = NULL;
1167 (*hook)();
1168 }
1169 }
1170 }
1171
1172 /*
1173 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1174 */
1175 void
1176 lwp_need_userret(struct lwp *l)
1177 {
1178 LOCK_ASSERT(lwp_locked(l, NULL));
1179
1180 /*
1181 * Since the tests in lwp_userret() are done unlocked, make sure
1182 * that the condition will be seen before forcing the LWP to enter
1183 * kernel mode.
1184 */
1185 mb_write();
1186 cpu_signotify(l);
1187 }
1188
1189 /*
1190 * Add one reference to an LWP. This will prevent the LWP from
1191 * exiting, thus keep the lwp structure and PCB around to inspect.
1192 */
1193 void
1194 lwp_addref(struct lwp *l)
1195 {
1196
1197 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
1198 KASSERT(l->l_stat != LSZOMB);
1199 KASSERT(l->l_refcnt != 0);
1200
1201 l->l_refcnt++;
1202 }
1203
1204 /*
1205 * Remove one reference to an LWP. If this is the last reference,
1206 * then we must finalize the LWP's death.
1207 */
1208 void
1209 lwp_delref(struct lwp *l)
1210 {
1211 struct proc *p = l->l_proc;
1212
1213 mutex_enter(&p->p_smutex);
1214 if (--l->l_refcnt == 0)
1215 cv_broadcast(&p->p_refcv);
1216 mutex_exit(&p->p_smutex);
1217 }
1218
1219 /*
1220 * Drain all references to the current LWP.
1221 */
1222 void
1223 lwp_drainrefs(struct lwp *l)
1224 {
1225 struct proc *p = l->l_proc;
1226
1227 LOCK_ASSERT(mutex_owned(&p->p_smutex));
1228 KASSERT(l->l_refcnt != 0);
1229
1230 l->l_refcnt--;
1231 while (l->l_refcnt != 0)
1232 cv_wait(&p->p_refcv, &p->p_smutex);
1233 }
1234
1235 /*
1236 * lwp_specific_key_create --
1237 * Create a key for subsystem lwp-specific data.
1238 */
1239 int
1240 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1241 {
1242
1243 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1244 }
1245
1246 /*
1247 * lwp_specific_key_delete --
1248 * Delete a key for subsystem lwp-specific data.
1249 */
1250 void
1251 lwp_specific_key_delete(specificdata_key_t key)
1252 {
1253
1254 specificdata_key_delete(lwp_specificdata_domain, key);
1255 }
1256
1257 /*
1258 * lwp_initspecific --
1259 * Initialize an LWP's specificdata container.
1260 */
1261 void
1262 lwp_initspecific(struct lwp *l)
1263 {
1264 int error;
1265
1266 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1267 KASSERT(error == 0);
1268 }
1269
1270 /*
1271 * lwp_finispecific --
1272 * Finalize an LWP's specificdata container.
1273 */
1274 void
1275 lwp_finispecific(struct lwp *l)
1276 {
1277
1278 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1279 }
1280
1281 /*
1282 * lwp_getspecific --
1283 * Return lwp-specific data corresponding to the specified key.
1284 *
1285 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1286 * only its OWN SPECIFIC DATA. If it is necessary to access another
1287 * LWP's specifc data, care must be taken to ensure that doing so
1288 * would not cause internal data structure inconsistency (i.e. caller
1289 * can guarantee that the target LWP is not inside an lwp_getspecific()
1290 * or lwp_setspecific() call).
1291 */
1292 void *
1293 lwp_getspecific(specificdata_key_t key)
1294 {
1295
1296 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1297 &curlwp->l_specdataref, key));
1298 }
1299
1300 void *
1301 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1302 {
1303
1304 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1305 &l->l_specdataref, key));
1306 }
1307
1308 /*
1309 * lwp_setspecific --
1310 * Set lwp-specific data corresponding to the specified key.
1311 */
1312 void
1313 lwp_setspecific(specificdata_key_t key, void *data)
1314 {
1315
1316 specificdata_setspecific(lwp_specificdata_domain,
1317 &curlwp->l_specdataref, key, data);
1318 }
1319