Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.55.2.6
      1 /*	$NetBSD: kern_lwp.c,v 1.55.2.6 2007/03/09 15:16:24 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit (or thread) of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp".
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing in kernel simultaneously.
     52  *
     53  *	Note that LWPs differ from kernel threads (kthreads) in that kernel
     54  *	threads are distinct processes (system processes) with no user space
     55  *	component, which themselves may contain one or more LWPs.
     56  *
     57  * Execution states
     58  *
     59  *	At any given time, an LWP has overall state that is described by
     60  *	lwp::l_stat.  The states are broken into two sets below.  The first
     61  *	set is guaranteed to represent the absolute, current state of the
     62  *	LWP:
     63  *
     64  * 	LSONPROC
     65  *
     66  * 		On processor: the LWP is executing on a CPU, either in the
     67  * 		kernel or in user space.
     68  *
     69  * 	LSRUN
     70  *
     71  * 		Runnable: the LWP is parked on a run queue, and may soon be
     72  * 		chosen to run by a idle processor, or by a processor that
     73  * 		has been asked to preempt a currently runnning but lower
     74  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     75  *		then the LWP is not on a run queue, but may be soon.
     76  *
     77  * 	LSIDL
     78  *
     79  * 		Idle: the LWP has been created but has not yet executed.
     80  * 		Whoever created the new LWP can be expected to set it to
     81  * 		another state shortly.
     82  *
     83  * 	LSSUSPENDED:
     84  *
     85  * 		Suspended: the LWP has had its execution suspended by
     86  *		another LWP in the same process using the _lwp_suspend()
     87  *		system call.  User-level LWPs also enter the suspended
     88  *		state when the system is shutting down.
     89  *
     90  *	The second set represent a "statement of intent" on behalf of the
     91  *	LWP.  The LWP may in fact be executing on a processor, may be
     92  *	sleeping, idle, or on a run queue. It is expected to take the
     93  *	necessary action to stop executing or become "running" again within
     94  *	a short timeframe.
     95  *
     96  * 	LSZOMB:
     97  *
     98  * 		Dead: the LWP has released most of its resources and is
     99  * 		about to switch away into oblivion.  When it switches away,
    100  * 		its few remaining resources will be collected.
    101  *
    102  * 	LSSLEEP:
    103  *
    104  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    105  * 		will switch away shortly to allow other LWPs to run on the
    106  * 		CPU.
    107  *
    108  * 	LSSTOP:
    109  *
    110  * 		Stopped: the LWP has been stopped as a result of a job
    111  * 		control signal, or as a result of the ptrace() interface.
    112  * 		Stopped LWPs may run briefly within the kernel to handle
    113  * 		signals that they receive, but will not return to user space
    114  * 		until their process' state is changed away from stopped.
    115  * 		Single LWPs within a process can not be set stopped
    116  * 		selectively: all actions that can stop or continue LWPs
    117  * 		occur at the process level.
    118  *
    119  * State transitions
    120  *
    121  *	Note that the LSSTOP and LSSUSPENDED states may only be set
    122  *	when returning to user space in userret(), or when sleeping
    123  *	interruptably.  Before setting those states, we try to ensure
    124  *	that the LWPs will release all kernel locks that they hold,
    125  *	and at a minimum try to ensure that the LWP can be set runnable
    126  *	again by a signal.
    127  *
    128  *	LWPs may transition states in the following ways:
    129  *
    130  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131  *	            > STOPPED			    > SLEEP
    132  *	            > SUSPENDED			    > STOPPED
    133  *						    > SUSPENDED
    134  *						    > ZOMB
    135  *
    136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  *	            > SLEEP			    > SLEEP
    138  *
    139  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  *		    > RUN		            > SUSPENDED
    141  *		    > STOPPED                       > STOPPED
    142  *		    > SUSPENDED
    143  *
    144  * Locking
    145  *
    146  *	The majority of fields in 'struct lwp' are covered by a single,
    147  *	general spin mutex pointed to by lwp::l_mutex.  The locks covering
    148  *	each field are documented in sys/lwp.h.
    149  *
    150  *	State transitions must be made with the LWP's general lock held.  In
    151  *	a multiprocessor kernel, state transitions may cause the LWP's lock
    152  *	pointer to change.  On uniprocessor kernels, most scheduler and
    153  *	synchronisation objects such as sleep queues and LWPs are protected
    154  *	by only one mutex (sched_mutex).  In this case, LWPs' lock pointers
    155  *	will never change and will always reference sched_mutex.
    156  *
    157  *	Manipulation of the general lock is not performed directly, but
    158  *	through calls to lwp_lock(), lwp_relock() and similar.
    159  *
    160  *	States and their associated locks:
    161  *
    162  *	LSIDL, LSZOMB
    163  *
    164  *		Always covered by sched_mutex.
    165  *
    166  *	LSONPROC, LSRUN:
    167  *
    168  *		Always covered by sched_mutex, which protects the run queues
    169  *		and other miscellaneous items.  If the scheduler is changed
    170  *		to use per-CPU run queues, this may become a per-CPU mutex.
    171  *
    172  *	LSSLEEP:
    173  *
    174  *		Covered by a mutex associated with the sleep queue that the
    175  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    176  *
    177  *	LSSTOP, LSSUSPENDED:
    178  *
    179  *		If the LWP was previously sleeping (l_wchan != NULL), then
    180  *		l_mutex references the sleep queue mutex.  If the LWP was
    181  *		runnable or on the CPU when halted, or has been removed from
    182  *		the sleep queue since halted, then the mutex is sched_mutex.
    183  *
    184  *	The lock order is as follows:
    185  *
    186  *		sleepq_t::sq_mutex  |---> sched_mutex
    187  *		tschain_t::tc_mutex |
    188  *
    189  *	Each process has an scheduler state mutex (proc::p_smutex), and a
    190  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    191  *	so on.  When an LWP is to be entered into or removed from one of the
    192  *	following states, p_mutex must be held and the process wide counters
    193  *	adjusted:
    194  *
    195  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    196  *
    197  *	Note that an LWP is considered running or likely to run soon if in
    198  *	one of the following states.  This affects the value of p_nrlwps:
    199  *
    200  *		LSRUN, LSONPROC, LSSLEEP
    201  *
    202  *	p_smutex does not need to be held when transitioning among these
    203  *	three states.
    204  */
    205 
    206 #include <sys/cdefs.h>
    207 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.55.2.6 2007/03/09 15:16:24 rmind Exp $");
    208 
    209 #include "opt_multiprocessor.h"
    210 #include "opt_lockdebug.h"
    211 
    212 #define _LWP_API_PRIVATE
    213 
    214 #include <sys/param.h>
    215 #include <sys/systm.h>
    216 #include <sys/cpu.h>
    217 #include <sys/pool.h>
    218 #include <sys/proc.h>
    219 #include <sys/syscallargs.h>
    220 #include <sys/syscall_stats.h>
    221 #include <sys/kauth.h>
    222 #include <sys/sleepq.h>
    223 #include <sys/lockdebug.h>
    224 #include <sys/kmem.h>
    225 
    226 #include <uvm/uvm_extern.h>
    227 
    228 struct lwplist	alllwp;
    229 
    230 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    231     &pool_allocator_nointr);
    232 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    233     &pool_allocator_nointr);
    234 
    235 static specificdata_domain_t lwp_specificdata_domain;
    236 
    237 #define LWP_DEBUG
    238 
    239 #ifdef LWP_DEBUG
    240 int lwp_debug = 0;
    241 #define DPRINTF(x) if (lwp_debug) printf x
    242 #else
    243 #define DPRINTF(x)
    244 #endif
    245 
    246 void
    247 lwpinit(void)
    248 {
    249 
    250 	lwp_specificdata_domain = specificdata_domain_create();
    251 	KASSERT(lwp_specificdata_domain != NULL);
    252 	lwp_sys_init();
    253 }
    254 
    255 /*
    256  * Set an suspended.
    257  *
    258  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    259  * LWP before return.
    260  */
    261 int
    262 lwp_suspend(struct lwp *curl, struct lwp *t)
    263 {
    264 	int error;
    265 
    266 	LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
    267 	LOCK_ASSERT(lwp_locked(t, NULL));
    268 
    269 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    270 
    271 	/*
    272 	 * If the current LWP has been told to exit, we must not suspend anyone
    273 	 * else or deadlock could occur.  We won't return to userspace.
    274 	 */
    275 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    276 		lwp_unlock(t);
    277 		return (EDEADLK);
    278 	}
    279 
    280 	error = 0;
    281 
    282 	switch (t->l_stat) {
    283 	case LSRUN:
    284 	case LSONPROC:
    285 		t->l_flag |= LW_WSUSPEND;
    286 		lwp_need_userret(t);
    287 		lwp_unlock(t);
    288 		break;
    289 
    290 	case LSSLEEP:
    291 		t->l_flag |= LW_WSUSPEND;
    292 
    293 		/*
    294 		 * Kick the LWP and try to get it to the kernel boundary
    295 		 * so that it will release any locks that it holds.
    296 		 * setrunnable() will release the lock.
    297 		 */
    298 		if ((t->l_flag & LW_SINTR) != 0)
    299 			setrunnable(t);
    300 		else
    301 			lwp_unlock(t);
    302 		break;
    303 
    304 	case LSSUSPENDED:
    305 		lwp_unlock(t);
    306 		break;
    307 
    308 	case LSSTOP:
    309 		t->l_flag |= LW_WSUSPEND;
    310 		setrunnable(t);
    311 		break;
    312 
    313 	case LSIDL:
    314 	case LSZOMB:
    315 		error = EINTR; /* It's what Solaris does..... */
    316 		lwp_unlock(t);
    317 		break;
    318 	}
    319 
    320 	/*
    321 	 * XXXLWP Wait for:
    322 	 *
    323 	 * o process exiting
    324 	 * o target LWP suspended
    325 	 * o target LWP not suspended and L_WSUSPEND clear
    326 	 * o target LWP exited
    327 	 */
    328 
    329 	 return (error);
    330 }
    331 
    332 /*
    333  * Restart a suspended LWP.
    334  *
    335  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    336  * LWP before return.
    337  */
    338 void
    339 lwp_continue(struct lwp *l)
    340 {
    341 
    342 	LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
    343 	LOCK_ASSERT(lwp_locked(l, NULL));
    344 
    345 	DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
    346 	    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
    347 	    l->l_wchan));
    348 
    349 	/* If rebooting or not suspended, then just bail out. */
    350 	if ((l->l_flag & LW_WREBOOT) != 0) {
    351 		lwp_unlock(l);
    352 		return;
    353 	}
    354 
    355 	l->l_flag &= ~LW_WSUSPEND;
    356 
    357 	if (l->l_stat != LSSUSPENDED) {
    358 		lwp_unlock(l);
    359 		return;
    360 	}
    361 
    362 	/* setrunnable() will release the lock. */
    363 	setrunnable(l);
    364 }
    365 
    366 /*
    367  * Wait for an LWP within the current process to exit.  If 'lid' is
    368  * non-zero, we are waiting for a specific LWP.
    369  *
    370  * Must be called with p->p_smutex held.
    371  */
    372 int
    373 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    374 {
    375 	struct proc *p = l->l_proc;
    376 	struct lwp *l2;
    377 	int nfound, error;
    378 
    379 	DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
    380 	    p->p_pid, l->l_lid, lid));
    381 
    382 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    383 
    384 	/*
    385 	 * We try to check for deadlock:
    386 	 *
    387 	 * 1) If all other LWPs are waiting for exits or suspended.
    388 	 * 2) If we are trying to wait on ourself.
    389 	 *
    390 	 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
    391 	 * waits, not any-LWP waits) and detect that sort of deadlock, but
    392 	 * we don't have a good place to store the lwp that is being waited
    393 	 * for. wchan is already filled with &p->p_nlwps, and putting the
    394 	 * lwp address in there for deadlock tracing would require exiting
    395 	 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
    396 	 * get threads sleeping on any LWP exiting.
    397 	 */
    398 	if (lid == l->l_lid)
    399 		return EDEADLK;
    400 
    401 	p->p_nlwpwait++;
    402 
    403 	for (;;) {
    404 		/*
    405 		 * Avoid a race between exit1() and sigexit(): if the
    406 		 * process is dumping core, then we need to bail out: call
    407 		 * into lwp_userret() where we will be suspended until the
    408 		 * deed is done.
    409 		 */
    410 		if ((p->p_sflag & PS_WCORE) != 0) {
    411 			mutex_exit(&p->p_smutex);
    412 			lwp_userret(l);
    413 #ifdef DIAGNOSTIC
    414 			panic("lwp_wait1");
    415 #endif
    416 			/* NOTREACHED */
    417 		}
    418 
    419 		/*
    420 		 * First off, drain any detached LWP that is waiting to be
    421 		 * reaped.
    422 		 */
    423 		while ((l2 = p->p_zomblwp) != NULL) {
    424 			p->p_zomblwp = NULL;
    425 			lwp_free(l2, 0, 0);	/* releases proc mutex */
    426 			mutex_enter(&p->p_smutex);
    427 		}
    428 
    429 		/*
    430 		 * Now look for an LWP to collect.  If the whole process is
    431 		 * exiting, count detached LWPs as eligible to be collected,
    432 		 * but don't drain them here.
    433 		 */
    434 		nfound = 0;
    435 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    436 			if (l2 == l || (lid != 0 && l2->l_lid != lid))
    437 				continue;
    438 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    439 				nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
    440 				continue;
    441 			}
    442 			nfound++;
    443 
    444 			/* No need to lock the LWP in order to see LSZOMB. */
    445 			if (l2->l_stat != LSZOMB)
    446 				continue;
    447 
    448 			if (departed)
    449 				*departed = l2->l_lid;
    450 			lwp_free(l2, 0, 0);
    451 			mutex_enter(&p->p_smutex);
    452 			p->p_nlwpwait--;
    453 			return 0;
    454 		}
    455 
    456 		if (nfound == 0) {
    457 			error = ESRCH;
    458 			break;
    459 		}
    460 		if ((flags & LWPWAIT_EXITCONTROL) != 0) {
    461 			KASSERT(p->p_nlwps > 1);
    462 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    463 			continue;
    464 		}
    465 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    466 		    p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
    467 			error = EDEADLK;
    468 			break;
    469 		}
    470 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    471 			break;
    472 	}
    473 
    474 	p->p_nlwpwait--;
    475 	return error;
    476 }
    477 
    478 /*
    479  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    480  * The new LWP is created in state LSIDL and must be set running,
    481  * suspended, or stopped by the caller.
    482  */
    483 int
    484 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
    485     int flags, void *stack, size_t stacksize,
    486     void (*func)(void *), void *arg, struct lwp **rnewlwpp)
    487 {
    488 	struct lwp *l2, *isfree;
    489 	turnstile_t *ts;
    490 
    491 	/*
    492 	 * First off, reap any detached LWP waiting to be collected.
    493 	 * We can re-use its LWP structure and turnstile.
    494 	 */
    495 	isfree = NULL;
    496 	if (p2->p_zomblwp != NULL) {
    497 		mutex_enter(&p2->p_smutex);
    498 		if ((isfree = p2->p_zomblwp) != NULL) {
    499 			p2->p_zomblwp = NULL;
    500 			lwp_free(isfree, 1, 0);	/* releases proc mutex */
    501 		} else
    502 			mutex_exit(&p2->p_smutex);
    503 	}
    504 	if (isfree == NULL) {
    505 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    506 		memset(l2, 0, sizeof(*l2));
    507 		l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
    508 		SLIST_INIT(&l2->l_pi_lenders);
    509 	} else {
    510 		l2 = isfree;
    511 		ts = l2->l_ts;
    512 		KASSERT(l2->l_inheritedprio == MAXPRI);
    513 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    514 		memset(l2, 0, sizeof(*l2));
    515 		l2->l_ts = ts;
    516 	}
    517 
    518 	l2->l_stat = LSIDL;
    519 	l2->l_proc = p2;
    520 	l2->l_refcnt = 1;
    521 	l2->l_priority = l1->l_priority;
    522 	l2->l_usrpri = l1->l_usrpri;
    523 	l2->l_inheritedprio = MAXPRI;
    524 	l2->l_mutex = &sched_mutex;
    525 	l2->l_cpu = l1->l_cpu;
    526 	l2->l_flag = inmem ? LW_INMEM : 0;
    527 	lwp_initspecific(l2);
    528 	sched_lwp_fork(l2);
    529 
    530 	if (p2->p_flag & PK_SYSTEM) {
    531 		/*
    532 		 * Mark it as a system process and not a candidate for
    533 		 * swapping.
    534 		 */
    535 		l2->l_flag |= LW_SYSTEM;
    536 	}
    537 
    538 	lwp_update_creds(l2);
    539 	callout_init(&l2->l_tsleep_ch);
    540 	cv_init(&l2->l_sigcv, "sigwait");
    541 	l2->l_syncobj = &sched_syncobj;
    542 
    543 	if (rnewlwpp != NULL)
    544 		*rnewlwpp = l2;
    545 
    546 	l2->l_addr = UAREA_TO_USER(uaddr);
    547 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    548 	    (arg != NULL) ? arg : l2);
    549 
    550 	mutex_enter(&p2->p_smutex);
    551 
    552 	if ((flags & LWP_DETACHED) != 0) {
    553 		l2->l_prflag = LPR_DETACHED;
    554 		p2->p_ndlwps++;
    555 	} else
    556 		l2->l_prflag = 0;
    557 
    558 	l2->l_sigmask = l1->l_sigmask;
    559 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    560 	sigemptyset(&l2->l_sigpend.sp_set);
    561 
    562 	p2->p_nlwpid++;
    563 	if (p2->p_nlwpid == 0)
    564 		p2->p_nlwpid++;
    565 	l2->l_lid = p2->p_nlwpid;
    566 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    567 	p2->p_nlwps++;
    568 
    569 	mutex_exit(&p2->p_smutex);
    570 
    571 	mutex_enter(&proclist_mutex);
    572 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    573 	mutex_exit(&proclist_mutex);
    574 
    575 	SYSCALL_TIME_LWP_INIT(l2);
    576 
    577 	if (p2->p_emul->e_lwp_fork)
    578 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    579 
    580 	return (0);
    581 }
    582 
    583 /*
    584  * Quit the process.
    585  * this can only be used meaningfully if you're willing to switch away.
    586  * Calling with l != curlwp would be weird.
    587  */
    588 void
    589 lwp_exit(struct lwp *l)
    590 {
    591 	struct proc *p = l->l_proc;
    592 	struct lwp *l2;
    593 
    594 	DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
    595 	DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
    596 
    597 	/*
    598 	 * Verify that we hold no locks other than the kernel lock.
    599 	 */
    600 #ifdef MULTIPROCESSOR
    601 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    602 #else
    603 	LOCKDEBUG_BARRIER(NULL, 0);
    604 #endif
    605 
    606 	/*
    607 	 * If we are the last live LWP in a process, we need to exit the
    608 	 * entire process.  We do so with an exit status of zero, because
    609 	 * it's a "controlled" exit, and because that's what Solaris does.
    610 	 *
    611 	 * We are not quite a zombie yet, but for accounting purposes we
    612 	 * must increment the count of zombies here.
    613 	 *
    614 	 * Note: the last LWP's specificdata will be deleted here.
    615 	 */
    616 	mutex_enter(&p->p_smutex);
    617 	if (p->p_nlwps - p->p_nzlwps == 1) {
    618 		DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
    619 		    p->p_pid, l->l_lid));
    620 		exit1(l, 0);
    621 		/* NOTREACHED */
    622 	}
    623 	p->p_nzlwps++;
    624 	mutex_exit(&p->p_smutex);
    625 
    626 	if (p->p_emul->e_lwp_exit)
    627 		(*p->p_emul->e_lwp_exit)(l);
    628 
    629 	/* Delete the specificdata while it's still safe to sleep. */
    630 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    631 
    632 	/*
    633 	 * Release our cached credentials.
    634 	 */
    635 	kauth_cred_free(l->l_cred);
    636 
    637 	/*
    638 	 * Remove the LWP from the global list.
    639 	 */
    640 	mutex_enter(&proclist_mutex);
    641 	LIST_REMOVE(l, l_list);
    642 	mutex_exit(&proclist_mutex);
    643 
    644 	/*
    645 	 * Get rid of all references to the LWP that others (e.g. procfs)
    646 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    647 	 * mark it waiting for collection in the proc structure.  Note that
    648 	 * before we can do that, we need to free any other dead, deatched
    649 	 * LWP waiting to meet its maker.
    650 	 *
    651 	 * XXXSMP disable preemption.
    652 	 */
    653 	mutex_enter(&p->p_smutex);
    654 	lwp_drainrefs(l);
    655 
    656 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    657 		while ((l2 = p->p_zomblwp) != NULL) {
    658 			p->p_zomblwp = NULL;
    659 			lwp_free(l2, 0, 0);	/* releases proc mutex */
    660 			mutex_enter(&p->p_smutex);
    661 		}
    662 		p->p_zomblwp = l;
    663 	}
    664 
    665 	/*
    666 	 * If we find a pending signal for the process and we have been
    667 	 * asked to check for signals, then we loose: arrange to have
    668 	 * all other LWPs in the process check for signals.
    669 	 */
    670 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    671 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    672 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    673 			lwp_lock(l2);
    674 			l2->l_flag |= LW_PENDSIG;
    675 			lwp_unlock(l2);
    676 		}
    677 	}
    678 
    679 	lwp_lock(l);
    680 	l->l_stat = LSZOMB;
    681 	lwp_unlock(l);
    682 	p->p_nrlwps--;
    683 	cv_broadcast(&p->p_lwpcv);
    684 	mutex_exit(&p->p_smutex);
    685 
    686 	/*
    687 	 * We can no longer block.  At this point, lwp_free() may already
    688 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    689 	 *
    690 	 * Free MD LWP resources.
    691 	 */
    692 #ifndef __NO_CPU_LWP_FREE
    693 	cpu_lwp_free(l, 0);
    694 #endif
    695 	pmap_deactivate(l);
    696 
    697 	/*
    698 	 * Release the kernel lock, signal another LWP to collect us,
    699 	 * and switch away into oblivion.
    700 	 */
    701 #ifdef notyet
    702 	/* XXXSMP hold in lwp_userret() */
    703 	KERNEL_UNLOCK_LAST(l);
    704 #else
    705 	KERNEL_UNLOCK_ALL(l, NULL);
    706 #endif
    707 
    708 	lwp_exit_switchaway(l);
    709 }
    710 
    711 void
    712 lwp_exit_switchaway(struct lwp *l)
    713 {
    714 	struct cpu_info *ci;
    715 	struct lwp *idlelwp;
    716 
    717 	uvmexp.swtch++; /* XXXSMP unlocked */
    718 
    719 	ci = curcpu();
    720 	idlelwp = ci->ci_data.cpu_idlelwp;
    721 
    722 	idlelwp->l_stat = LSONPROC;
    723 	cpu_switchto(NULL, idlelwp);
    724 }
    725 
    726 /*
    727  * Free a dead LWP's remaining resources.
    728  *
    729  * XXXLWP limits.
    730  */
    731 void
    732 lwp_free(struct lwp *l, int recycle, int last)
    733 {
    734 	struct proc *p = l->l_proc;
    735 	ksiginfoq_t kq;
    736 
    737 	/*
    738 	 * If this was not the last LWP in the process, then adjust
    739 	 * counters and unlock.
    740 	 */
    741 	if (!last) {
    742 		/*
    743 		 * Add the LWP's run time to the process' base value.
    744 		 * This needs to co-incide with coming off p_lwps.
    745 		 */
    746 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    747 		LIST_REMOVE(l, l_sibling);
    748 		p->p_nlwps--;
    749 		p->p_nzlwps--;
    750 		if ((l->l_prflag & LPR_DETACHED) != 0)
    751 			p->p_ndlwps--;
    752 		mutex_exit(&p->p_smutex);
    753 
    754 #ifdef MULTIPROCESSOR
    755 		/*
    756 		 * In the unlikely event that the LWP is still on the CPU,
    757 		 * then spin until it has switched away.  We need to release
    758 		 * all locks to avoid deadlock against interrupt handlers on
    759 		 * the target CPU.
    760 		 */
    761 		if (l->l_cpu->ci_curlwp == l) {
    762 			int count;
    763 			KERNEL_UNLOCK_ALL(curlwp, &count);
    764 			while (l->l_cpu->ci_curlwp == l)
    765 				SPINLOCK_BACKOFF_HOOK;
    766 			KERNEL_LOCK(count, curlwp);
    767 		}
    768 #endif
    769 	}
    770 
    771 	/*
    772 	 * Destroy the LWP's remaining signal information.
    773 	 */
    774 	ksiginfo_queue_init(&kq);
    775 	sigclear(&l->l_sigpend, NULL, &kq);
    776 	ksiginfo_queue_drain(&kq);
    777 	cv_destroy(&l->l_sigcv);
    778 
    779 	/*
    780 	 * Free the LWP's turnstile and the LWP structure itself unless the
    781 	 * caller wants to recycle them.  Also, free the scheduler specific data.
    782 	 *
    783 	 * We can't return turnstile0 to the pool (it didn't come from it),
    784 	 * so if it comes up just drop it quietly and move on.
    785 	 *
    786 	 * We don't recycle the VM resources at this time.
    787 	 */
    788 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    789 
    790 	sched_lwp_exit(l);
    791 
    792 	if (!recycle && l->l_ts != &turnstile0)
    793 		pool_cache_put(&turnstile_cache, l->l_ts);
    794 #ifndef __NO_CPU_LWP_FREE
    795 	cpu_lwp_free2(l);
    796 #endif
    797 	uvm_lwp_exit(l);
    798 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    799 	KASSERT(l->l_inheritedprio == MAXPRI);
    800 	if (!recycle)
    801 		pool_put(&lwp_pool, l);
    802 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    803 }
    804 
    805 /*
    806  * Pick a LWP to represent the process for those operations which
    807  * want information about a "process" that is actually associated
    808  * with a LWP.
    809  *
    810  * If 'locking' is false, no locking or lock checks are performed.
    811  * This is intended for use by DDB.
    812  *
    813  * We don't bother locking the LWP here, since code that uses this
    814  * interface is broken by design and an exact match is not required.
    815  */
    816 struct lwp *
    817 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    818 {
    819 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    820 	struct lwp *signalled;
    821 	int cnt;
    822 
    823 	if (locking) {
    824 		LOCK_ASSERT(mutex_owned(&p->p_smutex));
    825 	}
    826 
    827 	/* Trivial case: only one LWP */
    828 	if (p->p_nlwps == 1) {
    829 		l = LIST_FIRST(&p->p_lwps);
    830 		if (nrlwps)
    831 			*nrlwps = (l->l_stat == LSONPROC || LSRUN);
    832 		return l;
    833 	}
    834 
    835 	cnt = 0;
    836 	switch (p->p_stat) {
    837 	case SSTOP:
    838 	case SACTIVE:
    839 		/* Pick the most live LWP */
    840 		onproc = running = sleeping = stopped = suspended = NULL;
    841 		signalled = NULL;
    842 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    843 			if ((l->l_flag & LW_IDLE) != 0) {
    844 				continue;
    845 			}
    846 			if (l->l_lid == p->p_sigctx.ps_lwp)
    847 				signalled = l;
    848 			switch (l->l_stat) {
    849 			case LSONPROC:
    850 				onproc = l;
    851 				cnt++;
    852 				break;
    853 			case LSRUN:
    854 				running = l;
    855 				cnt++;
    856 				break;
    857 			case LSSLEEP:
    858 				sleeping = l;
    859 				break;
    860 			case LSSTOP:
    861 				stopped = l;
    862 				break;
    863 			case LSSUSPENDED:
    864 				suspended = l;
    865 				break;
    866 			}
    867 		}
    868 		if (nrlwps)
    869 			*nrlwps = cnt;
    870 		if (signalled)
    871 			l = signalled;
    872 		else if (onproc)
    873 			l = onproc;
    874 		else if (running)
    875 			l = running;
    876 		else if (sleeping)
    877 			l = sleeping;
    878 		else if (stopped)
    879 			l = stopped;
    880 		else if (suspended)
    881 			l = suspended;
    882 		else
    883 			break;
    884 		return l;
    885 		if (nrlwps)
    886 			*nrlwps = 0;
    887 		l = LIST_FIRST(&p->p_lwps);
    888 		return l;
    889 #ifdef DIAGNOSTIC
    890 	case SIDL:
    891 	case SZOMB:
    892 	case SDYING:
    893 	case SDEAD:
    894 		if (locking)
    895 			mutex_exit(&p->p_smutex);
    896 		/* We have more than one LWP and we're in SIDL?
    897 		 * How'd that happen?
    898 		 */
    899 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
    900 		    p->p_pid, p->p_comm, p->p_stat);
    901 		break;
    902 	default:
    903 		if (locking)
    904 			mutex_exit(&p->p_smutex);
    905 		panic("Process %d (%s) in unknown state %d",
    906 		    p->p_pid, p->p_comm, p->p_stat);
    907 #endif
    908 	}
    909 
    910 	if (locking)
    911 		mutex_exit(&p->p_smutex);
    912 	panic("proc_representative_lwp: couldn't find a lwp for process"
    913 		" %d (%s)", p->p_pid, p->p_comm);
    914 	/* NOTREACHED */
    915 	return NULL;
    916 }
    917 
    918 /*
    919  * Look up a live LWP within the speicifed process, and return it locked.
    920  *
    921  * Must be called with p->p_smutex held.
    922  */
    923 struct lwp *
    924 lwp_find(struct proc *p, int id)
    925 {
    926 	struct lwp *l;
    927 
    928 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    929 
    930 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    931 		if (l->l_lid == id)
    932 			break;
    933 	}
    934 
    935 	/*
    936 	 * No need to lock - all of these conditions will
    937 	 * be visible with the process level mutex held.
    938 	 */
    939 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
    940 		l = NULL;
    941 
    942 	return l;
    943 }
    944 
    945 /*
    946  * Update an LWP's cached credentials to mirror the process' master copy.
    947  *
    948  * This happens early in the syscall path, on user trap, and on LWP
    949  * creation.  A long-running LWP can also voluntarily choose to update
    950  * it's credentials by calling this routine.  This may be called from
    951  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
    952  */
    953 void
    954 lwp_update_creds(struct lwp *l)
    955 {
    956 	kauth_cred_t oc;
    957 	struct proc *p;
    958 
    959 	p = l->l_proc;
    960 	oc = l->l_cred;
    961 
    962 	mutex_enter(&p->p_mutex);
    963 	kauth_cred_hold(p->p_cred);
    964 	l->l_cred = p->p_cred;
    965 	mutex_exit(&p->p_mutex);
    966 	if (oc != NULL) {
    967 		KERNEL_LOCK(1, l);	/* XXXSMP */
    968 		kauth_cred_free(oc);
    969 		KERNEL_UNLOCK_ONE(l);	/* XXXSMP */
    970 	}
    971 }
    972 
    973 /*
    974  * Verify that an LWP is locked, and optionally verify that the lock matches
    975  * one we specify.
    976  */
    977 int
    978 lwp_locked(struct lwp *l, kmutex_t *mtx)
    979 {
    980 	kmutex_t *cur = l->l_mutex;
    981 
    982 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    983 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
    984 #else
    985 	return mutex_owned(cur);
    986 #endif
    987 }
    988 
    989 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    990 /*
    991  * Lock an LWP.
    992  */
    993 void
    994 lwp_lock_retry(struct lwp *l, kmutex_t *old)
    995 {
    996 
    997 	/*
    998 	 * XXXgcc ignoring kmutex_t * volatile on i386
    999 	 *
   1000 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1001 	 */
   1002 #if 1
   1003 	while (l->l_mutex != old) {
   1004 #else
   1005 	for (;;) {
   1006 #endif
   1007 		mutex_spin_exit(old);
   1008 		old = l->l_mutex;
   1009 		mutex_spin_enter(old);
   1010 
   1011 		/*
   1012 		 * mutex_enter() will have posted a read barrier.  Re-test
   1013 		 * l->l_mutex.  If it has changed, we need to try again.
   1014 		 */
   1015 #if 1
   1016 	}
   1017 #else
   1018 	} while (__predict_false(l->l_mutex != old));
   1019 #endif
   1020 }
   1021 #endif
   1022 
   1023 /*
   1024  * Lend a new mutex to an LWP.  The old mutex must be held.
   1025  */
   1026 void
   1027 lwp_setlock(struct lwp *l, kmutex_t *new)
   1028 {
   1029 
   1030 	LOCK_ASSERT(mutex_owned(l->l_mutex));
   1031 
   1032 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1033 	mb_write();
   1034 	l->l_mutex = new;
   1035 #else
   1036 	(void)new;
   1037 #endif
   1038 }
   1039 
   1040 /*
   1041  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1042  * must be held.
   1043  */
   1044 void
   1045 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1046 {
   1047 	kmutex_t *old;
   1048 
   1049 	LOCK_ASSERT(mutex_owned(l->l_mutex));
   1050 
   1051 	old = l->l_mutex;
   1052 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1053 	mb_write();
   1054 	l->l_mutex = new;
   1055 #else
   1056 	(void)new;
   1057 #endif
   1058 	mutex_spin_exit(old);
   1059 }
   1060 
   1061 /*
   1062  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1063  * locked.
   1064  */
   1065 void
   1066 lwp_relock(struct lwp *l, kmutex_t *new)
   1067 {
   1068 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1069 	kmutex_t *old;
   1070 #endif
   1071 
   1072 	LOCK_ASSERT(mutex_owned(l->l_mutex));
   1073 
   1074 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1075 	old = l->l_mutex;
   1076 	if (old != new) {
   1077 		mutex_spin_enter(new);
   1078 		l->l_mutex = new;
   1079 		mutex_spin_exit(old);
   1080 	}
   1081 #else
   1082 	(void)new;
   1083 #endif
   1084 }
   1085 
   1086 int
   1087 lwp_trylock(struct lwp *l)
   1088 {
   1089 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1090 	kmutex_t *old;
   1091 
   1092 	for (;;) {
   1093 		if (!mutex_tryenter(old = l->l_mutex))
   1094 			return 0;
   1095 		if (__predict_true(l->l_mutex == old))
   1096 			return 1;
   1097 		mutex_spin_exit(old);
   1098 	}
   1099 #else
   1100 	return mutex_tryenter(l->l_mutex);
   1101 #endif
   1102 }
   1103 
   1104 /*
   1105  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1106  * set.
   1107  */
   1108 void
   1109 lwp_userret(struct lwp *l)
   1110 {
   1111 	struct proc *p;
   1112 	void (*hook)(void);
   1113 	int sig;
   1114 
   1115 	p = l->l_proc;
   1116 
   1117 	/*
   1118 	 * It should be safe to do this read unlocked on a multiprocessor
   1119 	 * system..
   1120 	 */
   1121 	while ((l->l_flag & LW_USERRET) != 0) {
   1122 		/*
   1123 		 * Process pending signals first, unless the process
   1124 		 * is dumping core, where we will instead enter the
   1125 		 * L_WSUSPEND case below.
   1126 		 */
   1127 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE)) == LW_PENDSIG) {
   1128 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1129 			mutex_enter(&p->p_smutex);
   1130 			while ((sig = issignal(l)) != 0)
   1131 				postsig(sig);
   1132 			mutex_exit(&p->p_smutex);
   1133 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1134 		}
   1135 
   1136 		/*
   1137 		 * Core-dump or suspend pending.
   1138 		 *
   1139 		 * In case of core dump, suspend ourselves, so that the
   1140 		 * kernel stack and therefore the userland registers saved
   1141 		 * in the trapframe are around for coredump() to write them
   1142 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1143 		 * will write the core file out once all other LWPs are
   1144 		 * suspended.
   1145 		 */
   1146 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1147 			mutex_enter(&p->p_smutex);
   1148 			p->p_nrlwps--;
   1149 			cv_broadcast(&p->p_lwpcv);
   1150 			lwp_lock(l);
   1151 			l->l_stat = LSSUSPENDED;
   1152 			mutex_exit(&p->p_smutex);
   1153 			mi_switch(l);
   1154 		}
   1155 
   1156 		/* Process is exiting. */
   1157 		if ((l->l_flag & LW_WEXIT) != 0) {
   1158 			KERNEL_LOCK(1, l);
   1159 			lwp_exit(l);
   1160 			KASSERT(0);
   1161 			/* NOTREACHED */
   1162 		}
   1163 
   1164 		/* Call userret hook; used by Linux emulation. */
   1165 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1166 			lwp_lock(l);
   1167 			l->l_flag &= ~LW_WUSERRET;
   1168 			lwp_unlock(l);
   1169 			hook = p->p_userret;
   1170 			p->p_userret = NULL;
   1171 			(*hook)();
   1172 		}
   1173 	}
   1174 }
   1175 
   1176 /*
   1177  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1178  */
   1179 void
   1180 lwp_need_userret(struct lwp *l)
   1181 {
   1182 	LOCK_ASSERT(lwp_locked(l, NULL));
   1183 
   1184 	/*
   1185 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1186 	 * that the condition will be seen before forcing the LWP to enter
   1187 	 * kernel mode.
   1188 	 */
   1189 	mb_write();
   1190 	cpu_signotify(l);
   1191 }
   1192 
   1193 /*
   1194  * Add one reference to an LWP.  This will prevent the LWP from
   1195  * exiting, thus keep the lwp structure and PCB around to inspect.
   1196  */
   1197 void
   1198 lwp_addref(struct lwp *l)
   1199 {
   1200 
   1201 	LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
   1202 	KASSERT(l->l_stat != LSZOMB);
   1203 	KASSERT(l->l_refcnt != 0);
   1204 
   1205 	l->l_refcnt++;
   1206 }
   1207 
   1208 /*
   1209  * Remove one reference to an LWP.  If this is the last reference,
   1210  * then we must finalize the LWP's death.
   1211  */
   1212 void
   1213 lwp_delref(struct lwp *l)
   1214 {
   1215 	struct proc *p = l->l_proc;
   1216 
   1217 	mutex_enter(&p->p_smutex);
   1218 	if (--l->l_refcnt == 0)
   1219 		cv_broadcast(&p->p_refcv);
   1220 	mutex_exit(&p->p_smutex);
   1221 }
   1222 
   1223 /*
   1224  * Drain all references to the current LWP.
   1225  */
   1226 void
   1227 lwp_drainrefs(struct lwp *l)
   1228 {
   1229 	struct proc *p = l->l_proc;
   1230 
   1231 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
   1232 	KASSERT(l->l_refcnt != 0);
   1233 
   1234 	l->l_refcnt--;
   1235 	while (l->l_refcnt != 0)
   1236 		cv_wait(&p->p_refcv, &p->p_smutex);
   1237 }
   1238 
   1239 /*
   1240  * lwp_specific_key_create --
   1241  *	Create a key for subsystem lwp-specific data.
   1242  */
   1243 int
   1244 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1245 {
   1246 
   1247 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1248 }
   1249 
   1250 /*
   1251  * lwp_specific_key_delete --
   1252  *	Delete a key for subsystem lwp-specific data.
   1253  */
   1254 void
   1255 lwp_specific_key_delete(specificdata_key_t key)
   1256 {
   1257 
   1258 	specificdata_key_delete(lwp_specificdata_domain, key);
   1259 }
   1260 
   1261 /*
   1262  * lwp_initspecific --
   1263  *	Initialize an LWP's specificdata container.
   1264  */
   1265 void
   1266 lwp_initspecific(struct lwp *l)
   1267 {
   1268 	int error;
   1269 
   1270 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1271 	KASSERT(error == 0);
   1272 }
   1273 
   1274 /*
   1275  * lwp_finispecific --
   1276  *	Finalize an LWP's specificdata container.
   1277  */
   1278 void
   1279 lwp_finispecific(struct lwp *l)
   1280 {
   1281 
   1282 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1283 }
   1284 
   1285 /*
   1286  * lwp_getspecific --
   1287  *	Return lwp-specific data corresponding to the specified key.
   1288  *
   1289  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1290  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1291  *	LWP's specifc data, care must be taken to ensure that doing so
   1292  *	would not cause internal data structure inconsistency (i.e. caller
   1293  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1294  *	or lwp_setspecific() call).
   1295  */
   1296 void *
   1297 lwp_getspecific(specificdata_key_t key)
   1298 {
   1299 
   1300 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1301 						  &curlwp->l_specdataref, key));
   1302 }
   1303 
   1304 void *
   1305 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1306 {
   1307 
   1308 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1309 						  &l->l_specdataref, key));
   1310 }
   1311 
   1312 /*
   1313  * lwp_setspecific --
   1314  *	Set lwp-specific data corresponding to the specified key.
   1315  */
   1316 void
   1317 lwp_setspecific(specificdata_key_t key, void *data)
   1318 {
   1319 
   1320 	specificdata_setspecific(lwp_specificdata_domain,
   1321 				 &curlwp->l_specdataref, key, data);
   1322 }
   1323