Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.55.2.8
      1 /*	$NetBSD: kern_lwp.c,v 1.55.2.8 2007/03/24 00:43:06 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit (or thread) of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp".
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing in kernel simultaneously.
     52  *
     53  *	Note that LWPs differ from kernel threads (kthreads) in that kernel
     54  *	threads are distinct processes (system processes) with no user space
     55  *	component, which themselves may contain one or more LWPs.
     56  *
     57  * Execution states
     58  *
     59  *	At any given time, an LWP has overall state that is described by
     60  *	lwp::l_stat.  The states are broken into two sets below.  The first
     61  *	set is guaranteed to represent the absolute, current state of the
     62  *	LWP:
     63  *
     64  * 	LSONPROC
     65  *
     66  * 		On processor: the LWP is executing on a CPU, either in the
     67  * 		kernel or in user space.
     68  *
     69  * 	LSRUN
     70  *
     71  * 		Runnable: the LWP is parked on a run queue, and may soon be
     72  * 		chosen to run by a idle processor, or by a processor that
     73  * 		has been asked to preempt a currently runnning but lower
     74  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     75  *		then the LWP is not on a run queue, but may be soon.
     76  *
     77  * 	LSIDL
     78  *
     79  * 		Idle: the LWP has been created but has not yet executed.
     80  * 		Whoever created the new LWP can be expected to set it to
     81  * 		another state shortly.
     82  *
     83  * 	LSSUSPENDED:
     84  *
     85  * 		Suspended: the LWP has had its execution suspended by
     86  *		another LWP in the same process using the _lwp_suspend()
     87  *		system call.  User-level LWPs also enter the suspended
     88  *		state when the system is shutting down.
     89  *
     90  *	The second set represent a "statement of intent" on behalf of the
     91  *	LWP.  The LWP may in fact be executing on a processor, may be
     92  *	sleeping, idle, or on a run queue. It is expected to take the
     93  *	necessary action to stop executing or become "running" again within
     94  *	a short timeframe.
     95  *
     96  * 	LSZOMB:
     97  *
     98  * 		Dead: the LWP has released most of its resources and is
     99  * 		about to switch away into oblivion.  When it switches away,
    100  * 		its few remaining resources will be collected.
    101  *
    102  * 	LSSLEEP:
    103  *
    104  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    105  * 		will switch away shortly to allow other LWPs to run on the
    106  * 		CPU.
    107  *
    108  * 	LSSTOP:
    109  *
    110  * 		Stopped: the LWP has been stopped as a result of a job
    111  * 		control signal, or as a result of the ptrace() interface.
    112  * 		Stopped LWPs may run briefly within the kernel to handle
    113  * 		signals that they receive, but will not return to user space
    114  * 		until their process' state is changed away from stopped.
    115  * 		Single LWPs within a process can not be set stopped
    116  * 		selectively: all actions that can stop or continue LWPs
    117  * 		occur at the process level.
    118  *
    119  * State transitions
    120  *
    121  *	Note that the LSSTOP and LSSUSPENDED states may only be set
    122  *	when returning to user space in userret(), or when sleeping
    123  *	interruptably.  Before setting those states, we try to ensure
    124  *	that the LWPs will release all kernel locks that they hold,
    125  *	and at a minimum try to ensure that the LWP can be set runnable
    126  *	again by a signal.
    127  *
    128  *	LWPs may transition states in the following ways:
    129  *
    130  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131  *	            > STOPPED			    > SLEEP
    132  *	            > SUSPENDED			    > STOPPED
    133  *						    > SUSPENDED
    134  *						    > ZOMB
    135  *
    136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  *	            > SLEEP			    > SLEEP
    138  *
    139  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  *		    > RUN		            > SUSPENDED
    141  *		    > STOPPED                       > STOPPED
    142  *		    > SUSPENDED
    143  *
    144  * Locking
    145  *
    146  *	The majority of fields in 'struct lwp' are covered by a single,
    147  *	general spin mutex pointed to by lwp::l_mutex.  The locks covering
    148  *	each field are documented in sys/lwp.h.
    149  *
    150  *	State transitions must be made with the LWP's general lock held.  In
    151  *	a multiprocessor kernel, state transitions may cause the LWP's lock
    152  *	pointer to change.  On uniprocessor kernels, most scheduler and
    153  *	synchronisation objects such as sleep queues and LWPs are protected
    154  *	by only one mutex (spc_mutex on single CPU).  In this case, LWPs' lock
    155  *	pointers will never change and will always reference spc_mutex.
    156  *	Please note that in a multiprocessor kernel each CPU has own spc_mutex.
    157  *
    158  *	Where spc_mutex is noted, it refers to l->l_cpu->ci_schedstate.spc_mutex
    159 
    160  *
    161  *	Manipulation of the general lock is not performed directly, but
    162  *	through calls to lwp_lock(), lwp_relock() and similar.
    163  *
    164  *	States and their associated locks:
    165  *
    166  *	LSIDL, LSZOMB
    167  *
    168  *		Always covered by spc_mutex.
    169  *
    170  *	LSONPROC, LSRUN:
    171  *
    172  *		Always covered by spc_mutex, which protects the run queues
    173  *		and other miscellaneous items.  If the scheduler is changed
    174  *		to use per-CPU run queues, this may become a per-CPU mutex.
    175  *
    176  *	LSSLEEP:
    177  *
    178  *		Covered by a mutex associated with the sleep queue that the
    179  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    180  *
    181  *	LSSTOP, LSSUSPENDED:
    182  *
    183  *		If the LWP was previously sleeping (l_wchan != NULL), then
    184  *		l_mutex references the sleep queue mutex.  If the LWP was
    185  *		runnable or on the CPU when halted, or has been removed from
    186  *		the sleep queue since halted, then the mutex is spc_mutex.
    187  *
    188  *	The lock order is as follows:
    189  *
    190  *		sleepq_t::sq_mutex  |---> spc_mutex
    191  *		tschain_t::tc_mutex |
    192  *
    193  *	Each process has an scheduler state mutex (proc::p_smutex), and a
    194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    195  *	so on.  When an LWP is to be entered into or removed from one of the
    196  *	following states, p_mutex must be held and the process wide counters
    197  *	adjusted:
    198  *
    199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    200  *
    201  *	Note that an LWP is considered running or likely to run soon if in
    202  *	one of the following states.  This affects the value of p_nrlwps:
    203  *
    204  *		LSRUN, LSONPROC, LSSLEEP
    205  *
    206  *	p_smutex does not need to be held when transitioning among these
    207  *	three states.
    208  */
    209 
    210 #include <sys/cdefs.h>
    211 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.55.2.8 2007/03/24 00:43:06 rmind Exp $");
    212 
    213 #include "opt_multiprocessor.h"
    214 #include "opt_lockdebug.h"
    215 
    216 #define _LWP_API_PRIVATE
    217 
    218 #include <sys/param.h>
    219 #include <sys/systm.h>
    220 #include <sys/cpu.h>
    221 #include <sys/pool.h>
    222 #include <sys/proc.h>
    223 #include <sys/syscallargs.h>
    224 #include <sys/syscall_stats.h>
    225 #include <sys/kauth.h>
    226 #include <sys/sleepq.h>
    227 #include <sys/lockdebug.h>
    228 #include <sys/kmem.h>
    229 
    230 #include <uvm/uvm_extern.h>
    231 
    232 struct lwplist	alllwp;
    233 
    234 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    235     &pool_allocator_nointr);
    236 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    237     &pool_allocator_nointr);
    238 
    239 static specificdata_domain_t lwp_specificdata_domain;
    240 
    241 #define LWP_DEBUG
    242 
    243 #ifdef LWP_DEBUG
    244 int lwp_debug = 0;
    245 #define DPRINTF(x) if (lwp_debug) printf x
    246 #else
    247 #define DPRINTF(x)
    248 #endif
    249 
    250 void
    251 lwpinit(void)
    252 {
    253 
    254 	lwp_specificdata_domain = specificdata_domain_create();
    255 	KASSERT(lwp_specificdata_domain != NULL);
    256 	lwp_sys_init();
    257 }
    258 
    259 /*
    260  * Set an suspended.
    261  *
    262  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    263  * LWP before return.
    264  */
    265 int
    266 lwp_suspend(struct lwp *curl, struct lwp *t)
    267 {
    268 	int error;
    269 
    270 	LOCK_ASSERT(mutex_owned(&t->l_proc->p_smutex));
    271 	LOCK_ASSERT(lwp_locked(t, NULL));
    272 
    273 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    274 
    275 	/*
    276 	 * If the current LWP has been told to exit, we must not suspend anyone
    277 	 * else or deadlock could occur.  We won't return to userspace.
    278 	 */
    279 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    280 		lwp_unlock(t);
    281 		return (EDEADLK);
    282 	}
    283 
    284 	error = 0;
    285 
    286 	switch (t->l_stat) {
    287 	case LSRUN:
    288 	case LSONPROC:
    289 		t->l_flag |= LW_WSUSPEND;
    290 		lwp_need_userret(t);
    291 		lwp_unlock(t);
    292 		break;
    293 
    294 	case LSSLEEP:
    295 		t->l_flag |= LW_WSUSPEND;
    296 
    297 		/*
    298 		 * Kick the LWP and try to get it to the kernel boundary
    299 		 * so that it will release any locks that it holds.
    300 		 * setrunnable() will release the lock.
    301 		 */
    302 		if ((t->l_flag & LW_SINTR) != 0)
    303 			setrunnable(t);
    304 		else
    305 			lwp_unlock(t);
    306 		break;
    307 
    308 	case LSSUSPENDED:
    309 		lwp_unlock(t);
    310 		break;
    311 
    312 	case LSSTOP:
    313 		t->l_flag |= LW_WSUSPEND;
    314 		setrunnable(t);
    315 		break;
    316 
    317 	case LSIDL:
    318 	case LSZOMB:
    319 		error = EINTR; /* It's what Solaris does..... */
    320 		lwp_unlock(t);
    321 		break;
    322 	}
    323 
    324 	/*
    325 	 * XXXLWP Wait for:
    326 	 *
    327 	 * o process exiting
    328 	 * o target LWP suspended
    329 	 * o target LWP not suspended and L_WSUSPEND clear
    330 	 * o target LWP exited
    331 	 */
    332 
    333 	 return (error);
    334 }
    335 
    336 /*
    337  * Restart a suspended LWP.
    338  *
    339  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    340  * LWP before return.
    341  */
    342 void
    343 lwp_continue(struct lwp *l)
    344 {
    345 
    346 	LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
    347 	LOCK_ASSERT(lwp_locked(l, NULL));
    348 
    349 	DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
    350 	    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
    351 	    l->l_wchan));
    352 
    353 	/* If rebooting or not suspended, then just bail out. */
    354 	if ((l->l_flag & LW_WREBOOT) != 0) {
    355 		lwp_unlock(l);
    356 		return;
    357 	}
    358 
    359 	l->l_flag &= ~LW_WSUSPEND;
    360 
    361 	if (l->l_stat != LSSUSPENDED) {
    362 		lwp_unlock(l);
    363 		return;
    364 	}
    365 
    366 	/* setrunnable() will release the lock. */
    367 	setrunnable(l);
    368 }
    369 
    370 /*
    371  * Wait for an LWP within the current process to exit.  If 'lid' is
    372  * non-zero, we are waiting for a specific LWP.
    373  *
    374  * Must be called with p->p_smutex held.
    375  */
    376 int
    377 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    378 {
    379 	struct proc *p = l->l_proc;
    380 	struct lwp *l2;
    381 	int nfound, error;
    382 
    383 	DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
    384 	    p->p_pid, l->l_lid, lid));
    385 
    386 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    387 
    388 	/*
    389 	 * We try to check for deadlock:
    390 	 *
    391 	 * 1) If all other LWPs are waiting for exits or suspended.
    392 	 * 2) If we are trying to wait on ourself.
    393 	 *
    394 	 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
    395 	 * waits, not any-LWP waits) and detect that sort of deadlock, but
    396 	 * we don't have a good place to store the lwp that is being waited
    397 	 * for. wchan is already filled with &p->p_nlwps, and putting the
    398 	 * lwp address in there for deadlock tracing would require exiting
    399 	 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
    400 	 * get threads sleeping on any LWP exiting.
    401 	 */
    402 	if (lid == l->l_lid)
    403 		return EDEADLK;
    404 
    405 	p->p_nlwpwait++;
    406 
    407 	for (;;) {
    408 		/*
    409 		 * Avoid a race between exit1() and sigexit(): if the
    410 		 * process is dumping core, then we need to bail out: call
    411 		 * into lwp_userret() where we will be suspended until the
    412 		 * deed is done.
    413 		 */
    414 		if ((p->p_sflag & PS_WCORE) != 0) {
    415 			mutex_exit(&p->p_smutex);
    416 			lwp_userret(l);
    417 #ifdef DIAGNOSTIC
    418 			panic("lwp_wait1");
    419 #endif
    420 			/* NOTREACHED */
    421 		}
    422 
    423 		/*
    424 		 * First off, drain any detached LWP that is waiting to be
    425 		 * reaped.
    426 		 */
    427 		while ((l2 = p->p_zomblwp) != NULL) {
    428 			p->p_zomblwp = NULL;
    429 			lwp_free(l2, 0, 0);	/* releases proc mutex */
    430 			mutex_enter(&p->p_smutex);
    431 		}
    432 
    433 		/*
    434 		 * Now look for an LWP to collect.  If the whole process is
    435 		 * exiting, count detached LWPs as eligible to be collected,
    436 		 * but don't drain them here.
    437 		 */
    438 		nfound = 0;
    439 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    440 			if (l2 == l || (lid != 0 && l2->l_lid != lid))
    441 				continue;
    442 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    443 				nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
    444 				continue;
    445 			}
    446 			nfound++;
    447 
    448 			/* No need to lock the LWP in order to see LSZOMB. */
    449 			if (l2->l_stat != LSZOMB)
    450 				continue;
    451 
    452 			if (departed)
    453 				*departed = l2->l_lid;
    454 			lwp_free(l2, 0, 0);
    455 			mutex_enter(&p->p_smutex);
    456 			p->p_nlwpwait--;
    457 			return 0;
    458 		}
    459 
    460 		if (nfound == 0) {
    461 			error = ESRCH;
    462 			break;
    463 		}
    464 		if ((flags & LWPWAIT_EXITCONTROL) != 0) {
    465 			KASSERT(p->p_nlwps > 1);
    466 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    467 			continue;
    468 		}
    469 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    470 		    p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
    471 			error = EDEADLK;
    472 			break;
    473 		}
    474 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    475 			break;
    476 	}
    477 
    478 	p->p_nlwpwait--;
    479 	return error;
    480 }
    481 
    482 /*
    483  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    484  * The new LWP is created in state LSIDL and must be set running,
    485  * suspended, or stopped by the caller.
    486  */
    487 int
    488 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
    489     int flags, void *stack, size_t stacksize,
    490     void (*func)(void *), void *arg, struct lwp **rnewlwpp)
    491 {
    492 	struct lwp *l2, *isfree;
    493 	turnstile_t *ts;
    494 
    495 	/*
    496 	 * First off, reap any detached LWP waiting to be collected.
    497 	 * We can re-use its LWP structure and turnstile.
    498 	 */
    499 	isfree = NULL;
    500 	if (p2->p_zomblwp != NULL) {
    501 		mutex_enter(&p2->p_smutex);
    502 		if ((isfree = p2->p_zomblwp) != NULL) {
    503 			p2->p_zomblwp = NULL;
    504 			lwp_free(isfree, 1, 0);	/* releases proc mutex */
    505 		} else
    506 			mutex_exit(&p2->p_smutex);
    507 	}
    508 	if (isfree == NULL) {
    509 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    510 		memset(l2, 0, sizeof(*l2));
    511 		l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
    512 		SLIST_INIT(&l2->l_pi_lenders);
    513 	} else {
    514 		l2 = isfree;
    515 		ts = l2->l_ts;
    516 		KASSERT(l2->l_inheritedprio == MAXPRI);
    517 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    518 		memset(l2, 0, sizeof(*l2));
    519 		l2->l_ts = ts;
    520 	}
    521 
    522 	l2->l_stat = LSIDL;
    523 	l2->l_proc = p2;
    524 	l2->l_refcnt = 1;
    525 	l2->l_priority = l1->l_priority;
    526 	l2->l_usrpri = l1->l_usrpri;
    527 	l2->l_inheritedprio = MAXPRI;
    528 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    529 	l2->l_cpu = l1->l_cpu;
    530 	l2->l_flag = inmem ? LW_INMEM : 0;
    531 	lwp_initspecific(l2);
    532 	sched_lwp_fork(l2);
    533 
    534 	if (p2->p_flag & PK_SYSTEM) {
    535 		/*
    536 		 * Mark it as a system process and not a candidate for
    537 		 * swapping.
    538 		 */
    539 		l2->l_flag |= LW_SYSTEM;
    540 	}
    541 
    542 	lwp_update_creds(l2);
    543 	callout_init(&l2->l_tsleep_ch);
    544 	cv_init(&l2->l_sigcv, "sigwait");
    545 	l2->l_syncobj = &sched_syncobj;
    546 
    547 	if (rnewlwpp != NULL)
    548 		*rnewlwpp = l2;
    549 
    550 	l2->l_addr = UAREA_TO_USER(uaddr);
    551 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    552 	    (arg != NULL) ? arg : l2);
    553 
    554 	mutex_enter(&p2->p_smutex);
    555 
    556 	if ((flags & LWP_DETACHED) != 0) {
    557 		l2->l_prflag = LPR_DETACHED;
    558 		p2->p_ndlwps++;
    559 	} else
    560 		l2->l_prflag = 0;
    561 
    562 	l2->l_sigmask = l1->l_sigmask;
    563 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    564 	sigemptyset(&l2->l_sigpend.sp_set);
    565 
    566 	p2->p_nlwpid++;
    567 	if (p2->p_nlwpid == 0)
    568 		p2->p_nlwpid++;
    569 	l2->l_lid = p2->p_nlwpid;
    570 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    571 	p2->p_nlwps++;
    572 
    573 	mutex_exit(&p2->p_smutex);
    574 
    575 	mutex_enter(&proclist_mutex);
    576 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    577 	mutex_exit(&proclist_mutex);
    578 
    579 	SYSCALL_TIME_LWP_INIT(l2);
    580 
    581 	if (p2->p_emul->e_lwp_fork)
    582 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    583 
    584 	return (0);
    585 }
    586 
    587 /*
    588  * Quit the process.
    589  * this can only be used meaningfully if you're willing to switch away.
    590  * Calling with l != curlwp would be weird.
    591  */
    592 void
    593 lwp_exit(struct lwp *l)
    594 {
    595 	struct proc *p = l->l_proc;
    596 	struct lwp *l2;
    597 
    598 	DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
    599 	DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
    600 
    601 	/*
    602 	 * Verify that we hold no locks other than the kernel lock.
    603 	 */
    604 #ifdef MULTIPROCESSOR
    605 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    606 #else
    607 	LOCKDEBUG_BARRIER(NULL, 0);
    608 #endif
    609 
    610 	/*
    611 	 * If we are the last live LWP in a process, we need to exit the
    612 	 * entire process.  We do so with an exit status of zero, because
    613 	 * it's a "controlled" exit, and because that's what Solaris does.
    614 	 *
    615 	 * We are not quite a zombie yet, but for accounting purposes we
    616 	 * must increment the count of zombies here.
    617 	 *
    618 	 * Note: the last LWP's specificdata will be deleted here.
    619 	 */
    620 	mutex_enter(&p->p_smutex);
    621 	if (p->p_nlwps - p->p_nzlwps == 1) {
    622 		DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
    623 		    p->p_pid, l->l_lid));
    624 		exit1(l, 0);
    625 		/* NOTREACHED */
    626 	}
    627 	p->p_nzlwps++;
    628 	mutex_exit(&p->p_smutex);
    629 
    630 	if (p->p_emul->e_lwp_exit)
    631 		(*p->p_emul->e_lwp_exit)(l);
    632 
    633 	/* Delete the specificdata while it's still safe to sleep. */
    634 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    635 
    636 	/*
    637 	 * Release our cached credentials.
    638 	 */
    639 	kauth_cred_free(l->l_cred);
    640 
    641 	/*
    642 	 * Remove the LWP from the global list.
    643 	 */
    644 	mutex_enter(&proclist_mutex);
    645 	LIST_REMOVE(l, l_list);
    646 	mutex_exit(&proclist_mutex);
    647 
    648 	/*
    649 	 * Get rid of all references to the LWP that others (e.g. procfs)
    650 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    651 	 * mark it waiting for collection in the proc structure.  Note that
    652 	 * before we can do that, we need to free any other dead, deatched
    653 	 * LWP waiting to meet its maker.
    654 	 *
    655 	 * XXXSMP disable preemption.
    656 	 */
    657 	mutex_enter(&p->p_smutex);
    658 	lwp_drainrefs(l);
    659 
    660 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    661 		while ((l2 = p->p_zomblwp) != NULL) {
    662 			p->p_zomblwp = NULL;
    663 			lwp_free(l2, 0, 0);	/* releases proc mutex */
    664 			mutex_enter(&p->p_smutex);
    665 		}
    666 		p->p_zomblwp = l;
    667 	}
    668 
    669 	/*
    670 	 * If we find a pending signal for the process and we have been
    671 	 * asked to check for signals, then we loose: arrange to have
    672 	 * all other LWPs in the process check for signals.
    673 	 */
    674 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    675 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    676 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    677 			lwp_lock(l2);
    678 			l2->l_flag |= LW_PENDSIG;
    679 			lwp_unlock(l2);
    680 		}
    681 	}
    682 
    683 	lwp_lock(l);
    684 	l->l_stat = LSZOMB;
    685 	lwp_unlock(l);
    686 	p->p_nrlwps--;
    687 	cv_broadcast(&p->p_lwpcv);
    688 	mutex_exit(&p->p_smutex);
    689 
    690 	/*
    691 	 * We can no longer block.  At this point, lwp_free() may already
    692 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    693 	 *
    694 	 * Free MD LWP resources.
    695 	 */
    696 #ifndef __NO_CPU_LWP_FREE
    697 	cpu_lwp_free(l, 0);
    698 #endif
    699 	pmap_deactivate(l);
    700 
    701 	/*
    702 	 * Release the kernel lock, signal another LWP to collect us,
    703 	 * and switch away into oblivion.
    704 	 */
    705 #ifdef notyet
    706 	/* XXXSMP hold in lwp_userret() */
    707 	KERNEL_UNLOCK_LAST(l);
    708 #else
    709 	KERNEL_UNLOCK_ALL(l, NULL);
    710 #endif
    711 
    712 	lwp_exit_switchaway(l);
    713 }
    714 
    715 void
    716 lwp_exit_switchaway(struct lwp *l)
    717 {
    718 	struct cpu_info *ci;
    719 	struct lwp *idlelwp;
    720 
    721 	uvmexp.swtch++; /* XXXSMP unlocked */
    722 
    723 	ci = curcpu();
    724 	idlelwp = ci->ci_data.cpu_idlelwp;
    725 
    726 	idlelwp->l_stat = LSONPROC;
    727 	cpu_switchto(NULL, idlelwp);
    728 }
    729 
    730 /*
    731  * Free a dead LWP's remaining resources.
    732  *
    733  * XXXLWP limits.
    734  */
    735 void
    736 lwp_free(struct lwp *l, int recycle, int last)
    737 {
    738 	struct proc *p = l->l_proc;
    739 	ksiginfoq_t kq;
    740 
    741 	/*
    742 	 * If this was not the last LWP in the process, then adjust
    743 	 * counters and unlock.
    744 	 */
    745 	if (!last) {
    746 		/*
    747 		 * Add the LWP's run time to the process' base value.
    748 		 * This needs to co-incide with coming off p_lwps.
    749 		 */
    750 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    751 		LIST_REMOVE(l, l_sibling);
    752 		p->p_nlwps--;
    753 		p->p_nzlwps--;
    754 		if ((l->l_prflag & LPR_DETACHED) != 0)
    755 			p->p_ndlwps--;
    756 		mutex_exit(&p->p_smutex);
    757 
    758 #ifdef MULTIPROCESSOR
    759 		/*
    760 		 * In the unlikely event that the LWP is still on the CPU,
    761 		 * then spin until it has switched away.  We need to release
    762 		 * all locks to avoid deadlock against interrupt handlers on
    763 		 * the target CPU.
    764 		 */
    765 		if (l->l_cpu->ci_curlwp == l) {
    766 			int count;
    767 			KERNEL_UNLOCK_ALL(curlwp, &count);
    768 			while (l->l_cpu->ci_curlwp == l)
    769 				SPINLOCK_BACKOFF_HOOK;
    770 			KERNEL_LOCK(count, curlwp);
    771 		}
    772 #endif
    773 	}
    774 
    775 	/*
    776 	 * Destroy the LWP's remaining signal information.
    777 	 */
    778 	ksiginfo_queue_init(&kq);
    779 	sigclear(&l->l_sigpend, NULL, &kq);
    780 	ksiginfo_queue_drain(&kq);
    781 	cv_destroy(&l->l_sigcv);
    782 
    783 	/*
    784 	 * Free the LWP's turnstile and the LWP structure itself unless the
    785 	 * caller wants to recycle them.  Also, free the scheduler specific data.
    786 	 *
    787 	 * We can't return turnstile0 to the pool (it didn't come from it),
    788 	 * so if it comes up just drop it quietly and move on.
    789 	 *
    790 	 * We don't recycle the VM resources at this time.
    791 	 */
    792 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    793 
    794 	sched_lwp_exit(l);
    795 
    796 	if (!recycle && l->l_ts != &turnstile0)
    797 		pool_cache_put(&turnstile_cache, l->l_ts);
    798 #ifndef __NO_CPU_LWP_FREE
    799 	cpu_lwp_free2(l);
    800 #endif
    801 	uvm_lwp_exit(l);
    802 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    803 	KASSERT(l->l_inheritedprio == MAXPRI);
    804 	if (!recycle)
    805 		pool_put(&lwp_pool, l);
    806 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    807 }
    808 
    809 /*
    810  * Pick a LWP to represent the process for those operations which
    811  * want information about a "process" that is actually associated
    812  * with a LWP.
    813  *
    814  * If 'locking' is false, no locking or lock checks are performed.
    815  * This is intended for use by DDB.
    816  *
    817  * We don't bother locking the LWP here, since code that uses this
    818  * interface is broken by design and an exact match is not required.
    819  */
    820 struct lwp *
    821 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    822 {
    823 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    824 	struct lwp *signalled;
    825 	int cnt;
    826 
    827 	if (locking) {
    828 		LOCK_ASSERT(mutex_owned(&p->p_smutex));
    829 	}
    830 
    831 	/* Trivial case: only one LWP */
    832 	if (p->p_nlwps == 1) {
    833 		l = LIST_FIRST(&p->p_lwps);
    834 		if (nrlwps)
    835 			*nrlwps = (l->l_stat == LSONPROC || LSRUN);
    836 		return l;
    837 	}
    838 
    839 	cnt = 0;
    840 	switch (p->p_stat) {
    841 	case SSTOP:
    842 	case SACTIVE:
    843 		/* Pick the most live LWP */
    844 		onproc = running = sleeping = stopped = suspended = NULL;
    845 		signalled = NULL;
    846 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    847 			if ((l->l_flag & LW_IDLE) != 0) {
    848 				continue;
    849 			}
    850 			if (l->l_lid == p->p_sigctx.ps_lwp)
    851 				signalled = l;
    852 			switch (l->l_stat) {
    853 			case LSONPROC:
    854 				onproc = l;
    855 				cnt++;
    856 				break;
    857 			case LSRUN:
    858 				running = l;
    859 				cnt++;
    860 				break;
    861 			case LSSLEEP:
    862 				sleeping = l;
    863 				break;
    864 			case LSSTOP:
    865 				stopped = l;
    866 				break;
    867 			case LSSUSPENDED:
    868 				suspended = l;
    869 				break;
    870 			}
    871 		}
    872 		if (nrlwps)
    873 			*nrlwps = cnt;
    874 		if (signalled)
    875 			l = signalled;
    876 		else if (onproc)
    877 			l = onproc;
    878 		else if (running)
    879 			l = running;
    880 		else if (sleeping)
    881 			l = sleeping;
    882 		else if (stopped)
    883 			l = stopped;
    884 		else if (suspended)
    885 			l = suspended;
    886 		else
    887 			break;
    888 		return l;
    889 		if (nrlwps)
    890 			*nrlwps = 0;
    891 		l = LIST_FIRST(&p->p_lwps);
    892 		return l;
    893 #ifdef DIAGNOSTIC
    894 	case SIDL:
    895 	case SZOMB:
    896 	case SDYING:
    897 	case SDEAD:
    898 		if (locking)
    899 			mutex_exit(&p->p_smutex);
    900 		/* We have more than one LWP and we're in SIDL?
    901 		 * How'd that happen?
    902 		 */
    903 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
    904 		    p->p_pid, p->p_comm, p->p_stat);
    905 		break;
    906 	default:
    907 		if (locking)
    908 			mutex_exit(&p->p_smutex);
    909 		panic("Process %d (%s) in unknown state %d",
    910 		    p->p_pid, p->p_comm, p->p_stat);
    911 #endif
    912 	}
    913 
    914 	if (locking)
    915 		mutex_exit(&p->p_smutex);
    916 	panic("proc_representative_lwp: couldn't find a lwp for process"
    917 		" %d (%s)", p->p_pid, p->p_comm);
    918 	/* NOTREACHED */
    919 	return NULL;
    920 }
    921 
    922 /*
    923  * Look up a live LWP within the speicifed process, and return it locked.
    924  *
    925  * Must be called with p->p_smutex held.
    926  */
    927 struct lwp *
    928 lwp_find(struct proc *p, int id)
    929 {
    930 	struct lwp *l;
    931 
    932 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    933 
    934 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    935 		if (l->l_lid == id)
    936 			break;
    937 	}
    938 
    939 	/*
    940 	 * No need to lock - all of these conditions will
    941 	 * be visible with the process level mutex held.
    942 	 */
    943 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
    944 		l = NULL;
    945 
    946 	return l;
    947 }
    948 
    949 /*
    950  * Update an LWP's cached credentials to mirror the process' master copy.
    951  *
    952  * This happens early in the syscall path, on user trap, and on LWP
    953  * creation.  A long-running LWP can also voluntarily choose to update
    954  * it's credentials by calling this routine.  This may be called from
    955  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
    956  */
    957 void
    958 lwp_update_creds(struct lwp *l)
    959 {
    960 	kauth_cred_t oc;
    961 	struct proc *p;
    962 
    963 	p = l->l_proc;
    964 	oc = l->l_cred;
    965 
    966 	mutex_enter(&p->p_mutex);
    967 	kauth_cred_hold(p->p_cred);
    968 	l->l_cred = p->p_cred;
    969 	mutex_exit(&p->p_mutex);
    970 	if (oc != NULL) {
    971 		KERNEL_LOCK(1, l);	/* XXXSMP */
    972 		kauth_cred_free(oc);
    973 		KERNEL_UNLOCK_ONE(l);	/* XXXSMP */
    974 	}
    975 }
    976 
    977 /*
    978  * Verify that an LWP is locked, and optionally verify that the lock matches
    979  * one we specify.
    980  */
    981 int
    982 lwp_locked(struct lwp *l, kmutex_t *mtx)
    983 {
    984 	kmutex_t *cur = l->l_mutex;
    985 
    986 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    987 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
    988 #else
    989 	return mutex_owned(cur);
    990 #endif
    991 }
    992 
    993 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    994 /*
    995  * Lock an LWP.
    996  */
    997 void
    998 lwp_lock_retry(struct lwp *l, kmutex_t *old)
    999 {
   1000 
   1001 	/*
   1002 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1003 	 *
   1004 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1005 	 */
   1006 #if 1
   1007 	while (l->l_mutex != old) {
   1008 #else
   1009 	for (;;) {
   1010 #endif
   1011 		mutex_spin_exit(old);
   1012 		old = l->l_mutex;
   1013 		mutex_spin_enter(old);
   1014 
   1015 		/*
   1016 		 * mutex_enter() will have posted a read barrier.  Re-test
   1017 		 * l->l_mutex.  If it has changed, we need to try again.
   1018 		 */
   1019 #if 1
   1020 	}
   1021 #else
   1022 	} while (__predict_false(l->l_mutex != old));
   1023 #endif
   1024 }
   1025 #endif
   1026 
   1027 /*
   1028  * Lend a new mutex to an LWP.  The old mutex must be held.
   1029  */
   1030 void
   1031 lwp_setlock(struct lwp *l, kmutex_t *new)
   1032 {
   1033 
   1034 	LOCK_ASSERT(mutex_owned(l->l_mutex));
   1035 
   1036 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1037 	mb_write();
   1038 	l->l_mutex = new;
   1039 #else
   1040 	(void)new;
   1041 #endif
   1042 }
   1043 
   1044 /*
   1045  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1046  * must be held.
   1047  */
   1048 void
   1049 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1050 {
   1051 	kmutex_t *old;
   1052 
   1053 	LOCK_ASSERT(mutex_owned(l->l_mutex));
   1054 
   1055 	old = l->l_mutex;
   1056 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1057 	mb_write();
   1058 	l->l_mutex = new;
   1059 #else
   1060 	(void)new;
   1061 #endif
   1062 	mutex_spin_exit(old);
   1063 }
   1064 
   1065 /*
   1066  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1067  * locked.
   1068  */
   1069 void
   1070 lwp_relock(struct lwp *l, kmutex_t *new)
   1071 {
   1072 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1073 	kmutex_t *old;
   1074 #endif
   1075 
   1076 	LOCK_ASSERT(mutex_owned(l->l_mutex));
   1077 
   1078 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1079 	old = l->l_mutex;
   1080 	if (old != new) {
   1081 		mutex_spin_enter(new);
   1082 		l->l_mutex = new;
   1083 		mutex_spin_exit(old);
   1084 	}
   1085 #else
   1086 	(void)new;
   1087 #endif
   1088 }
   1089 
   1090 int
   1091 lwp_trylock(struct lwp *l)
   1092 {
   1093 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1094 	kmutex_t *old;
   1095 
   1096 	for (;;) {
   1097 		if (!mutex_tryenter(old = l->l_mutex))
   1098 			return 0;
   1099 		if (__predict_true(l->l_mutex == old))
   1100 			return 1;
   1101 		mutex_spin_exit(old);
   1102 	}
   1103 #else
   1104 	return mutex_tryenter(l->l_mutex);
   1105 #endif
   1106 }
   1107 
   1108 /*
   1109  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1110  * set.
   1111  */
   1112 void
   1113 lwp_userret(struct lwp *l)
   1114 {
   1115 	struct proc *p;
   1116 	void (*hook)(void);
   1117 	int sig;
   1118 
   1119 	p = l->l_proc;
   1120 
   1121 	/*
   1122 	 * It should be safe to do this read unlocked on a multiprocessor
   1123 	 * system..
   1124 	 */
   1125 	while ((l->l_flag & LW_USERRET) != 0) {
   1126 		/*
   1127 		 * Process pending signals first, unless the process
   1128 		 * is dumping core or exiting, where we will instead
   1129 		 * enter the L_WSUSPEND case below.
   1130 		 */
   1131 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1132 		    LW_PENDSIG) {
   1133 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1134 			mutex_enter(&p->p_smutex);
   1135 			while ((sig = issignal(l)) != 0)
   1136 				postsig(sig);
   1137 			mutex_exit(&p->p_smutex);
   1138 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1139 		}
   1140 
   1141 		/*
   1142 		 * Core-dump or suspend pending.
   1143 		 *
   1144 		 * In case of core dump, suspend ourselves, so that the
   1145 		 * kernel stack and therefore the userland registers saved
   1146 		 * in the trapframe are around for coredump() to write them
   1147 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1148 		 * will write the core file out once all other LWPs are
   1149 		 * suspended.
   1150 		 */
   1151 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1152 			mutex_enter(&p->p_smutex);
   1153 			p->p_nrlwps--;
   1154 			cv_broadcast(&p->p_lwpcv);
   1155 			lwp_lock(l);
   1156 			l->l_stat = LSSUSPENDED;
   1157 			mutex_exit(&p->p_smutex);
   1158 			mi_switch(l);
   1159 		}
   1160 
   1161 		/* Process is exiting. */
   1162 		if ((l->l_flag & LW_WEXIT) != 0) {
   1163 			KERNEL_LOCK(1, l);
   1164 			lwp_exit(l);
   1165 			KASSERT(0);
   1166 			/* NOTREACHED */
   1167 		}
   1168 
   1169 		/* Call userret hook; used by Linux emulation. */
   1170 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1171 			lwp_lock(l);
   1172 			l->l_flag &= ~LW_WUSERRET;
   1173 			lwp_unlock(l);
   1174 			hook = p->p_userret;
   1175 			p->p_userret = NULL;
   1176 			(*hook)();
   1177 		}
   1178 	}
   1179 }
   1180 
   1181 /*
   1182  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1183  */
   1184 void
   1185 lwp_need_userret(struct lwp *l)
   1186 {
   1187 	LOCK_ASSERT(lwp_locked(l, NULL));
   1188 
   1189 	/*
   1190 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1191 	 * that the condition will be seen before forcing the LWP to enter
   1192 	 * kernel mode.
   1193 	 */
   1194 	mb_write();
   1195 	cpu_signotify(l);
   1196 }
   1197 
   1198 /*
   1199  * Add one reference to an LWP.  This will prevent the LWP from
   1200  * exiting, thus keep the lwp structure and PCB around to inspect.
   1201  */
   1202 void
   1203 lwp_addref(struct lwp *l)
   1204 {
   1205 
   1206 	LOCK_ASSERT(mutex_owned(&l->l_proc->p_smutex));
   1207 	KASSERT(l->l_stat != LSZOMB);
   1208 	KASSERT(l->l_refcnt != 0);
   1209 
   1210 	l->l_refcnt++;
   1211 }
   1212 
   1213 /*
   1214  * Remove one reference to an LWP.  If this is the last reference,
   1215  * then we must finalize the LWP's death.
   1216  */
   1217 void
   1218 lwp_delref(struct lwp *l)
   1219 {
   1220 	struct proc *p = l->l_proc;
   1221 
   1222 	mutex_enter(&p->p_smutex);
   1223 	if (--l->l_refcnt == 0)
   1224 		cv_broadcast(&p->p_refcv);
   1225 	mutex_exit(&p->p_smutex);
   1226 }
   1227 
   1228 /*
   1229  * Drain all references to the current LWP.
   1230  */
   1231 void
   1232 lwp_drainrefs(struct lwp *l)
   1233 {
   1234 	struct proc *p = l->l_proc;
   1235 
   1236 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
   1237 	KASSERT(l->l_refcnt != 0);
   1238 
   1239 	l->l_refcnt--;
   1240 	while (l->l_refcnt != 0)
   1241 		cv_wait(&p->p_refcv, &p->p_smutex);
   1242 }
   1243 
   1244 /*
   1245  * lwp_specific_key_create --
   1246  *	Create a key for subsystem lwp-specific data.
   1247  */
   1248 int
   1249 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1250 {
   1251 
   1252 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1253 }
   1254 
   1255 /*
   1256  * lwp_specific_key_delete --
   1257  *	Delete a key for subsystem lwp-specific data.
   1258  */
   1259 void
   1260 lwp_specific_key_delete(specificdata_key_t key)
   1261 {
   1262 
   1263 	specificdata_key_delete(lwp_specificdata_domain, key);
   1264 }
   1265 
   1266 /*
   1267  * lwp_initspecific --
   1268  *	Initialize an LWP's specificdata container.
   1269  */
   1270 void
   1271 lwp_initspecific(struct lwp *l)
   1272 {
   1273 	int error;
   1274 
   1275 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1276 	KASSERT(error == 0);
   1277 }
   1278 
   1279 /*
   1280  * lwp_finispecific --
   1281  *	Finalize an LWP's specificdata container.
   1282  */
   1283 void
   1284 lwp_finispecific(struct lwp *l)
   1285 {
   1286 
   1287 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1288 }
   1289 
   1290 /*
   1291  * lwp_getspecific --
   1292  *	Return lwp-specific data corresponding to the specified key.
   1293  *
   1294  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1295  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1296  *	LWP's specifc data, care must be taken to ensure that doing so
   1297  *	would not cause internal data structure inconsistency (i.e. caller
   1298  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1299  *	or lwp_setspecific() call).
   1300  */
   1301 void *
   1302 lwp_getspecific(specificdata_key_t key)
   1303 {
   1304 
   1305 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1306 						  &curlwp->l_specdataref, key));
   1307 }
   1308 
   1309 void *
   1310 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1311 {
   1312 
   1313 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1314 						  &l->l_specdataref, key));
   1315 }
   1316 
   1317 /*
   1318  * lwp_setspecific --
   1319  *	Set lwp-specific data corresponding to the specified key.
   1320  */
   1321 void
   1322 lwp_setspecific(specificdata_key_t key, void *data)
   1323 {
   1324 
   1325 	specificdata_setspecific(lwp_specificdata_domain,
   1326 				 &curlwp->l_specdataref, key, data);
   1327 }
   1328