kern_lwp.c revision 1.55.2.8 1 /* $NetBSD: kern_lwp.c,v 1.55.2.8 2007/03/24 00:43:06 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit (or thread) of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp".
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing in kernel simultaneously.
52 *
53 * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 * threads are distinct processes (system processes) with no user space
55 * component, which themselves may contain one or more LWPs.
56 *
57 * Execution states
58 *
59 * At any given time, an LWP has overall state that is described by
60 * lwp::l_stat. The states are broken into two sets below. The first
61 * set is guaranteed to represent the absolute, current state of the
62 * LWP:
63 *
64 * LSONPROC
65 *
66 * On processor: the LWP is executing on a CPU, either in the
67 * kernel or in user space.
68 *
69 * LSRUN
70 *
71 * Runnable: the LWP is parked on a run queue, and may soon be
72 * chosen to run by a idle processor, or by a processor that
73 * has been asked to preempt a currently runnning but lower
74 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 * then the LWP is not on a run queue, but may be soon.
76 *
77 * LSIDL
78 *
79 * Idle: the LWP has been created but has not yet executed.
80 * Whoever created the new LWP can be expected to set it to
81 * another state shortly.
82 *
83 * LSSUSPENDED:
84 *
85 * Suspended: the LWP has had its execution suspended by
86 * another LWP in the same process using the _lwp_suspend()
87 * system call. User-level LWPs also enter the suspended
88 * state when the system is shutting down.
89 *
90 * The second set represent a "statement of intent" on behalf of the
91 * LWP. The LWP may in fact be executing on a processor, may be
92 * sleeping, idle, or on a run queue. It is expected to take the
93 * necessary action to stop executing or become "running" again within
94 * a short timeframe.
95 *
96 * LSZOMB:
97 *
98 * Dead: the LWP has released most of its resources and is
99 * about to switch away into oblivion. When it switches away,
100 * its few remaining resources will be collected.
101 *
102 * LSSLEEP:
103 *
104 * Sleeping: the LWP has entered itself onto a sleep queue, and
105 * will switch away shortly to allow other LWPs to run on the
106 * CPU.
107 *
108 * LSSTOP:
109 *
110 * Stopped: the LWP has been stopped as a result of a job
111 * control signal, or as a result of the ptrace() interface.
112 * Stopped LWPs may run briefly within the kernel to handle
113 * signals that they receive, but will not return to user space
114 * until their process' state is changed away from stopped.
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP and LSSUSPENDED states may only be set
122 * when returning to user space in userret(), or when sleeping
123 * interruptably. Before setting those states, we try to ensure
124 * that the LWPs will release all kernel locks that they hold,
125 * and at a minimum try to ensure that the LWP can be set runnable
126 * again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Locking
145 *
146 * The majority of fields in 'struct lwp' are covered by a single,
147 * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 * each field are documented in sys/lwp.h.
149 *
150 * State transitions must be made with the LWP's general lock held. In
151 * a multiprocessor kernel, state transitions may cause the LWP's lock
152 * pointer to change. On uniprocessor kernels, most scheduler and
153 * synchronisation objects such as sleep queues and LWPs are protected
154 * by only one mutex (spc_mutex on single CPU). In this case, LWPs' lock
155 * pointers will never change and will always reference spc_mutex.
156 * Please note that in a multiprocessor kernel each CPU has own spc_mutex.
157 *
158 * Where spc_mutex is noted, it refers to l->l_cpu->ci_schedstate.spc_mutex
159
160 *
161 * Manipulation of the general lock is not performed directly, but
162 * through calls to lwp_lock(), lwp_relock() and similar.
163 *
164 * States and their associated locks:
165 *
166 * LSIDL, LSZOMB
167 *
168 * Always covered by spc_mutex.
169 *
170 * LSONPROC, LSRUN:
171 *
172 * Always covered by spc_mutex, which protects the run queues
173 * and other miscellaneous items. If the scheduler is changed
174 * to use per-CPU run queues, this may become a per-CPU mutex.
175 *
176 * LSSLEEP:
177 *
178 * Covered by a mutex associated with the sleep queue that the
179 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
180 *
181 * LSSTOP, LSSUSPENDED:
182 *
183 * If the LWP was previously sleeping (l_wchan != NULL), then
184 * l_mutex references the sleep queue mutex. If the LWP was
185 * runnable or on the CPU when halted, or has been removed from
186 * the sleep queue since halted, then the mutex is spc_mutex.
187 *
188 * The lock order is as follows:
189 *
190 * sleepq_t::sq_mutex |---> spc_mutex
191 * tschain_t::tc_mutex |
192 *
193 * Each process has an scheduler state mutex (proc::p_smutex), and a
194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195 * so on. When an LWP is to be entered into or removed from one of the
196 * following states, p_mutex must be held and the process wide counters
197 * adjusted:
198 *
199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200 *
201 * Note that an LWP is considered running or likely to run soon if in
202 * one of the following states. This affects the value of p_nrlwps:
203 *
204 * LSRUN, LSONPROC, LSSLEEP
205 *
206 * p_smutex does not need to be held when transitioning among these
207 * three states.
208 */
209
210 #include <sys/cdefs.h>
211 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.55.2.8 2007/03/24 00:43:06 rmind Exp $");
212
213 #include "opt_multiprocessor.h"
214 #include "opt_lockdebug.h"
215
216 #define _LWP_API_PRIVATE
217
218 #include <sys/param.h>
219 #include <sys/systm.h>
220 #include <sys/cpu.h>
221 #include <sys/pool.h>
222 #include <sys/proc.h>
223 #include <sys/syscallargs.h>
224 #include <sys/syscall_stats.h>
225 #include <sys/kauth.h>
226 #include <sys/sleepq.h>
227 #include <sys/lockdebug.h>
228 #include <sys/kmem.h>
229
230 #include <uvm/uvm_extern.h>
231
232 struct lwplist alllwp;
233
234 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
235 &pool_allocator_nointr);
236 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
237 &pool_allocator_nointr);
238
239 static specificdata_domain_t lwp_specificdata_domain;
240
241 #define LWP_DEBUG
242
243 #ifdef LWP_DEBUG
244 int lwp_debug = 0;
245 #define DPRINTF(x) if (lwp_debug) printf x
246 #else
247 #define DPRINTF(x)
248 #endif
249
250 void
251 lwpinit(void)
252 {
253
254 lwp_specificdata_domain = specificdata_domain_create();
255 KASSERT(lwp_specificdata_domain != NULL);
256 lwp_sys_init();
257 }
258
259 /*
260 * Set an suspended.
261 *
262 * Must be called with p_smutex held, and the LWP locked. Will unlock the
263 * LWP before return.
264 */
265 int
266 lwp_suspend(struct lwp *curl, struct lwp *t)
267 {
268 int error;
269
270 LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
271 LOCK_ASSERT(lwp_locked(t, NULL));
272
273 KASSERT(curl != t || curl->l_stat == LSONPROC);
274
275 /*
276 * If the current LWP has been told to exit, we must not suspend anyone
277 * else or deadlock could occur. We won't return to userspace.
278 */
279 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
280 lwp_unlock(t);
281 return (EDEADLK);
282 }
283
284 error = 0;
285
286 switch (t->l_stat) {
287 case LSRUN:
288 case LSONPROC:
289 t->l_flag |= LW_WSUSPEND;
290 lwp_need_userret(t);
291 lwp_unlock(t);
292 break;
293
294 case LSSLEEP:
295 t->l_flag |= LW_WSUSPEND;
296
297 /*
298 * Kick the LWP and try to get it to the kernel boundary
299 * so that it will release any locks that it holds.
300 * setrunnable() will release the lock.
301 */
302 if ((t->l_flag & LW_SINTR) != 0)
303 setrunnable(t);
304 else
305 lwp_unlock(t);
306 break;
307
308 case LSSUSPENDED:
309 lwp_unlock(t);
310 break;
311
312 case LSSTOP:
313 t->l_flag |= LW_WSUSPEND;
314 setrunnable(t);
315 break;
316
317 case LSIDL:
318 case LSZOMB:
319 error = EINTR; /* It's what Solaris does..... */
320 lwp_unlock(t);
321 break;
322 }
323
324 /*
325 * XXXLWP Wait for:
326 *
327 * o process exiting
328 * o target LWP suspended
329 * o target LWP not suspended and L_WSUSPEND clear
330 * o target LWP exited
331 */
332
333 return (error);
334 }
335
336 /*
337 * Restart a suspended LWP.
338 *
339 * Must be called with p_smutex held, and the LWP locked. Will unlock the
340 * LWP before return.
341 */
342 void
343 lwp_continue(struct lwp *l)
344 {
345
346 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
347 LOCK_ASSERT(lwp_locked(l, NULL));
348
349 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
350 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
351 l->l_wchan));
352
353 /* If rebooting or not suspended, then just bail out. */
354 if ((l->l_flag & LW_WREBOOT) != 0) {
355 lwp_unlock(l);
356 return;
357 }
358
359 l->l_flag &= ~LW_WSUSPEND;
360
361 if (l->l_stat != LSSUSPENDED) {
362 lwp_unlock(l);
363 return;
364 }
365
366 /* setrunnable() will release the lock. */
367 setrunnable(l);
368 }
369
370 /*
371 * Wait for an LWP within the current process to exit. If 'lid' is
372 * non-zero, we are waiting for a specific LWP.
373 *
374 * Must be called with p->p_smutex held.
375 */
376 int
377 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
378 {
379 struct proc *p = l->l_proc;
380 struct lwp *l2;
381 int nfound, error;
382
383 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
384 p->p_pid, l->l_lid, lid));
385
386 LOCK_ASSERT(mutex_owned(&p->p_smutex));
387
388 /*
389 * We try to check for deadlock:
390 *
391 * 1) If all other LWPs are waiting for exits or suspended.
392 * 2) If we are trying to wait on ourself.
393 *
394 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
395 * waits, not any-LWP waits) and detect that sort of deadlock, but
396 * we don't have a good place to store the lwp that is being waited
397 * for. wchan is already filled with &p->p_nlwps, and putting the
398 * lwp address in there for deadlock tracing would require exiting
399 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
400 * get threads sleeping on any LWP exiting.
401 */
402 if (lid == l->l_lid)
403 return EDEADLK;
404
405 p->p_nlwpwait++;
406
407 for (;;) {
408 /*
409 * Avoid a race between exit1() and sigexit(): if the
410 * process is dumping core, then we need to bail out: call
411 * into lwp_userret() where we will be suspended until the
412 * deed is done.
413 */
414 if ((p->p_sflag & PS_WCORE) != 0) {
415 mutex_exit(&p->p_smutex);
416 lwp_userret(l);
417 #ifdef DIAGNOSTIC
418 panic("lwp_wait1");
419 #endif
420 /* NOTREACHED */
421 }
422
423 /*
424 * First off, drain any detached LWP that is waiting to be
425 * reaped.
426 */
427 while ((l2 = p->p_zomblwp) != NULL) {
428 p->p_zomblwp = NULL;
429 lwp_free(l2, 0, 0); /* releases proc mutex */
430 mutex_enter(&p->p_smutex);
431 }
432
433 /*
434 * Now look for an LWP to collect. If the whole process is
435 * exiting, count detached LWPs as eligible to be collected,
436 * but don't drain them here.
437 */
438 nfound = 0;
439 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
440 if (l2 == l || (lid != 0 && l2->l_lid != lid))
441 continue;
442 if ((l2->l_prflag & LPR_DETACHED) != 0) {
443 nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
444 continue;
445 }
446 nfound++;
447
448 /* No need to lock the LWP in order to see LSZOMB. */
449 if (l2->l_stat != LSZOMB)
450 continue;
451
452 if (departed)
453 *departed = l2->l_lid;
454 lwp_free(l2, 0, 0);
455 mutex_enter(&p->p_smutex);
456 p->p_nlwpwait--;
457 return 0;
458 }
459
460 if (nfound == 0) {
461 error = ESRCH;
462 break;
463 }
464 if ((flags & LWPWAIT_EXITCONTROL) != 0) {
465 KASSERT(p->p_nlwps > 1);
466 cv_wait(&p->p_lwpcv, &p->p_smutex);
467 continue;
468 }
469 if ((p->p_sflag & PS_WEXIT) != 0 ||
470 p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
471 error = EDEADLK;
472 break;
473 }
474 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
475 break;
476 }
477
478 p->p_nlwpwait--;
479 return error;
480 }
481
482 /*
483 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
484 * The new LWP is created in state LSIDL and must be set running,
485 * suspended, or stopped by the caller.
486 */
487 int
488 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
489 int flags, void *stack, size_t stacksize,
490 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
491 {
492 struct lwp *l2, *isfree;
493 turnstile_t *ts;
494
495 /*
496 * First off, reap any detached LWP waiting to be collected.
497 * We can re-use its LWP structure and turnstile.
498 */
499 isfree = NULL;
500 if (p2->p_zomblwp != NULL) {
501 mutex_enter(&p2->p_smutex);
502 if ((isfree = p2->p_zomblwp) != NULL) {
503 p2->p_zomblwp = NULL;
504 lwp_free(isfree, 1, 0); /* releases proc mutex */
505 } else
506 mutex_exit(&p2->p_smutex);
507 }
508 if (isfree == NULL) {
509 l2 = pool_get(&lwp_pool, PR_WAITOK);
510 memset(l2, 0, sizeof(*l2));
511 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
512 SLIST_INIT(&l2->l_pi_lenders);
513 } else {
514 l2 = isfree;
515 ts = l2->l_ts;
516 KASSERT(l2->l_inheritedprio == MAXPRI);
517 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
518 memset(l2, 0, sizeof(*l2));
519 l2->l_ts = ts;
520 }
521
522 l2->l_stat = LSIDL;
523 l2->l_proc = p2;
524 l2->l_refcnt = 1;
525 l2->l_priority = l1->l_priority;
526 l2->l_usrpri = l1->l_usrpri;
527 l2->l_inheritedprio = MAXPRI;
528 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
529 l2->l_cpu = l1->l_cpu;
530 l2->l_flag = inmem ? LW_INMEM : 0;
531 lwp_initspecific(l2);
532 sched_lwp_fork(l2);
533
534 if (p2->p_flag & PK_SYSTEM) {
535 /*
536 * Mark it as a system process and not a candidate for
537 * swapping.
538 */
539 l2->l_flag |= LW_SYSTEM;
540 }
541
542 lwp_update_creds(l2);
543 callout_init(&l2->l_tsleep_ch);
544 cv_init(&l2->l_sigcv, "sigwait");
545 l2->l_syncobj = &sched_syncobj;
546
547 if (rnewlwpp != NULL)
548 *rnewlwpp = l2;
549
550 l2->l_addr = UAREA_TO_USER(uaddr);
551 uvm_lwp_fork(l1, l2, stack, stacksize, func,
552 (arg != NULL) ? arg : l2);
553
554 mutex_enter(&p2->p_smutex);
555
556 if ((flags & LWP_DETACHED) != 0) {
557 l2->l_prflag = LPR_DETACHED;
558 p2->p_ndlwps++;
559 } else
560 l2->l_prflag = 0;
561
562 l2->l_sigmask = l1->l_sigmask;
563 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
564 sigemptyset(&l2->l_sigpend.sp_set);
565
566 p2->p_nlwpid++;
567 if (p2->p_nlwpid == 0)
568 p2->p_nlwpid++;
569 l2->l_lid = p2->p_nlwpid;
570 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
571 p2->p_nlwps++;
572
573 mutex_exit(&p2->p_smutex);
574
575 mutex_enter(&proclist_mutex);
576 LIST_INSERT_HEAD(&alllwp, l2, l_list);
577 mutex_exit(&proclist_mutex);
578
579 SYSCALL_TIME_LWP_INIT(l2);
580
581 if (p2->p_emul->e_lwp_fork)
582 (*p2->p_emul->e_lwp_fork)(l1, l2);
583
584 return (0);
585 }
586
587 /*
588 * Quit the process.
589 * this can only be used meaningfully if you're willing to switch away.
590 * Calling with l != curlwp would be weird.
591 */
592 void
593 lwp_exit(struct lwp *l)
594 {
595 struct proc *p = l->l_proc;
596 struct lwp *l2;
597
598 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
599 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
600
601 /*
602 * Verify that we hold no locks other than the kernel lock.
603 */
604 #ifdef MULTIPROCESSOR
605 LOCKDEBUG_BARRIER(&kernel_lock, 0);
606 #else
607 LOCKDEBUG_BARRIER(NULL, 0);
608 #endif
609
610 /*
611 * If we are the last live LWP in a process, we need to exit the
612 * entire process. We do so with an exit status of zero, because
613 * it's a "controlled" exit, and because that's what Solaris does.
614 *
615 * We are not quite a zombie yet, but for accounting purposes we
616 * must increment the count of zombies here.
617 *
618 * Note: the last LWP's specificdata will be deleted here.
619 */
620 mutex_enter(&p->p_smutex);
621 if (p->p_nlwps - p->p_nzlwps == 1) {
622 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
623 p->p_pid, l->l_lid));
624 exit1(l, 0);
625 /* NOTREACHED */
626 }
627 p->p_nzlwps++;
628 mutex_exit(&p->p_smutex);
629
630 if (p->p_emul->e_lwp_exit)
631 (*p->p_emul->e_lwp_exit)(l);
632
633 /* Delete the specificdata while it's still safe to sleep. */
634 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
635
636 /*
637 * Release our cached credentials.
638 */
639 kauth_cred_free(l->l_cred);
640
641 /*
642 * Remove the LWP from the global list.
643 */
644 mutex_enter(&proclist_mutex);
645 LIST_REMOVE(l, l_list);
646 mutex_exit(&proclist_mutex);
647
648 /*
649 * Get rid of all references to the LWP that others (e.g. procfs)
650 * may have, and mark the LWP as a zombie. If the LWP is detached,
651 * mark it waiting for collection in the proc structure. Note that
652 * before we can do that, we need to free any other dead, deatched
653 * LWP waiting to meet its maker.
654 *
655 * XXXSMP disable preemption.
656 */
657 mutex_enter(&p->p_smutex);
658 lwp_drainrefs(l);
659
660 if ((l->l_prflag & LPR_DETACHED) != 0) {
661 while ((l2 = p->p_zomblwp) != NULL) {
662 p->p_zomblwp = NULL;
663 lwp_free(l2, 0, 0); /* releases proc mutex */
664 mutex_enter(&p->p_smutex);
665 }
666 p->p_zomblwp = l;
667 }
668
669 /*
670 * If we find a pending signal for the process and we have been
671 * asked to check for signals, then we loose: arrange to have
672 * all other LWPs in the process check for signals.
673 */
674 if ((l->l_flag & LW_PENDSIG) != 0 &&
675 firstsig(&p->p_sigpend.sp_set) != 0) {
676 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
677 lwp_lock(l2);
678 l2->l_flag |= LW_PENDSIG;
679 lwp_unlock(l2);
680 }
681 }
682
683 lwp_lock(l);
684 l->l_stat = LSZOMB;
685 lwp_unlock(l);
686 p->p_nrlwps--;
687 cv_broadcast(&p->p_lwpcv);
688 mutex_exit(&p->p_smutex);
689
690 /*
691 * We can no longer block. At this point, lwp_free() may already
692 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
693 *
694 * Free MD LWP resources.
695 */
696 #ifndef __NO_CPU_LWP_FREE
697 cpu_lwp_free(l, 0);
698 #endif
699 pmap_deactivate(l);
700
701 /*
702 * Release the kernel lock, signal another LWP to collect us,
703 * and switch away into oblivion.
704 */
705 #ifdef notyet
706 /* XXXSMP hold in lwp_userret() */
707 KERNEL_UNLOCK_LAST(l);
708 #else
709 KERNEL_UNLOCK_ALL(l, NULL);
710 #endif
711
712 lwp_exit_switchaway(l);
713 }
714
715 void
716 lwp_exit_switchaway(struct lwp *l)
717 {
718 struct cpu_info *ci;
719 struct lwp *idlelwp;
720
721 uvmexp.swtch++; /* XXXSMP unlocked */
722
723 ci = curcpu();
724 idlelwp = ci->ci_data.cpu_idlelwp;
725
726 idlelwp->l_stat = LSONPROC;
727 cpu_switchto(NULL, idlelwp);
728 }
729
730 /*
731 * Free a dead LWP's remaining resources.
732 *
733 * XXXLWP limits.
734 */
735 void
736 lwp_free(struct lwp *l, int recycle, int last)
737 {
738 struct proc *p = l->l_proc;
739 ksiginfoq_t kq;
740
741 /*
742 * If this was not the last LWP in the process, then adjust
743 * counters and unlock.
744 */
745 if (!last) {
746 /*
747 * Add the LWP's run time to the process' base value.
748 * This needs to co-incide with coming off p_lwps.
749 */
750 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
751 LIST_REMOVE(l, l_sibling);
752 p->p_nlwps--;
753 p->p_nzlwps--;
754 if ((l->l_prflag & LPR_DETACHED) != 0)
755 p->p_ndlwps--;
756 mutex_exit(&p->p_smutex);
757
758 #ifdef MULTIPROCESSOR
759 /*
760 * In the unlikely event that the LWP is still on the CPU,
761 * then spin until it has switched away. We need to release
762 * all locks to avoid deadlock against interrupt handlers on
763 * the target CPU.
764 */
765 if (l->l_cpu->ci_curlwp == l) {
766 int count;
767 KERNEL_UNLOCK_ALL(curlwp, &count);
768 while (l->l_cpu->ci_curlwp == l)
769 SPINLOCK_BACKOFF_HOOK;
770 KERNEL_LOCK(count, curlwp);
771 }
772 #endif
773 }
774
775 /*
776 * Destroy the LWP's remaining signal information.
777 */
778 ksiginfo_queue_init(&kq);
779 sigclear(&l->l_sigpend, NULL, &kq);
780 ksiginfo_queue_drain(&kq);
781 cv_destroy(&l->l_sigcv);
782
783 /*
784 * Free the LWP's turnstile and the LWP structure itself unless the
785 * caller wants to recycle them. Also, free the scheduler specific data.
786 *
787 * We can't return turnstile0 to the pool (it didn't come from it),
788 * so if it comes up just drop it quietly and move on.
789 *
790 * We don't recycle the VM resources at this time.
791 */
792 KERNEL_LOCK(1, curlwp); /* XXXSMP */
793
794 sched_lwp_exit(l);
795
796 if (!recycle && l->l_ts != &turnstile0)
797 pool_cache_put(&turnstile_cache, l->l_ts);
798 #ifndef __NO_CPU_LWP_FREE
799 cpu_lwp_free2(l);
800 #endif
801 uvm_lwp_exit(l);
802 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
803 KASSERT(l->l_inheritedprio == MAXPRI);
804 if (!recycle)
805 pool_put(&lwp_pool, l);
806 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
807 }
808
809 /*
810 * Pick a LWP to represent the process for those operations which
811 * want information about a "process" that is actually associated
812 * with a LWP.
813 *
814 * If 'locking' is false, no locking or lock checks are performed.
815 * This is intended for use by DDB.
816 *
817 * We don't bother locking the LWP here, since code that uses this
818 * interface is broken by design and an exact match is not required.
819 */
820 struct lwp *
821 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
822 {
823 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
824 struct lwp *signalled;
825 int cnt;
826
827 if (locking) {
828 LOCK_ASSERT(mutex_owned(&p->p_smutex));
829 }
830
831 /* Trivial case: only one LWP */
832 if (p->p_nlwps == 1) {
833 l = LIST_FIRST(&p->p_lwps);
834 if (nrlwps)
835 *nrlwps = (l->l_stat == LSONPROC || LSRUN);
836 return l;
837 }
838
839 cnt = 0;
840 switch (p->p_stat) {
841 case SSTOP:
842 case SACTIVE:
843 /* Pick the most live LWP */
844 onproc = running = sleeping = stopped = suspended = NULL;
845 signalled = NULL;
846 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
847 if ((l->l_flag & LW_IDLE) != 0) {
848 continue;
849 }
850 if (l->l_lid == p->p_sigctx.ps_lwp)
851 signalled = l;
852 switch (l->l_stat) {
853 case LSONPROC:
854 onproc = l;
855 cnt++;
856 break;
857 case LSRUN:
858 running = l;
859 cnt++;
860 break;
861 case LSSLEEP:
862 sleeping = l;
863 break;
864 case LSSTOP:
865 stopped = l;
866 break;
867 case LSSUSPENDED:
868 suspended = l;
869 break;
870 }
871 }
872 if (nrlwps)
873 *nrlwps = cnt;
874 if (signalled)
875 l = signalled;
876 else if (onproc)
877 l = onproc;
878 else if (running)
879 l = running;
880 else if (sleeping)
881 l = sleeping;
882 else if (stopped)
883 l = stopped;
884 else if (suspended)
885 l = suspended;
886 else
887 break;
888 return l;
889 if (nrlwps)
890 *nrlwps = 0;
891 l = LIST_FIRST(&p->p_lwps);
892 return l;
893 #ifdef DIAGNOSTIC
894 case SIDL:
895 case SZOMB:
896 case SDYING:
897 case SDEAD:
898 if (locking)
899 mutex_exit(&p->p_smutex);
900 /* We have more than one LWP and we're in SIDL?
901 * How'd that happen?
902 */
903 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
904 p->p_pid, p->p_comm, p->p_stat);
905 break;
906 default:
907 if (locking)
908 mutex_exit(&p->p_smutex);
909 panic("Process %d (%s) in unknown state %d",
910 p->p_pid, p->p_comm, p->p_stat);
911 #endif
912 }
913
914 if (locking)
915 mutex_exit(&p->p_smutex);
916 panic("proc_representative_lwp: couldn't find a lwp for process"
917 " %d (%s)", p->p_pid, p->p_comm);
918 /* NOTREACHED */
919 return NULL;
920 }
921
922 /*
923 * Look up a live LWP within the speicifed process, and return it locked.
924 *
925 * Must be called with p->p_smutex held.
926 */
927 struct lwp *
928 lwp_find(struct proc *p, int id)
929 {
930 struct lwp *l;
931
932 LOCK_ASSERT(mutex_owned(&p->p_smutex));
933
934 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
935 if (l->l_lid == id)
936 break;
937 }
938
939 /*
940 * No need to lock - all of these conditions will
941 * be visible with the process level mutex held.
942 */
943 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
944 l = NULL;
945
946 return l;
947 }
948
949 /*
950 * Update an LWP's cached credentials to mirror the process' master copy.
951 *
952 * This happens early in the syscall path, on user trap, and on LWP
953 * creation. A long-running LWP can also voluntarily choose to update
954 * it's credentials by calling this routine. This may be called from
955 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
956 */
957 void
958 lwp_update_creds(struct lwp *l)
959 {
960 kauth_cred_t oc;
961 struct proc *p;
962
963 p = l->l_proc;
964 oc = l->l_cred;
965
966 mutex_enter(&p->p_mutex);
967 kauth_cred_hold(p->p_cred);
968 l->l_cred = p->p_cred;
969 mutex_exit(&p->p_mutex);
970 if (oc != NULL) {
971 KERNEL_LOCK(1, l); /* XXXSMP */
972 kauth_cred_free(oc);
973 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
974 }
975 }
976
977 /*
978 * Verify that an LWP is locked, and optionally verify that the lock matches
979 * one we specify.
980 */
981 int
982 lwp_locked(struct lwp *l, kmutex_t *mtx)
983 {
984 kmutex_t *cur = l->l_mutex;
985
986 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
987 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
988 #else
989 return mutex_owned(cur);
990 #endif
991 }
992
993 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
994 /*
995 * Lock an LWP.
996 */
997 void
998 lwp_lock_retry(struct lwp *l, kmutex_t *old)
999 {
1000
1001 /*
1002 * XXXgcc ignoring kmutex_t * volatile on i386
1003 *
1004 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1005 */
1006 #if 1
1007 while (l->l_mutex != old) {
1008 #else
1009 for (;;) {
1010 #endif
1011 mutex_spin_exit(old);
1012 old = l->l_mutex;
1013 mutex_spin_enter(old);
1014
1015 /*
1016 * mutex_enter() will have posted a read barrier. Re-test
1017 * l->l_mutex. If it has changed, we need to try again.
1018 */
1019 #if 1
1020 }
1021 #else
1022 } while (__predict_false(l->l_mutex != old));
1023 #endif
1024 }
1025 #endif
1026
1027 /*
1028 * Lend a new mutex to an LWP. The old mutex must be held.
1029 */
1030 void
1031 lwp_setlock(struct lwp *l, kmutex_t *new)
1032 {
1033
1034 LOCK_ASSERT(mutex_owned(l->l_mutex));
1035
1036 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1037 mb_write();
1038 l->l_mutex = new;
1039 #else
1040 (void)new;
1041 #endif
1042 }
1043
1044 /*
1045 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1046 * must be held.
1047 */
1048 void
1049 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1050 {
1051 kmutex_t *old;
1052
1053 LOCK_ASSERT(mutex_owned(l->l_mutex));
1054
1055 old = l->l_mutex;
1056 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1057 mb_write();
1058 l->l_mutex = new;
1059 #else
1060 (void)new;
1061 #endif
1062 mutex_spin_exit(old);
1063 }
1064
1065 /*
1066 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1067 * locked.
1068 */
1069 void
1070 lwp_relock(struct lwp *l, kmutex_t *new)
1071 {
1072 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1073 kmutex_t *old;
1074 #endif
1075
1076 LOCK_ASSERT(mutex_owned(l->l_mutex));
1077
1078 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1079 old = l->l_mutex;
1080 if (old != new) {
1081 mutex_spin_enter(new);
1082 l->l_mutex = new;
1083 mutex_spin_exit(old);
1084 }
1085 #else
1086 (void)new;
1087 #endif
1088 }
1089
1090 int
1091 lwp_trylock(struct lwp *l)
1092 {
1093 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1094 kmutex_t *old;
1095
1096 for (;;) {
1097 if (!mutex_tryenter(old = l->l_mutex))
1098 return 0;
1099 if (__predict_true(l->l_mutex == old))
1100 return 1;
1101 mutex_spin_exit(old);
1102 }
1103 #else
1104 return mutex_tryenter(l->l_mutex);
1105 #endif
1106 }
1107
1108 /*
1109 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1110 * set.
1111 */
1112 void
1113 lwp_userret(struct lwp *l)
1114 {
1115 struct proc *p;
1116 void (*hook)(void);
1117 int sig;
1118
1119 p = l->l_proc;
1120
1121 /*
1122 * It should be safe to do this read unlocked on a multiprocessor
1123 * system..
1124 */
1125 while ((l->l_flag & LW_USERRET) != 0) {
1126 /*
1127 * Process pending signals first, unless the process
1128 * is dumping core or exiting, where we will instead
1129 * enter the L_WSUSPEND case below.
1130 */
1131 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1132 LW_PENDSIG) {
1133 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1134 mutex_enter(&p->p_smutex);
1135 while ((sig = issignal(l)) != 0)
1136 postsig(sig);
1137 mutex_exit(&p->p_smutex);
1138 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1139 }
1140
1141 /*
1142 * Core-dump or suspend pending.
1143 *
1144 * In case of core dump, suspend ourselves, so that the
1145 * kernel stack and therefore the userland registers saved
1146 * in the trapframe are around for coredump() to write them
1147 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1148 * will write the core file out once all other LWPs are
1149 * suspended.
1150 */
1151 if ((l->l_flag & LW_WSUSPEND) != 0) {
1152 mutex_enter(&p->p_smutex);
1153 p->p_nrlwps--;
1154 cv_broadcast(&p->p_lwpcv);
1155 lwp_lock(l);
1156 l->l_stat = LSSUSPENDED;
1157 mutex_exit(&p->p_smutex);
1158 mi_switch(l);
1159 }
1160
1161 /* Process is exiting. */
1162 if ((l->l_flag & LW_WEXIT) != 0) {
1163 KERNEL_LOCK(1, l);
1164 lwp_exit(l);
1165 KASSERT(0);
1166 /* NOTREACHED */
1167 }
1168
1169 /* Call userret hook; used by Linux emulation. */
1170 if ((l->l_flag & LW_WUSERRET) != 0) {
1171 lwp_lock(l);
1172 l->l_flag &= ~LW_WUSERRET;
1173 lwp_unlock(l);
1174 hook = p->p_userret;
1175 p->p_userret = NULL;
1176 (*hook)();
1177 }
1178 }
1179 }
1180
1181 /*
1182 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1183 */
1184 void
1185 lwp_need_userret(struct lwp *l)
1186 {
1187 LOCK_ASSERT(lwp_locked(l, NULL));
1188
1189 /*
1190 * Since the tests in lwp_userret() are done unlocked, make sure
1191 * that the condition will be seen before forcing the LWP to enter
1192 * kernel mode.
1193 */
1194 mb_write();
1195 cpu_signotify(l);
1196 }
1197
1198 /*
1199 * Add one reference to an LWP. This will prevent the LWP from
1200 * exiting, thus keep the lwp structure and PCB around to inspect.
1201 */
1202 void
1203 lwp_addref(struct lwp *l)
1204 {
1205
1206 LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
1207 KASSERT(l->l_stat != LSZOMB);
1208 KASSERT(l->l_refcnt != 0);
1209
1210 l->l_refcnt++;
1211 }
1212
1213 /*
1214 * Remove one reference to an LWP. If this is the last reference,
1215 * then we must finalize the LWP's death.
1216 */
1217 void
1218 lwp_delref(struct lwp *l)
1219 {
1220 struct proc *p = l->l_proc;
1221
1222 mutex_enter(&p->p_smutex);
1223 if (--l->l_refcnt == 0)
1224 cv_broadcast(&p->p_refcv);
1225 mutex_exit(&p->p_smutex);
1226 }
1227
1228 /*
1229 * Drain all references to the current LWP.
1230 */
1231 void
1232 lwp_drainrefs(struct lwp *l)
1233 {
1234 struct proc *p = l->l_proc;
1235
1236 LOCK_ASSERT(mutex_owned(&p->p_smutex));
1237 KASSERT(l->l_refcnt != 0);
1238
1239 l->l_refcnt--;
1240 while (l->l_refcnt != 0)
1241 cv_wait(&p->p_refcv, &p->p_smutex);
1242 }
1243
1244 /*
1245 * lwp_specific_key_create --
1246 * Create a key for subsystem lwp-specific data.
1247 */
1248 int
1249 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1250 {
1251
1252 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1253 }
1254
1255 /*
1256 * lwp_specific_key_delete --
1257 * Delete a key for subsystem lwp-specific data.
1258 */
1259 void
1260 lwp_specific_key_delete(specificdata_key_t key)
1261 {
1262
1263 specificdata_key_delete(lwp_specificdata_domain, key);
1264 }
1265
1266 /*
1267 * lwp_initspecific --
1268 * Initialize an LWP's specificdata container.
1269 */
1270 void
1271 lwp_initspecific(struct lwp *l)
1272 {
1273 int error;
1274
1275 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1276 KASSERT(error == 0);
1277 }
1278
1279 /*
1280 * lwp_finispecific --
1281 * Finalize an LWP's specificdata container.
1282 */
1283 void
1284 lwp_finispecific(struct lwp *l)
1285 {
1286
1287 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1288 }
1289
1290 /*
1291 * lwp_getspecific --
1292 * Return lwp-specific data corresponding to the specified key.
1293 *
1294 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1295 * only its OWN SPECIFIC DATA. If it is necessary to access another
1296 * LWP's specifc data, care must be taken to ensure that doing so
1297 * would not cause internal data structure inconsistency (i.e. caller
1298 * can guarantee that the target LWP is not inside an lwp_getspecific()
1299 * or lwp_setspecific() call).
1300 */
1301 void *
1302 lwp_getspecific(specificdata_key_t key)
1303 {
1304
1305 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1306 &curlwp->l_specdataref, key));
1307 }
1308
1309 void *
1310 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1311 {
1312
1313 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1314 &l->l_specdataref, key));
1315 }
1316
1317 /*
1318 * lwp_setspecific --
1319 * Set lwp-specific data corresponding to the specified key.
1320 */
1321 void
1322 lwp_setspecific(specificdata_key_t key, void *data)
1323 {
1324
1325 specificdata_setspecific(lwp_specificdata_domain,
1326 &curlwp->l_specdataref, key, data);
1327 }
1328