kern_lwp.c revision 1.55.2.6 1 /* $NetBSD: kern_lwp.c,v 1.55.2.6 2007/03/09 15:16:24 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit (or thread) of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp".
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing in kernel simultaneously.
52 *
53 * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 * threads are distinct processes (system processes) with no user space
55 * component, which themselves may contain one or more LWPs.
56 *
57 * Execution states
58 *
59 * At any given time, an LWP has overall state that is described by
60 * lwp::l_stat. The states are broken into two sets below. The first
61 * set is guaranteed to represent the absolute, current state of the
62 * LWP:
63 *
64 * LSONPROC
65 *
66 * On processor: the LWP is executing on a CPU, either in the
67 * kernel or in user space.
68 *
69 * LSRUN
70 *
71 * Runnable: the LWP is parked on a run queue, and may soon be
72 * chosen to run by a idle processor, or by a processor that
73 * has been asked to preempt a currently runnning but lower
74 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 * then the LWP is not on a run queue, but may be soon.
76 *
77 * LSIDL
78 *
79 * Idle: the LWP has been created but has not yet executed.
80 * Whoever created the new LWP can be expected to set it to
81 * another state shortly.
82 *
83 * LSSUSPENDED:
84 *
85 * Suspended: the LWP has had its execution suspended by
86 * another LWP in the same process using the _lwp_suspend()
87 * system call. User-level LWPs also enter the suspended
88 * state when the system is shutting down.
89 *
90 * The second set represent a "statement of intent" on behalf of the
91 * LWP. The LWP may in fact be executing on a processor, may be
92 * sleeping, idle, or on a run queue. It is expected to take the
93 * necessary action to stop executing or become "running" again within
94 * a short timeframe.
95 *
96 * LSZOMB:
97 *
98 * Dead: the LWP has released most of its resources and is
99 * about to switch away into oblivion. When it switches away,
100 * its few remaining resources will be collected.
101 *
102 * LSSLEEP:
103 *
104 * Sleeping: the LWP has entered itself onto a sleep queue, and
105 * will switch away shortly to allow other LWPs to run on the
106 * CPU.
107 *
108 * LSSTOP:
109 *
110 * Stopped: the LWP has been stopped as a result of a job
111 * control signal, or as a result of the ptrace() interface.
112 * Stopped LWPs may run briefly within the kernel to handle
113 * signals that they receive, but will not return to user space
114 * until their process' state is changed away from stopped.
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP and LSSUSPENDED states may only be set
122 * when returning to user space in userret(), or when sleeping
123 * interruptably. Before setting those states, we try to ensure
124 * that the LWPs will release all kernel locks that they hold,
125 * and at a minimum try to ensure that the LWP can be set runnable
126 * again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Locking
145 *
146 * The majority of fields in 'struct lwp' are covered by a single,
147 * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 * each field are documented in sys/lwp.h.
149 *
150 * State transitions must be made with the LWP's general lock held. In
151 * a multiprocessor kernel, state transitions may cause the LWP's lock
152 * pointer to change. On uniprocessor kernels, most scheduler and
153 * synchronisation objects such as sleep queues and LWPs are protected
154 * by only one mutex (sched_mutex). In this case, LWPs' lock pointers
155 * will never change and will always reference sched_mutex.
156 *
157 * Manipulation of the general lock is not performed directly, but
158 * through calls to lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSIDL, LSZOMB
163 *
164 * Always covered by sched_mutex.
165 *
166 * LSONPROC, LSRUN:
167 *
168 * Always covered by sched_mutex, which protects the run queues
169 * and other miscellaneous items. If the scheduler is changed
170 * to use per-CPU run queues, this may become a per-CPU mutex.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a mutex associated with the sleep queue that the
175 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue mutex. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the mutex is sched_mutex.
183 *
184 * The lock order is as follows:
185 *
186 * sleepq_t::sq_mutex |---> sched_mutex
187 * tschain_t::tc_mutex |
188 *
189 * Each process has an scheduler state mutex (proc::p_smutex), and a
190 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
191 * so on. When an LWP is to be entered into or removed from one of the
192 * following states, p_mutex must be held and the process wide counters
193 * adjusted:
194 *
195 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
196 *
197 * Note that an LWP is considered running or likely to run soon if in
198 * one of the following states. This affects the value of p_nrlwps:
199 *
200 * LSRUN, LSONPROC, LSSLEEP
201 *
202 * p_smutex does not need to be held when transitioning among these
203 * three states.
204 */
205
206 #include <sys/cdefs.h>
207 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.55.2.6 2007/03/09 15:16:24 rmind Exp $");
208
209 #include "opt_multiprocessor.h"
210 #include "opt_lockdebug.h"
211
212 #define _LWP_API_PRIVATE
213
214 #include <sys/param.h>
215 #include <sys/systm.h>
216 #include <sys/cpu.h>
217 #include <sys/pool.h>
218 #include <sys/proc.h>
219 #include <sys/syscallargs.h>
220 #include <sys/syscall_stats.h>
221 #include <sys/kauth.h>
222 #include <sys/sleepq.h>
223 #include <sys/lockdebug.h>
224 #include <sys/kmem.h>
225
226 #include <uvm/uvm_extern.h>
227
228 struct lwplist alllwp;
229
230 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
231 &pool_allocator_nointr);
232 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
233 &pool_allocator_nointr);
234
235 static specificdata_domain_t lwp_specificdata_domain;
236
237 #define LWP_DEBUG
238
239 #ifdef LWP_DEBUG
240 int lwp_debug = 0;
241 #define DPRINTF(x) if (lwp_debug) printf x
242 #else
243 #define DPRINTF(x)
244 #endif
245
246 void
247 lwpinit(void)
248 {
249
250 lwp_specificdata_domain = specificdata_domain_create();
251 KASSERT(lwp_specificdata_domain != NULL);
252 lwp_sys_init();
253 }
254
255 /*
256 * Set an suspended.
257 *
258 * Must be called with p_smutex held, and the LWP locked. Will unlock the
259 * LWP before return.
260 */
261 int
262 lwp_suspend(struct lwp *curl, struct lwp *t)
263 {
264 int error;
265
266 LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
267 LOCK_ASSERT(lwp_locked(t, NULL));
268
269 KASSERT(curl != t || curl->l_stat == LSONPROC);
270
271 /*
272 * If the current LWP has been told to exit, we must not suspend anyone
273 * else or deadlock could occur. We won't return to userspace.
274 */
275 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
276 lwp_unlock(t);
277 return (EDEADLK);
278 }
279
280 error = 0;
281
282 switch (t->l_stat) {
283 case LSRUN:
284 case LSONPROC:
285 t->l_flag |= LW_WSUSPEND;
286 lwp_need_userret(t);
287 lwp_unlock(t);
288 break;
289
290 case LSSLEEP:
291 t->l_flag |= LW_WSUSPEND;
292
293 /*
294 * Kick the LWP and try to get it to the kernel boundary
295 * so that it will release any locks that it holds.
296 * setrunnable() will release the lock.
297 */
298 if ((t->l_flag & LW_SINTR) != 0)
299 setrunnable(t);
300 else
301 lwp_unlock(t);
302 break;
303
304 case LSSUSPENDED:
305 lwp_unlock(t);
306 break;
307
308 case LSSTOP:
309 t->l_flag |= LW_WSUSPEND;
310 setrunnable(t);
311 break;
312
313 case LSIDL:
314 case LSZOMB:
315 error = EINTR; /* It's what Solaris does..... */
316 lwp_unlock(t);
317 break;
318 }
319
320 /*
321 * XXXLWP Wait for:
322 *
323 * o process exiting
324 * o target LWP suspended
325 * o target LWP not suspended and L_WSUSPEND clear
326 * o target LWP exited
327 */
328
329 return (error);
330 }
331
332 /*
333 * Restart a suspended LWP.
334 *
335 * Must be called with p_smutex held, and the LWP locked. Will unlock the
336 * LWP before return.
337 */
338 void
339 lwp_continue(struct lwp *l)
340 {
341
342 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
343 LOCK_ASSERT(lwp_locked(l, NULL));
344
345 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
346 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
347 l->l_wchan));
348
349 /* If rebooting or not suspended, then just bail out. */
350 if ((l->l_flag & LW_WREBOOT) != 0) {
351 lwp_unlock(l);
352 return;
353 }
354
355 l->l_flag &= ~LW_WSUSPEND;
356
357 if (l->l_stat != LSSUSPENDED) {
358 lwp_unlock(l);
359 return;
360 }
361
362 /* setrunnable() will release the lock. */
363 setrunnable(l);
364 }
365
366 /*
367 * Wait for an LWP within the current process to exit. If 'lid' is
368 * non-zero, we are waiting for a specific LWP.
369 *
370 * Must be called with p->p_smutex held.
371 */
372 int
373 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
374 {
375 struct proc *p = l->l_proc;
376 struct lwp *l2;
377 int nfound, error;
378
379 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
380 p->p_pid, l->l_lid, lid));
381
382 LOCK_ASSERT(mutex_owned(&p->p_smutex));
383
384 /*
385 * We try to check for deadlock:
386 *
387 * 1) If all other LWPs are waiting for exits or suspended.
388 * 2) If we are trying to wait on ourself.
389 *
390 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
391 * waits, not any-LWP waits) and detect that sort of deadlock, but
392 * we don't have a good place to store the lwp that is being waited
393 * for. wchan is already filled with &p->p_nlwps, and putting the
394 * lwp address in there for deadlock tracing would require exiting
395 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
396 * get threads sleeping on any LWP exiting.
397 */
398 if (lid == l->l_lid)
399 return EDEADLK;
400
401 p->p_nlwpwait++;
402
403 for (;;) {
404 /*
405 * Avoid a race between exit1() and sigexit(): if the
406 * process is dumping core, then we need to bail out: call
407 * into lwp_userret() where we will be suspended until the
408 * deed is done.
409 */
410 if ((p->p_sflag & PS_WCORE) != 0) {
411 mutex_exit(&p->p_smutex);
412 lwp_userret(l);
413 #ifdef DIAGNOSTIC
414 panic("lwp_wait1");
415 #endif
416 /* NOTREACHED */
417 }
418
419 /*
420 * First off, drain any detached LWP that is waiting to be
421 * reaped.
422 */
423 while ((l2 = p->p_zomblwp) != NULL) {
424 p->p_zomblwp = NULL;
425 lwp_free(l2, 0, 0); /* releases proc mutex */
426 mutex_enter(&p->p_smutex);
427 }
428
429 /*
430 * Now look for an LWP to collect. If the whole process is
431 * exiting, count detached LWPs as eligible to be collected,
432 * but don't drain them here.
433 */
434 nfound = 0;
435 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
436 if (l2 == l || (lid != 0 && l2->l_lid != lid))
437 continue;
438 if ((l2->l_prflag & LPR_DETACHED) != 0) {
439 nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
440 continue;
441 }
442 nfound++;
443
444 /* No need to lock the LWP in order to see LSZOMB. */
445 if (l2->l_stat != LSZOMB)
446 continue;
447
448 if (departed)
449 *departed = l2->l_lid;
450 lwp_free(l2, 0, 0);
451 mutex_enter(&p->p_smutex);
452 p->p_nlwpwait--;
453 return 0;
454 }
455
456 if (nfound == 0) {
457 error = ESRCH;
458 break;
459 }
460 if ((flags & LWPWAIT_EXITCONTROL) != 0) {
461 KASSERT(p->p_nlwps > 1);
462 cv_wait(&p->p_lwpcv, &p->p_smutex);
463 continue;
464 }
465 if ((p->p_sflag & PS_WEXIT) != 0 ||
466 p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
467 error = EDEADLK;
468 break;
469 }
470 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
471 break;
472 }
473
474 p->p_nlwpwait--;
475 return error;
476 }
477
478 /*
479 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
480 * The new LWP is created in state LSIDL and must be set running,
481 * suspended, or stopped by the caller.
482 */
483 int
484 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
485 int flags, void *stack, size_t stacksize,
486 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
487 {
488 struct lwp *l2, *isfree;
489 turnstile_t *ts;
490
491 /*
492 * First off, reap any detached LWP waiting to be collected.
493 * We can re-use its LWP structure and turnstile.
494 */
495 isfree = NULL;
496 if (p2->p_zomblwp != NULL) {
497 mutex_enter(&p2->p_smutex);
498 if ((isfree = p2->p_zomblwp) != NULL) {
499 p2->p_zomblwp = NULL;
500 lwp_free(isfree, 1, 0); /* releases proc mutex */
501 } else
502 mutex_exit(&p2->p_smutex);
503 }
504 if (isfree == NULL) {
505 l2 = pool_get(&lwp_pool, PR_WAITOK);
506 memset(l2, 0, sizeof(*l2));
507 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
508 SLIST_INIT(&l2->l_pi_lenders);
509 } else {
510 l2 = isfree;
511 ts = l2->l_ts;
512 KASSERT(l2->l_inheritedprio == MAXPRI);
513 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
514 memset(l2, 0, sizeof(*l2));
515 l2->l_ts = ts;
516 }
517
518 l2->l_stat = LSIDL;
519 l2->l_proc = p2;
520 l2->l_refcnt = 1;
521 l2->l_priority = l1->l_priority;
522 l2->l_usrpri = l1->l_usrpri;
523 l2->l_inheritedprio = MAXPRI;
524 l2->l_mutex = &sched_mutex;
525 l2->l_cpu = l1->l_cpu;
526 l2->l_flag = inmem ? LW_INMEM : 0;
527 lwp_initspecific(l2);
528 sched_lwp_fork(l2);
529
530 if (p2->p_flag & PK_SYSTEM) {
531 /*
532 * Mark it as a system process and not a candidate for
533 * swapping.
534 */
535 l2->l_flag |= LW_SYSTEM;
536 }
537
538 lwp_update_creds(l2);
539 callout_init(&l2->l_tsleep_ch);
540 cv_init(&l2->l_sigcv, "sigwait");
541 l2->l_syncobj = &sched_syncobj;
542
543 if (rnewlwpp != NULL)
544 *rnewlwpp = l2;
545
546 l2->l_addr = UAREA_TO_USER(uaddr);
547 uvm_lwp_fork(l1, l2, stack, stacksize, func,
548 (arg != NULL) ? arg : l2);
549
550 mutex_enter(&p2->p_smutex);
551
552 if ((flags & LWP_DETACHED) != 0) {
553 l2->l_prflag = LPR_DETACHED;
554 p2->p_ndlwps++;
555 } else
556 l2->l_prflag = 0;
557
558 l2->l_sigmask = l1->l_sigmask;
559 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
560 sigemptyset(&l2->l_sigpend.sp_set);
561
562 p2->p_nlwpid++;
563 if (p2->p_nlwpid == 0)
564 p2->p_nlwpid++;
565 l2->l_lid = p2->p_nlwpid;
566 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
567 p2->p_nlwps++;
568
569 mutex_exit(&p2->p_smutex);
570
571 mutex_enter(&proclist_mutex);
572 LIST_INSERT_HEAD(&alllwp, l2, l_list);
573 mutex_exit(&proclist_mutex);
574
575 SYSCALL_TIME_LWP_INIT(l2);
576
577 if (p2->p_emul->e_lwp_fork)
578 (*p2->p_emul->e_lwp_fork)(l1, l2);
579
580 return (0);
581 }
582
583 /*
584 * Quit the process.
585 * this can only be used meaningfully if you're willing to switch away.
586 * Calling with l != curlwp would be weird.
587 */
588 void
589 lwp_exit(struct lwp *l)
590 {
591 struct proc *p = l->l_proc;
592 struct lwp *l2;
593
594 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
595 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
596
597 /*
598 * Verify that we hold no locks other than the kernel lock.
599 */
600 #ifdef MULTIPROCESSOR
601 LOCKDEBUG_BARRIER(&kernel_lock, 0);
602 #else
603 LOCKDEBUG_BARRIER(NULL, 0);
604 #endif
605
606 /*
607 * If we are the last live LWP in a process, we need to exit the
608 * entire process. We do so with an exit status of zero, because
609 * it's a "controlled" exit, and because that's what Solaris does.
610 *
611 * We are not quite a zombie yet, but for accounting purposes we
612 * must increment the count of zombies here.
613 *
614 * Note: the last LWP's specificdata will be deleted here.
615 */
616 mutex_enter(&p->p_smutex);
617 if (p->p_nlwps - p->p_nzlwps == 1) {
618 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
619 p->p_pid, l->l_lid));
620 exit1(l, 0);
621 /* NOTREACHED */
622 }
623 p->p_nzlwps++;
624 mutex_exit(&p->p_smutex);
625
626 if (p->p_emul->e_lwp_exit)
627 (*p->p_emul->e_lwp_exit)(l);
628
629 /* Delete the specificdata while it's still safe to sleep. */
630 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
631
632 /*
633 * Release our cached credentials.
634 */
635 kauth_cred_free(l->l_cred);
636
637 /*
638 * Remove the LWP from the global list.
639 */
640 mutex_enter(&proclist_mutex);
641 LIST_REMOVE(l, l_list);
642 mutex_exit(&proclist_mutex);
643
644 /*
645 * Get rid of all references to the LWP that others (e.g. procfs)
646 * may have, and mark the LWP as a zombie. If the LWP is detached,
647 * mark it waiting for collection in the proc structure. Note that
648 * before we can do that, we need to free any other dead, deatched
649 * LWP waiting to meet its maker.
650 *
651 * XXXSMP disable preemption.
652 */
653 mutex_enter(&p->p_smutex);
654 lwp_drainrefs(l);
655
656 if ((l->l_prflag & LPR_DETACHED) != 0) {
657 while ((l2 = p->p_zomblwp) != NULL) {
658 p->p_zomblwp = NULL;
659 lwp_free(l2, 0, 0); /* releases proc mutex */
660 mutex_enter(&p->p_smutex);
661 }
662 p->p_zomblwp = l;
663 }
664
665 /*
666 * If we find a pending signal for the process and we have been
667 * asked to check for signals, then we loose: arrange to have
668 * all other LWPs in the process check for signals.
669 */
670 if ((l->l_flag & LW_PENDSIG) != 0 &&
671 firstsig(&p->p_sigpend.sp_set) != 0) {
672 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
673 lwp_lock(l2);
674 l2->l_flag |= LW_PENDSIG;
675 lwp_unlock(l2);
676 }
677 }
678
679 lwp_lock(l);
680 l->l_stat = LSZOMB;
681 lwp_unlock(l);
682 p->p_nrlwps--;
683 cv_broadcast(&p->p_lwpcv);
684 mutex_exit(&p->p_smutex);
685
686 /*
687 * We can no longer block. At this point, lwp_free() may already
688 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
689 *
690 * Free MD LWP resources.
691 */
692 #ifndef __NO_CPU_LWP_FREE
693 cpu_lwp_free(l, 0);
694 #endif
695 pmap_deactivate(l);
696
697 /*
698 * Release the kernel lock, signal another LWP to collect us,
699 * and switch away into oblivion.
700 */
701 #ifdef notyet
702 /* XXXSMP hold in lwp_userret() */
703 KERNEL_UNLOCK_LAST(l);
704 #else
705 KERNEL_UNLOCK_ALL(l, NULL);
706 #endif
707
708 lwp_exit_switchaway(l);
709 }
710
711 void
712 lwp_exit_switchaway(struct lwp *l)
713 {
714 struct cpu_info *ci;
715 struct lwp *idlelwp;
716
717 uvmexp.swtch++; /* XXXSMP unlocked */
718
719 ci = curcpu();
720 idlelwp = ci->ci_data.cpu_idlelwp;
721
722 idlelwp->l_stat = LSONPROC;
723 cpu_switchto(NULL, idlelwp);
724 }
725
726 /*
727 * Free a dead LWP's remaining resources.
728 *
729 * XXXLWP limits.
730 */
731 void
732 lwp_free(struct lwp *l, int recycle, int last)
733 {
734 struct proc *p = l->l_proc;
735 ksiginfoq_t kq;
736
737 /*
738 * If this was not the last LWP in the process, then adjust
739 * counters and unlock.
740 */
741 if (!last) {
742 /*
743 * Add the LWP's run time to the process' base value.
744 * This needs to co-incide with coming off p_lwps.
745 */
746 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
747 LIST_REMOVE(l, l_sibling);
748 p->p_nlwps--;
749 p->p_nzlwps--;
750 if ((l->l_prflag & LPR_DETACHED) != 0)
751 p->p_ndlwps--;
752 mutex_exit(&p->p_smutex);
753
754 #ifdef MULTIPROCESSOR
755 /*
756 * In the unlikely event that the LWP is still on the CPU,
757 * then spin until it has switched away. We need to release
758 * all locks to avoid deadlock against interrupt handlers on
759 * the target CPU.
760 */
761 if (l->l_cpu->ci_curlwp == l) {
762 int count;
763 KERNEL_UNLOCK_ALL(curlwp, &count);
764 while (l->l_cpu->ci_curlwp == l)
765 SPINLOCK_BACKOFF_HOOK;
766 KERNEL_LOCK(count, curlwp);
767 }
768 #endif
769 }
770
771 /*
772 * Destroy the LWP's remaining signal information.
773 */
774 ksiginfo_queue_init(&kq);
775 sigclear(&l->l_sigpend, NULL, &kq);
776 ksiginfo_queue_drain(&kq);
777 cv_destroy(&l->l_sigcv);
778
779 /*
780 * Free the LWP's turnstile and the LWP structure itself unless the
781 * caller wants to recycle them. Also, free the scheduler specific data.
782 *
783 * We can't return turnstile0 to the pool (it didn't come from it),
784 * so if it comes up just drop it quietly and move on.
785 *
786 * We don't recycle the VM resources at this time.
787 */
788 KERNEL_LOCK(1, curlwp); /* XXXSMP */
789
790 sched_lwp_exit(l);
791
792 if (!recycle && l->l_ts != &turnstile0)
793 pool_cache_put(&turnstile_cache, l->l_ts);
794 #ifndef __NO_CPU_LWP_FREE
795 cpu_lwp_free2(l);
796 #endif
797 uvm_lwp_exit(l);
798 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
799 KASSERT(l->l_inheritedprio == MAXPRI);
800 if (!recycle)
801 pool_put(&lwp_pool, l);
802 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
803 }
804
805 /*
806 * Pick a LWP to represent the process for those operations which
807 * want information about a "process" that is actually associated
808 * with a LWP.
809 *
810 * If 'locking' is false, no locking or lock checks are performed.
811 * This is intended for use by DDB.
812 *
813 * We don't bother locking the LWP here, since code that uses this
814 * interface is broken by design and an exact match is not required.
815 */
816 struct lwp *
817 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
818 {
819 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
820 struct lwp *signalled;
821 int cnt;
822
823 if (locking) {
824 LOCK_ASSERT(mutex_owned(&p->p_smutex));
825 }
826
827 /* Trivial case: only one LWP */
828 if (p->p_nlwps == 1) {
829 l = LIST_FIRST(&p->p_lwps);
830 if (nrlwps)
831 *nrlwps = (l->l_stat == LSONPROC || LSRUN);
832 return l;
833 }
834
835 cnt = 0;
836 switch (p->p_stat) {
837 case SSTOP:
838 case SACTIVE:
839 /* Pick the most live LWP */
840 onproc = running = sleeping = stopped = suspended = NULL;
841 signalled = NULL;
842 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
843 if ((l->l_flag & LW_IDLE) != 0) {
844 continue;
845 }
846 if (l->l_lid == p->p_sigctx.ps_lwp)
847 signalled = l;
848 switch (l->l_stat) {
849 case LSONPROC:
850 onproc = l;
851 cnt++;
852 break;
853 case LSRUN:
854 running = l;
855 cnt++;
856 break;
857 case LSSLEEP:
858 sleeping = l;
859 break;
860 case LSSTOP:
861 stopped = l;
862 break;
863 case LSSUSPENDED:
864 suspended = l;
865 break;
866 }
867 }
868 if (nrlwps)
869 *nrlwps = cnt;
870 if (signalled)
871 l = signalled;
872 else if (onproc)
873 l = onproc;
874 else if (running)
875 l = running;
876 else if (sleeping)
877 l = sleeping;
878 else if (stopped)
879 l = stopped;
880 else if (suspended)
881 l = suspended;
882 else
883 break;
884 return l;
885 if (nrlwps)
886 *nrlwps = 0;
887 l = LIST_FIRST(&p->p_lwps);
888 return l;
889 #ifdef DIAGNOSTIC
890 case SIDL:
891 case SZOMB:
892 case SDYING:
893 case SDEAD:
894 if (locking)
895 mutex_exit(&p->p_smutex);
896 /* We have more than one LWP and we're in SIDL?
897 * How'd that happen?
898 */
899 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
900 p->p_pid, p->p_comm, p->p_stat);
901 break;
902 default:
903 if (locking)
904 mutex_exit(&p->p_smutex);
905 panic("Process %d (%s) in unknown state %d",
906 p->p_pid, p->p_comm, p->p_stat);
907 #endif
908 }
909
910 if (locking)
911 mutex_exit(&p->p_smutex);
912 panic("proc_representative_lwp: couldn't find a lwp for process"
913 " %d (%s)", p->p_pid, p->p_comm);
914 /* NOTREACHED */
915 return NULL;
916 }
917
918 /*
919 * Look up a live LWP within the speicifed process, and return it locked.
920 *
921 * Must be called with p->p_smutex held.
922 */
923 struct lwp *
924 lwp_find(struct proc *p, int id)
925 {
926 struct lwp *l;
927
928 LOCK_ASSERT(mutex_owned(&p->p_smutex));
929
930 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
931 if (l->l_lid == id)
932 break;
933 }
934
935 /*
936 * No need to lock - all of these conditions will
937 * be visible with the process level mutex held.
938 */
939 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
940 l = NULL;
941
942 return l;
943 }
944
945 /*
946 * Update an LWP's cached credentials to mirror the process' master copy.
947 *
948 * This happens early in the syscall path, on user trap, and on LWP
949 * creation. A long-running LWP can also voluntarily choose to update
950 * it's credentials by calling this routine. This may be called from
951 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
952 */
953 void
954 lwp_update_creds(struct lwp *l)
955 {
956 kauth_cred_t oc;
957 struct proc *p;
958
959 p = l->l_proc;
960 oc = l->l_cred;
961
962 mutex_enter(&p->p_mutex);
963 kauth_cred_hold(p->p_cred);
964 l->l_cred = p->p_cred;
965 mutex_exit(&p->p_mutex);
966 if (oc != NULL) {
967 KERNEL_LOCK(1, l); /* XXXSMP */
968 kauth_cred_free(oc);
969 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
970 }
971 }
972
973 /*
974 * Verify that an LWP is locked, and optionally verify that the lock matches
975 * one we specify.
976 */
977 int
978 lwp_locked(struct lwp *l, kmutex_t *mtx)
979 {
980 kmutex_t *cur = l->l_mutex;
981
982 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
983 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
984 #else
985 return mutex_owned(cur);
986 #endif
987 }
988
989 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
990 /*
991 * Lock an LWP.
992 */
993 void
994 lwp_lock_retry(struct lwp *l, kmutex_t *old)
995 {
996
997 /*
998 * XXXgcc ignoring kmutex_t * volatile on i386
999 *
1000 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1001 */
1002 #if 1
1003 while (l->l_mutex != old) {
1004 #else
1005 for (;;) {
1006 #endif
1007 mutex_spin_exit(old);
1008 old = l->l_mutex;
1009 mutex_spin_enter(old);
1010
1011 /*
1012 * mutex_enter() will have posted a read barrier. Re-test
1013 * l->l_mutex. If it has changed, we need to try again.
1014 */
1015 #if 1
1016 }
1017 #else
1018 } while (__predict_false(l->l_mutex != old));
1019 #endif
1020 }
1021 #endif
1022
1023 /*
1024 * Lend a new mutex to an LWP. The old mutex must be held.
1025 */
1026 void
1027 lwp_setlock(struct lwp *l, kmutex_t *new)
1028 {
1029
1030 LOCK_ASSERT(mutex_owned(l->l_mutex));
1031
1032 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1033 mb_write();
1034 l->l_mutex = new;
1035 #else
1036 (void)new;
1037 #endif
1038 }
1039
1040 /*
1041 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1042 * must be held.
1043 */
1044 void
1045 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1046 {
1047 kmutex_t *old;
1048
1049 LOCK_ASSERT(mutex_owned(l->l_mutex));
1050
1051 old = l->l_mutex;
1052 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1053 mb_write();
1054 l->l_mutex = new;
1055 #else
1056 (void)new;
1057 #endif
1058 mutex_spin_exit(old);
1059 }
1060
1061 /*
1062 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1063 * locked.
1064 */
1065 void
1066 lwp_relock(struct lwp *l, kmutex_t *new)
1067 {
1068 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1069 kmutex_t *old;
1070 #endif
1071
1072 LOCK_ASSERT(mutex_owned(l->l_mutex));
1073
1074 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1075 old = l->l_mutex;
1076 if (old != new) {
1077 mutex_spin_enter(new);
1078 l->l_mutex = new;
1079 mutex_spin_exit(old);
1080 }
1081 #else
1082 (void)new;
1083 #endif
1084 }
1085
1086 int
1087 lwp_trylock(struct lwp *l)
1088 {
1089 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1090 kmutex_t *old;
1091
1092 for (;;) {
1093 if (!mutex_tryenter(old = l->l_mutex))
1094 return 0;
1095 if (__predict_true(l->l_mutex == old))
1096 return 1;
1097 mutex_spin_exit(old);
1098 }
1099 #else
1100 return mutex_tryenter(l->l_mutex);
1101 #endif
1102 }
1103
1104 /*
1105 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1106 * set.
1107 */
1108 void
1109 lwp_userret(struct lwp *l)
1110 {
1111 struct proc *p;
1112 void (*hook)(void);
1113 int sig;
1114
1115 p = l->l_proc;
1116
1117 /*
1118 * It should be safe to do this read unlocked on a multiprocessor
1119 * system..
1120 */
1121 while ((l->l_flag & LW_USERRET) != 0) {
1122 /*
1123 * Process pending signals first, unless the process
1124 * is dumping core, where we will instead enter the
1125 * L_WSUSPEND case below.
1126 */
1127 if ((l->l_flag & (LW_PENDSIG | LW_WCORE)) == LW_PENDSIG) {
1128 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1129 mutex_enter(&p->p_smutex);
1130 while ((sig = issignal(l)) != 0)
1131 postsig(sig);
1132 mutex_exit(&p->p_smutex);
1133 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1134 }
1135
1136 /*
1137 * Core-dump or suspend pending.
1138 *
1139 * In case of core dump, suspend ourselves, so that the
1140 * kernel stack and therefore the userland registers saved
1141 * in the trapframe are around for coredump() to write them
1142 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1143 * will write the core file out once all other LWPs are
1144 * suspended.
1145 */
1146 if ((l->l_flag & LW_WSUSPEND) != 0) {
1147 mutex_enter(&p->p_smutex);
1148 p->p_nrlwps--;
1149 cv_broadcast(&p->p_lwpcv);
1150 lwp_lock(l);
1151 l->l_stat = LSSUSPENDED;
1152 mutex_exit(&p->p_smutex);
1153 mi_switch(l);
1154 }
1155
1156 /* Process is exiting. */
1157 if ((l->l_flag & LW_WEXIT) != 0) {
1158 KERNEL_LOCK(1, l);
1159 lwp_exit(l);
1160 KASSERT(0);
1161 /* NOTREACHED */
1162 }
1163
1164 /* Call userret hook; used by Linux emulation. */
1165 if ((l->l_flag & LW_WUSERRET) != 0) {
1166 lwp_lock(l);
1167 l->l_flag &= ~LW_WUSERRET;
1168 lwp_unlock(l);
1169 hook = p->p_userret;
1170 p->p_userret = NULL;
1171 (*hook)();
1172 }
1173 }
1174 }
1175
1176 /*
1177 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1178 */
1179 void
1180 lwp_need_userret(struct lwp *l)
1181 {
1182 LOCK_ASSERT(lwp_locked(l, NULL));
1183
1184 /*
1185 * Since the tests in lwp_userret() are done unlocked, make sure
1186 * that the condition will be seen before forcing the LWP to enter
1187 * kernel mode.
1188 */
1189 mb_write();
1190 cpu_signotify(l);
1191 }
1192
1193 /*
1194 * Add one reference to an LWP. This will prevent the LWP from
1195 * exiting, thus keep the lwp structure and PCB around to inspect.
1196 */
1197 void
1198 lwp_addref(struct lwp *l)
1199 {
1200
1201 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
1202 KASSERT(l->l_stat != LSZOMB);
1203 KASSERT(l->l_refcnt != 0);
1204
1205 l->l_refcnt++;
1206 }
1207
1208 /*
1209 * Remove one reference to an LWP. If this is the last reference,
1210 * then we must finalize the LWP's death.
1211 */
1212 void
1213 lwp_delref(struct lwp *l)
1214 {
1215 struct proc *p = l->l_proc;
1216
1217 mutex_enter(&p->p_smutex);
1218 if (--l->l_refcnt == 0)
1219 cv_broadcast(&p->p_refcv);
1220 mutex_exit(&p->p_smutex);
1221 }
1222
1223 /*
1224 * Drain all references to the current LWP.
1225 */
1226 void
1227 lwp_drainrefs(struct lwp *l)
1228 {
1229 struct proc *p = l->l_proc;
1230
1231 LOCK_ASSERT(mutex_owned(&p->p_smutex));
1232 KASSERT(l->l_refcnt != 0);
1233
1234 l->l_refcnt--;
1235 while (l->l_refcnt != 0)
1236 cv_wait(&p->p_refcv, &p->p_smutex);
1237 }
1238
1239 /*
1240 * lwp_specific_key_create --
1241 * Create a key for subsystem lwp-specific data.
1242 */
1243 int
1244 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1245 {
1246
1247 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1248 }
1249
1250 /*
1251 * lwp_specific_key_delete --
1252 * Delete a key for subsystem lwp-specific data.
1253 */
1254 void
1255 lwp_specific_key_delete(specificdata_key_t key)
1256 {
1257
1258 specificdata_key_delete(lwp_specificdata_domain, key);
1259 }
1260
1261 /*
1262 * lwp_initspecific --
1263 * Initialize an LWP's specificdata container.
1264 */
1265 void
1266 lwp_initspecific(struct lwp *l)
1267 {
1268 int error;
1269
1270 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1271 KASSERT(error == 0);
1272 }
1273
1274 /*
1275 * lwp_finispecific --
1276 * Finalize an LWP's specificdata container.
1277 */
1278 void
1279 lwp_finispecific(struct lwp *l)
1280 {
1281
1282 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1283 }
1284
1285 /*
1286 * lwp_getspecific --
1287 * Return lwp-specific data corresponding to the specified key.
1288 *
1289 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1290 * only its OWN SPECIFIC DATA. If it is necessary to access another
1291 * LWP's specifc data, care must be taken to ensure that doing so
1292 * would not cause internal data structure inconsistency (i.e. caller
1293 * can guarantee that the target LWP is not inside an lwp_getspecific()
1294 * or lwp_setspecific() call).
1295 */
1296 void *
1297 lwp_getspecific(specificdata_key_t key)
1298 {
1299
1300 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1301 &curlwp->l_specdataref, key));
1302 }
1303
1304 void *
1305 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1306 {
1307
1308 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1309 &l->l_specdataref, key));
1310 }
1311
1312 /*
1313 * lwp_setspecific --
1314 * Set lwp-specific data corresponding to the specified key.
1315 */
1316 void
1317 lwp_setspecific(specificdata_key_t key, void *data)
1318 {
1319
1320 specificdata_setspecific(lwp_specificdata_domain,
1321 &curlwp->l_specdataref, key, data);
1322 }
1323