Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.55.2.9
      1 /*	$NetBSD: kern_lwp.c,v 1.55.2.9 2007/03/24 14:56:01 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit (or thread) of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp".
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing in kernel simultaneously.
     52  *
     53  *	Note that LWPs differ from kernel threads (kthreads) in that kernel
     54  *	threads are distinct processes (system processes) with no user space
     55  *	component, which themselves may contain one or more LWPs.
     56  *
     57  * Execution states
     58  *
     59  *	At any given time, an LWP has overall state that is described by
     60  *	lwp::l_stat.  The states are broken into two sets below.  The first
     61  *	set is guaranteed to represent the absolute, current state of the
     62  *	LWP:
     63  *
     64  * 	LSONPROC
     65  *
     66  * 		On processor: the LWP is executing on a CPU, either in the
     67  * 		kernel or in user space.
     68  *
     69  * 	LSRUN
     70  *
     71  * 		Runnable: the LWP is parked on a run queue, and may soon be
     72  * 		chosen to run by a idle processor, or by a processor that
     73  * 		has been asked to preempt a currently runnning but lower
     74  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     75  *		then the LWP is not on a run queue, but may be soon.
     76  *
     77  * 	LSIDL
     78  *
     79  * 		Idle: the LWP has been created but has not yet executed.
     80  * 		Whoever created the new LWP can be expected to set it to
     81  * 		another state shortly.
     82  *
     83  * 	LSSUSPENDED:
     84  *
     85  * 		Suspended: the LWP has had its execution suspended by
     86  *		another LWP in the same process using the _lwp_suspend()
     87  *		system call.  User-level LWPs also enter the suspended
     88  *		state when the system is shutting down.
     89  *
     90  *	The second set represent a "statement of intent" on behalf of the
     91  *	LWP.  The LWP may in fact be executing on a processor, may be
     92  *	sleeping, idle, or on a run queue. It is expected to take the
     93  *	necessary action to stop executing or become "running" again within
     94  *	a short timeframe.
     95  *
     96  * 	LSZOMB:
     97  *
     98  * 		Dead: the LWP has released most of its resources and is
     99  * 		about to switch away into oblivion.  When it switches away,
    100  * 		its few remaining resources will be collected.
    101  *
    102  * 	LSSLEEP:
    103  *
    104  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    105  * 		will switch away shortly to allow other LWPs to run on the
    106  * 		CPU.
    107  *
    108  * 	LSSTOP:
    109  *
    110  * 		Stopped: the LWP has been stopped as a result of a job
    111  * 		control signal, or as a result of the ptrace() interface.
    112  * 		Stopped LWPs may run briefly within the kernel to handle
    113  * 		signals that they receive, but will not return to user space
    114  * 		until their process' state is changed away from stopped.
    115  * 		Single LWPs within a process can not be set stopped
    116  * 		selectively: all actions that can stop or continue LWPs
    117  * 		occur at the process level.
    118  *
    119  * State transitions
    120  *
    121  *	Note that the LSSTOP and LSSUSPENDED states may only be set
    122  *	when returning to user space in userret(), or when sleeping
    123  *	interruptably.  Before setting those states, we try to ensure
    124  *	that the LWPs will release all kernel locks that they hold,
    125  *	and at a minimum try to ensure that the LWP can be set runnable
    126  *	again by a signal.
    127  *
    128  *	LWPs may transition states in the following ways:
    129  *
    130  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131  *	            > STOPPED			    > SLEEP
    132  *	            > SUSPENDED			    > STOPPED
    133  *						    > SUSPENDED
    134  *						    > ZOMB
    135  *
    136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  *	            > SLEEP			    > SLEEP
    138  *
    139  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  *		    > RUN		            > SUSPENDED
    141  *		    > STOPPED                       > STOPPED
    142  *		    > SUSPENDED
    143  *
    144  * Locking
    145  *
    146  *	The majority of fields in 'struct lwp' are covered by a single,
    147  *	general spin mutex pointed to by lwp::l_mutex.  The locks covering
    148  *	each field are documented in sys/lwp.h.
    149  *
    150  *	State transitions must be made with the LWP's general lock held.  In
    151  *	a multiprocessor kernel, state transitions may cause the LWP's lock
    152  *	pointer to change.  On uniprocessor kernels, most scheduler and
    153  *	synchronisation objects such as sleep queues and LWPs are protected
    154  *	by only one mutex (spc_mutex on single CPU).  In this case, LWPs' lock
    155  *	pointers will never change and will always reference spc_mutex.
    156  *	Please note that in a multiprocessor kernel each CPU has own spc_mutex.
    157  *
    158  *	Where spc_mutex is noted, it refers to l->l_cpu->ci_schedstate.spc_mutex
    159 
    160  *
    161  *	Manipulation of the general lock is not performed directly, but
    162  *	through calls to lwp_lock(), lwp_relock() and similar.
    163  *
    164  *	States and their associated locks:
    165  *
    166  *	LSIDL, LSZOMB
    167  *
    168  *		Always covered by spc_mutex.
    169  *
    170  *	LSONPROC, LSRUN:
    171  *
    172  *		Always covered by spc_mutex, which protects the run queues
    173  *		and other miscellaneous items.  If the scheduler is changed
    174  *		to use per-CPU run queues, this may become a per-CPU mutex.
    175  *
    176  *	LSSLEEP:
    177  *
    178  *		Covered by a mutex associated with the sleep queue that the
    179  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    180  *
    181  *	LSSTOP, LSSUSPENDED:
    182  *
    183  *		If the LWP was previously sleeping (l_wchan != NULL), then
    184  *		l_mutex references the sleep queue mutex.  If the LWP was
    185  *		runnable or on the CPU when halted, or has been removed from
    186  *		the sleep queue since halted, then the mutex is spc_mutex.
    187  *
    188  *	The lock order is as follows:
    189  *
    190  *		sleepq_t::sq_mutex  |---> spc_mutex
    191  *		tschain_t::tc_mutex |
    192  *
    193  *	Each process has an scheduler state mutex (proc::p_smutex), and a
    194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    195  *	so on.  When an LWP is to be entered into or removed from one of the
    196  *	following states, p_mutex must be held and the process wide counters
    197  *	adjusted:
    198  *
    199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    200  *
    201  *	Note that an LWP is considered running or likely to run soon if in
    202  *	one of the following states.  This affects the value of p_nrlwps:
    203  *
    204  *		LSRUN, LSONPROC, LSSLEEP
    205  *
    206  *	p_smutex does not need to be held when transitioning among these
    207  *	three states.
    208  */
    209 
    210 #include <sys/cdefs.h>
    211 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.55.2.9 2007/03/24 14:56:01 yamt Exp $");
    212 
    213 #include "opt_multiprocessor.h"
    214 #include "opt_lockdebug.h"
    215 
    216 #define _LWP_API_PRIVATE
    217 
    218 #include <sys/param.h>
    219 #include <sys/systm.h>
    220 #include <sys/cpu.h>
    221 #include <sys/pool.h>
    222 #include <sys/proc.h>
    223 #include <sys/syscallargs.h>
    224 #include <sys/syscall_stats.h>
    225 #include <sys/kauth.h>
    226 #include <sys/sleepq.h>
    227 #include <sys/lockdebug.h>
    228 #include <sys/kmem.h>
    229 
    230 #include <uvm/uvm_extern.h>
    231 
    232 struct lwplist	alllwp;
    233 
    234 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    235     &pool_allocator_nointr, IPL_NONE);
    236 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    237     &pool_allocator_nointr, IPL_NONE);
    238 
    239 static specificdata_domain_t lwp_specificdata_domain;
    240 
    241 #define LWP_DEBUG
    242 
    243 #ifdef LWP_DEBUG
    244 int lwp_debug = 0;
    245 #define DPRINTF(x) if (lwp_debug) printf x
    246 #else
    247 #define DPRINTF(x)
    248 #endif
    249 
    250 void
    251 lwpinit(void)
    252 {
    253 
    254 	lwp_specificdata_domain = specificdata_domain_create();
    255 	KASSERT(lwp_specificdata_domain != NULL);
    256 	lwp_sys_init();
    257 }
    258 
    259 /*
    260  * Set an suspended.
    261  *
    262  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    263  * LWP before return.
    264  */
    265 int
    266 lwp_suspend(struct lwp *curl, struct lwp *t)
    267 {
    268 	int error;
    269 
    270 	KASSERT(mutex_owned(&t->l_proc->p_smutex));
    271 	KASSERT(lwp_locked(t, NULL));
    272 
    273 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    274 
    275 	/*
    276 	 * If the current LWP has been told to exit, we must not suspend anyone
    277 	 * else or deadlock could occur.  We won't return to userspace.
    278 	 */
    279 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    280 		lwp_unlock(t);
    281 		return (EDEADLK);
    282 	}
    283 
    284 	error = 0;
    285 
    286 	switch (t->l_stat) {
    287 	case LSRUN:
    288 	case LSONPROC:
    289 		t->l_flag |= LW_WSUSPEND;
    290 		lwp_need_userret(t);
    291 		lwp_unlock(t);
    292 		break;
    293 
    294 	case LSSLEEP:
    295 		t->l_flag |= LW_WSUSPEND;
    296 
    297 		/*
    298 		 * Kick the LWP and try to get it to the kernel boundary
    299 		 * so that it will release any locks that it holds.
    300 		 * setrunnable() will release the lock.
    301 		 */
    302 		if ((t->l_flag & LW_SINTR) != 0)
    303 			setrunnable(t);
    304 		else
    305 			lwp_unlock(t);
    306 		break;
    307 
    308 	case LSSUSPENDED:
    309 		lwp_unlock(t);
    310 		break;
    311 
    312 	case LSSTOP:
    313 		t->l_flag |= LW_WSUSPEND;
    314 		setrunnable(t);
    315 		break;
    316 
    317 	case LSIDL:
    318 	case LSZOMB:
    319 		error = EINTR; /* It's what Solaris does..... */
    320 		lwp_unlock(t);
    321 		break;
    322 	}
    323 
    324 	/*
    325 	 * XXXLWP Wait for:
    326 	 *
    327 	 * o process exiting
    328 	 * o target LWP suspended
    329 	 * o target LWP not suspended and L_WSUSPEND clear
    330 	 * o target LWP exited
    331 	 */
    332 
    333 	 return (error);
    334 }
    335 
    336 /*
    337  * Restart a suspended LWP.
    338  *
    339  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    340  * LWP before return.
    341  */
    342 void
    343 lwp_continue(struct lwp *l)
    344 {
    345 
    346 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
    347 	KASSERT(lwp_locked(l, NULL));
    348 
    349 	DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
    350 	    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
    351 	    l->l_wchan));
    352 
    353 	/* If rebooting or not suspended, then just bail out. */
    354 	if ((l->l_flag & LW_WREBOOT) != 0) {
    355 		lwp_unlock(l);
    356 		return;
    357 	}
    358 
    359 	l->l_flag &= ~LW_WSUSPEND;
    360 
    361 	if (l->l_stat != LSSUSPENDED) {
    362 		lwp_unlock(l);
    363 		return;
    364 	}
    365 
    366 	/* setrunnable() will release the lock. */
    367 	setrunnable(l);
    368 }
    369 
    370 /*
    371  * Wait for an LWP within the current process to exit.  If 'lid' is
    372  * non-zero, we are waiting for a specific LWP.
    373  *
    374  * Must be called with p->p_smutex held.
    375  */
    376 int
    377 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    378 {
    379 	struct proc *p = l->l_proc;
    380 	struct lwp *l2;
    381 	int nfound, error;
    382 	lwpid_t curlid;
    383 	bool exiting;
    384 
    385 	DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
    386 	    p->p_pid, l->l_lid, lid));
    387 
    388 	KASSERT(mutex_owned(&p->p_smutex));
    389 
    390 	p->p_nlwpwait++;
    391 	l->l_waitingfor = lid;
    392 	curlid = l->l_lid;
    393 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    394 
    395 	for (;;) {
    396 		/*
    397 		 * Avoid a race between exit1() and sigexit(): if the
    398 		 * process is dumping core, then we need to bail out: call
    399 		 * into lwp_userret() where we will be suspended until the
    400 		 * deed is done.
    401 		 */
    402 		if ((p->p_sflag & PS_WCORE) != 0) {
    403 			mutex_exit(&p->p_smutex);
    404 			lwp_userret(l);
    405 #ifdef DIAGNOSTIC
    406 			panic("lwp_wait1");
    407 #endif
    408 			/* NOTREACHED */
    409 		}
    410 
    411 		/*
    412 		 * First off, drain any detached LWP that is waiting to be
    413 		 * reaped.
    414 		 */
    415 		while ((l2 = p->p_zomblwp) != NULL) {
    416 			p->p_zomblwp = NULL;
    417 			lwp_free(l2, false, false);/* releases proc mutex */
    418 			mutex_enter(&p->p_smutex);
    419 		}
    420 
    421 		/*
    422 		 * Now look for an LWP to collect.  If the whole process is
    423 		 * exiting, count detached LWPs as eligible to be collected,
    424 		 * but don't drain them here.
    425 		 */
    426 		nfound = 0;
    427 		error = 0;
    428 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    429 			/*
    430 			 * If a specific wait and the target is waiting on
    431 			 * us, then avoid deadlock.  This also traps LWPs
    432 			 * that try to wait on themselves.
    433 			 *
    434 			 * Note that this does not handle more complicated
    435 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    436 			 * can still be killed so it is not a major problem.
    437 			 */
    438 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    439 				error = EDEADLK;
    440 				break;
    441 			}
    442 			if (l2 == l)
    443 				continue;
    444 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    445 				nfound += exiting;
    446 				continue;
    447 			}
    448 			if (lid != 0) {
    449 				if (l2->l_lid != lid)
    450 					continue;
    451 				/*
    452 				 * Mark this LWP as the first waiter, if there
    453 				 * is no other.
    454 				 */
    455 				if (l2->l_waiter == 0)
    456 					l2->l_waiter = curlid;
    457 			} else if (l2->l_waiter != 0) {
    458 				/*
    459 				 * It already has a waiter - so don't
    460 				 * collect it.  If the waiter doesn't
    461 				 * grab it we'll get another chance
    462 				 * later.
    463 				 */
    464 				nfound++;
    465 				continue;
    466 			}
    467 			nfound++;
    468 
    469 			/* No need to lock the LWP in order to see LSZOMB. */
    470 			if (l2->l_stat != LSZOMB)
    471 				continue;
    472 
    473 			/*
    474 			 * We're no longer waiting.  Reset the "first waiter"
    475 			 * pointer on the target, in case it was us.
    476 			 */
    477 			l->l_waitingfor = 0;
    478 			l2->l_waiter = 0;
    479 			p->p_nlwpwait--;
    480 			if (departed)
    481 				*departed = l2->l_lid;
    482 
    483 			/* lwp_free() releases the proc lock. */
    484 			lwp_free(l2, false, false);
    485 			mutex_enter(&p->p_smutex);
    486 			return 0;
    487 		}
    488 
    489 		if (error != 0)
    490 			break;
    491 		if (nfound == 0) {
    492 			error = ESRCH;
    493 			break;
    494 		}
    495 
    496 		/*
    497 		 * The kernel is careful to ensure that it can not deadlock
    498 		 * when exiting - just keep waiting.
    499 		 */
    500 		if (exiting) {
    501 			KASSERT(p->p_nlwps > 1);
    502 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    503 			continue;
    504 		}
    505 
    506 		/*
    507 		 * If all other LWPs are waiting for exits or suspends
    508 		 * and the supply of zombies and potential zombies is
    509 		 * exhausted, then we are about to deadlock.
    510 		 *
    511 		 * If the process is exiting (and this LWP is not the one
    512 		 * that is coordinating the exit) then bail out now.
    513 		 */
    514 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    515 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    516 			error = EDEADLK;
    517 			break;
    518 		}
    519 
    520 		/*
    521 		 * Sit around and wait for something to happen.  We'll be
    522 		 * awoken if any of the conditions examined change: if an
    523 		 * LWP exits, is collected, or is detached.
    524 		 */
    525 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    526 			break;
    527 	}
    528 
    529 	/*
    530 	 * We didn't find any LWPs to collect, we may have received a
    531 	 * signal, or some other condition has caused us to bail out.
    532 	 *
    533 	 * If waiting on a specific LWP, clear the waiters marker: some
    534 	 * other LWP may want it.  Then, kick all the remaining waiters
    535 	 * so that they can re-check for zombies and for deadlock.
    536 	 */
    537 	if (lid != 0) {
    538 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    539 			if (l2->l_lid == lid) {
    540 				if (l2->l_waiter == curlid)
    541 					l2->l_waiter = 0;
    542 				break;
    543 			}
    544 		}
    545 	}
    546 	p->p_nlwpwait--;
    547 	l->l_waitingfor = 0;
    548 	cv_broadcast(&p->p_lwpcv);
    549 
    550 	return error;
    551 }
    552 
    553 /*
    554  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    555  * The new LWP is created in state LSIDL and must be set running,
    556  * suspended, or stopped by the caller.
    557  */
    558 int
    559 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
    560     int flags, void *stack, size_t stacksize,
    561     void (*func)(void *), void *arg, struct lwp **rnewlwpp)
    562 {
    563 	struct lwp *l2, *isfree;
    564 	turnstile_t *ts;
    565 
    566 	/*
    567 	 * First off, reap any detached LWP waiting to be collected.
    568 	 * We can re-use its LWP structure and turnstile.
    569 	 */
    570 	isfree = NULL;
    571 	if (p2->p_zomblwp != NULL) {
    572 		mutex_enter(&p2->p_smutex);
    573 		if ((isfree = p2->p_zomblwp) != NULL) {
    574 			p2->p_zomblwp = NULL;
    575 			lwp_free(isfree, true, false);/* releases proc mutex */
    576 		} else
    577 			mutex_exit(&p2->p_smutex);
    578 	}
    579 	if (isfree == NULL) {
    580 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    581 		memset(l2, 0, sizeof(*l2));
    582 		l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
    583 		SLIST_INIT(&l2->l_pi_lenders);
    584 	} else {
    585 		l2 = isfree;
    586 		ts = l2->l_ts;
    587 		KASSERT(l2->l_inheritedprio == MAXPRI);
    588 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    589 		memset(l2, 0, sizeof(*l2));
    590 		l2->l_ts = ts;
    591 	}
    592 
    593 	l2->l_stat = LSIDL;
    594 	l2->l_proc = p2;
    595 	l2->l_refcnt = 1;
    596 	l2->l_priority = l1->l_priority;
    597 	l2->l_usrpri = l1->l_usrpri;
    598 	l2->l_inheritedprio = MAXPRI;
    599 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    600 	l2->l_cpu = l1->l_cpu;
    601 	l2->l_flag = inmem ? LW_INMEM : 0;
    602 	lwp_initspecific(l2);
    603 	sched_lwp_fork(l2);
    604 
    605 	if (p2->p_flag & PK_SYSTEM) {
    606 		/*
    607 		 * Mark it as a system process and not a candidate for
    608 		 * swapping.
    609 		 */
    610 		l2->l_flag |= LW_SYSTEM;
    611 	}
    612 
    613 	lwp_update_creds(l2);
    614 	callout_init(&l2->l_tsleep_ch);
    615 	cv_init(&l2->l_sigcv, "sigwait");
    616 	l2->l_syncobj = &sched_syncobj;
    617 
    618 	if (rnewlwpp != NULL)
    619 		*rnewlwpp = l2;
    620 
    621 	l2->l_addr = UAREA_TO_USER(uaddr);
    622 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    623 	    (arg != NULL) ? arg : l2);
    624 
    625 	mutex_enter(&p2->p_smutex);
    626 
    627 	if ((flags & LWP_DETACHED) != 0) {
    628 		l2->l_prflag = LPR_DETACHED;
    629 		p2->p_ndlwps++;
    630 	} else
    631 		l2->l_prflag = 0;
    632 
    633 	l2->l_sigmask = l1->l_sigmask;
    634 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    635 	sigemptyset(&l2->l_sigpend.sp_set);
    636 
    637 	p2->p_nlwpid++;
    638 	if (p2->p_nlwpid == 0)
    639 		p2->p_nlwpid++;
    640 	l2->l_lid = p2->p_nlwpid;
    641 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    642 	p2->p_nlwps++;
    643 
    644 	mutex_exit(&p2->p_smutex);
    645 
    646 	mutex_enter(&proclist_mutex);
    647 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    648 	mutex_exit(&proclist_mutex);
    649 
    650 	SYSCALL_TIME_LWP_INIT(l2);
    651 
    652 	if (p2->p_emul->e_lwp_fork)
    653 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    654 
    655 	return (0);
    656 }
    657 
    658 /*
    659  * Quit the process.
    660  * this can only be used meaningfully if you're willing to switch away.
    661  * Calling with l != curlwp would be weird.
    662  */
    663 void
    664 lwp_exit(struct lwp *l)
    665 {
    666 	struct proc *p = l->l_proc;
    667 	struct lwp *l2;
    668 
    669 	DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
    670 	DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
    671 
    672 	/*
    673 	 * Verify that we hold no locks other than the kernel lock.
    674 	 */
    675 #ifdef MULTIPROCESSOR
    676 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    677 #else
    678 	LOCKDEBUG_BARRIER(NULL, 0);
    679 #endif
    680 
    681 	/*
    682 	 * If we are the last live LWP in a process, we need to exit the
    683 	 * entire process.  We do so with an exit status of zero, because
    684 	 * it's a "controlled" exit, and because that's what Solaris does.
    685 	 *
    686 	 * We are not quite a zombie yet, but for accounting purposes we
    687 	 * must increment the count of zombies here.
    688 	 *
    689 	 * Note: the last LWP's specificdata will be deleted here.
    690 	 */
    691 	mutex_enter(&p->p_smutex);
    692 	if (p->p_nlwps - p->p_nzlwps == 1) {
    693 		DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
    694 		    p->p_pid, l->l_lid));
    695 		exit1(l, 0);
    696 		/* NOTREACHED */
    697 	}
    698 	p->p_nzlwps++;
    699 	mutex_exit(&p->p_smutex);
    700 
    701 	if (p->p_emul->e_lwp_exit)
    702 		(*p->p_emul->e_lwp_exit)(l);
    703 
    704 	/* Delete the specificdata while it's still safe to sleep. */
    705 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    706 
    707 	/*
    708 	 * Release our cached credentials.
    709 	 */
    710 	kauth_cred_free(l->l_cred);
    711 
    712 	/*
    713 	 * Remove the LWP from the global list.
    714 	 */
    715 	mutex_enter(&proclist_mutex);
    716 	LIST_REMOVE(l, l_list);
    717 	mutex_exit(&proclist_mutex);
    718 
    719 	/*
    720 	 * Get rid of all references to the LWP that others (e.g. procfs)
    721 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    722 	 * mark it waiting for collection in the proc structure.  Note that
    723 	 * before we can do that, we need to free any other dead, deatched
    724 	 * LWP waiting to meet its maker.
    725 	 *
    726 	 * XXXSMP disable preemption.
    727 	 */
    728 	mutex_enter(&p->p_smutex);
    729 	lwp_drainrefs(l);
    730 
    731 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    732 		while ((l2 = p->p_zomblwp) != NULL) {
    733 			p->p_zomblwp = NULL;
    734 			lwp_free(l2, false, false);/* releases proc mutex */
    735 			mutex_enter(&p->p_smutex);
    736 		}
    737 		p->p_zomblwp = l;
    738 	}
    739 
    740 	/*
    741 	 * If we find a pending signal for the process and we have been
    742 	 * asked to check for signals, then we loose: arrange to have
    743 	 * all other LWPs in the process check for signals.
    744 	 */
    745 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    746 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    747 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    748 			lwp_lock(l2);
    749 			l2->l_flag |= LW_PENDSIG;
    750 			lwp_unlock(l2);
    751 		}
    752 	}
    753 
    754 	lwp_lock(l);
    755 	l->l_stat = LSZOMB;
    756 	lwp_unlock(l);
    757 	p->p_nrlwps--;
    758 	cv_broadcast(&p->p_lwpcv);
    759 	mutex_exit(&p->p_smutex);
    760 
    761 	/*
    762 	 * We can no longer block.  At this point, lwp_free() may already
    763 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    764 	 *
    765 	 * Free MD LWP resources.
    766 	 */
    767 #ifndef __NO_CPU_LWP_FREE
    768 	cpu_lwp_free(l, 0);
    769 #endif
    770 	pmap_deactivate(l);
    771 
    772 	/*
    773 	 * Release the kernel lock, signal another LWP to collect us,
    774 	 * and switch away into oblivion.
    775 	 */
    776 #ifdef notyet
    777 	/* XXXSMP hold in lwp_userret() */
    778 	KERNEL_UNLOCK_LAST(l);
    779 #else
    780 	KERNEL_UNLOCK_ALL(l, NULL);
    781 #endif
    782 
    783 	lwp_exit_switchaway(l);
    784 }
    785 
    786 void
    787 lwp_exit_switchaway(struct lwp *l)
    788 {
    789 	struct cpu_info *ci;
    790 	struct lwp *idlelwp;
    791 
    792 	uvmexp.swtch++; /* XXXSMP unlocked */
    793 
    794 	ci = curcpu();
    795 	idlelwp = ci->ci_data.cpu_idlelwp;
    796 
    797 	idlelwp->l_stat = LSONPROC;
    798 	cpu_switchto(NULL, idlelwp);
    799 }
    800 
    801 /*
    802  * Free a dead LWP's remaining resources.
    803  *
    804  * XXXLWP limits.
    805  */
    806 void
    807 lwp_free(struct lwp *l, bool recycle, bool last)
    808 {
    809 	struct proc *p = l->l_proc;
    810 	ksiginfoq_t kq;
    811 
    812 	/*
    813 	 * If this was not the last LWP in the process, then adjust
    814 	 * counters and unlock.
    815 	 */
    816 	if (!last) {
    817 		/*
    818 		 * Add the LWP's run time to the process' base value.
    819 		 * This needs to co-incide with coming off p_lwps.
    820 		 */
    821 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    822 		LIST_REMOVE(l, l_sibling);
    823 		p->p_nlwps--;
    824 		p->p_nzlwps--;
    825 		if ((l->l_prflag & LPR_DETACHED) != 0)
    826 			p->p_ndlwps--;
    827 
    828 		/*
    829 		 * Have any LWPs sleeping in lwp_wait() recheck for
    830 		 * deadlock.
    831 		 */
    832 		cv_broadcast(&p->p_lwpcv);
    833 		mutex_exit(&p->p_smutex);
    834 	}
    835 
    836 #ifdef MULTIPROCESSOR
    837 	/*
    838 	 * In the unlikely event that the LWP is still on the CPU,
    839 	 * then spin until it has switched away.  We need to release
    840 	 * all locks to avoid deadlock against interrupt handlers on
    841 	 * the target CPU.
    842 	 */
    843 	if (l->l_cpu->ci_curlwp == l) {
    844 		int count;
    845 		KERNEL_UNLOCK_ALL(curlwp, &count);
    846 		while (l->l_cpu->ci_curlwp == l)
    847 			SPINLOCK_BACKOFF_HOOK;
    848 		KERNEL_LOCK(count, curlwp);
    849 	}
    850 #endif
    851 
    852 	/*
    853 	 * Destroy the LWP's remaining signal information.
    854 	 */
    855 	ksiginfo_queue_init(&kq);
    856 	sigclear(&l->l_sigpend, NULL, &kq);
    857 	ksiginfo_queue_drain(&kq);
    858 	cv_destroy(&l->l_sigcv);
    859 
    860 	/*
    861 	 * Free the LWP's turnstile and the LWP structure itself unless the
    862 	 * caller wants to recycle them.  Also, free the scheduler specific data.
    863 	 *
    864 	 * We can't return turnstile0 to the pool (it didn't come from it),
    865 	 * so if it comes up just drop it quietly and move on.
    866 	 *
    867 	 * We don't recycle the VM resources at this time.
    868 	 */
    869 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    870 
    871 	sched_lwp_exit(l);
    872 
    873 	if (!recycle && l->l_ts != &turnstile0)
    874 		pool_cache_put(&turnstile_cache, l->l_ts);
    875 #ifndef __NO_CPU_LWP_FREE
    876 	cpu_lwp_free2(l);
    877 #endif
    878 	uvm_lwp_exit(l);
    879 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    880 	KASSERT(l->l_inheritedprio == MAXPRI);
    881 	if (!recycle)
    882 		pool_put(&lwp_pool, l);
    883 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    884 }
    885 
    886 /*
    887  * Pick a LWP to represent the process for those operations which
    888  * want information about a "process" that is actually associated
    889  * with a LWP.
    890  *
    891  * If 'locking' is false, no locking or lock checks are performed.
    892  * This is intended for use by DDB.
    893  *
    894  * We don't bother locking the LWP here, since code that uses this
    895  * interface is broken by design and an exact match is not required.
    896  */
    897 struct lwp *
    898 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    899 {
    900 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    901 	struct lwp *signalled;
    902 	int cnt;
    903 
    904 	if (locking) {
    905 		KASSERT(mutex_owned(&p->p_smutex));
    906 	}
    907 
    908 	/* Trivial case: only one LWP */
    909 	if (p->p_nlwps == 1) {
    910 		l = LIST_FIRST(&p->p_lwps);
    911 		if (nrlwps)
    912 			*nrlwps = (l->l_stat == LSONPROC || LSRUN);
    913 		return l;
    914 	}
    915 
    916 	cnt = 0;
    917 	switch (p->p_stat) {
    918 	case SSTOP:
    919 	case SACTIVE:
    920 		/* Pick the most live LWP */
    921 		onproc = running = sleeping = stopped = suspended = NULL;
    922 		signalled = NULL;
    923 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    924 			if ((l->l_flag & LW_IDLE) != 0) {
    925 				continue;
    926 			}
    927 			if (l->l_lid == p->p_sigctx.ps_lwp)
    928 				signalled = l;
    929 			switch (l->l_stat) {
    930 			case LSONPROC:
    931 				onproc = l;
    932 				cnt++;
    933 				break;
    934 			case LSRUN:
    935 				running = l;
    936 				cnt++;
    937 				break;
    938 			case LSSLEEP:
    939 				sleeping = l;
    940 				break;
    941 			case LSSTOP:
    942 				stopped = l;
    943 				break;
    944 			case LSSUSPENDED:
    945 				suspended = l;
    946 				break;
    947 			}
    948 		}
    949 		if (nrlwps)
    950 			*nrlwps = cnt;
    951 		if (signalled)
    952 			l = signalled;
    953 		else if (onproc)
    954 			l = onproc;
    955 		else if (running)
    956 			l = running;
    957 		else if (sleeping)
    958 			l = sleeping;
    959 		else if (stopped)
    960 			l = stopped;
    961 		else if (suspended)
    962 			l = suspended;
    963 		else
    964 			break;
    965 		return l;
    966 		if (nrlwps)
    967 			*nrlwps = 0;
    968 		l = LIST_FIRST(&p->p_lwps);
    969 		return l;
    970 #ifdef DIAGNOSTIC
    971 	case SIDL:
    972 	case SZOMB:
    973 	case SDYING:
    974 	case SDEAD:
    975 		if (locking)
    976 			mutex_exit(&p->p_smutex);
    977 		/* We have more than one LWP and we're in SIDL?
    978 		 * How'd that happen?
    979 		 */
    980 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
    981 		    p->p_pid, p->p_comm, p->p_stat);
    982 		break;
    983 	default:
    984 		if (locking)
    985 			mutex_exit(&p->p_smutex);
    986 		panic("Process %d (%s) in unknown state %d",
    987 		    p->p_pid, p->p_comm, p->p_stat);
    988 #endif
    989 	}
    990 
    991 	if (locking)
    992 		mutex_exit(&p->p_smutex);
    993 	panic("proc_representative_lwp: couldn't find a lwp for process"
    994 		" %d (%s)", p->p_pid, p->p_comm);
    995 	/* NOTREACHED */
    996 	return NULL;
    997 }
    998 
    999 /*
   1000  * Look up a live LWP within the speicifed process, and return it locked.
   1001  *
   1002  * Must be called with p->p_smutex held.
   1003  */
   1004 struct lwp *
   1005 lwp_find(struct proc *p, int id)
   1006 {
   1007 	struct lwp *l;
   1008 
   1009 	KASSERT(mutex_owned(&p->p_smutex));
   1010 
   1011 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1012 		if (l->l_lid == id)
   1013 			break;
   1014 	}
   1015 
   1016 	/*
   1017 	 * No need to lock - all of these conditions will
   1018 	 * be visible with the process level mutex held.
   1019 	 */
   1020 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1021 		l = NULL;
   1022 
   1023 	return l;
   1024 }
   1025 
   1026 /*
   1027  * Update an LWP's cached credentials to mirror the process' master copy.
   1028  *
   1029  * This happens early in the syscall path, on user trap, and on LWP
   1030  * creation.  A long-running LWP can also voluntarily choose to update
   1031  * it's credentials by calling this routine.  This may be called from
   1032  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1033  */
   1034 void
   1035 lwp_update_creds(struct lwp *l)
   1036 {
   1037 	kauth_cred_t oc;
   1038 	struct proc *p;
   1039 
   1040 	p = l->l_proc;
   1041 	oc = l->l_cred;
   1042 
   1043 	mutex_enter(&p->p_mutex);
   1044 	kauth_cred_hold(p->p_cred);
   1045 	l->l_cred = p->p_cred;
   1046 	mutex_exit(&p->p_mutex);
   1047 	if (oc != NULL) {
   1048 		KERNEL_LOCK(1, l);	/* XXXSMP */
   1049 		kauth_cred_free(oc);
   1050 		KERNEL_UNLOCK_ONE(l);	/* XXXSMP */
   1051 	}
   1052 }
   1053 
   1054 /*
   1055  * Verify that an LWP is locked, and optionally verify that the lock matches
   1056  * one we specify.
   1057  */
   1058 int
   1059 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1060 {
   1061 	kmutex_t *cur = l->l_mutex;
   1062 
   1063 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1064 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1065 #else
   1066 	return mutex_owned(cur);
   1067 #endif
   1068 }
   1069 
   1070 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1071 /*
   1072  * Lock an LWP.
   1073  */
   1074 void
   1075 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1076 {
   1077 
   1078 	/*
   1079 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1080 	 *
   1081 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1082 	 */
   1083 #if 1
   1084 	while (l->l_mutex != old) {
   1085 #else
   1086 	for (;;) {
   1087 #endif
   1088 		mutex_spin_exit(old);
   1089 		old = l->l_mutex;
   1090 		mutex_spin_enter(old);
   1091 
   1092 		/*
   1093 		 * mutex_enter() will have posted a read barrier.  Re-test
   1094 		 * l->l_mutex.  If it has changed, we need to try again.
   1095 		 */
   1096 #if 1
   1097 	}
   1098 #else
   1099 	} while (__predict_false(l->l_mutex != old));
   1100 #endif
   1101 }
   1102 #endif
   1103 
   1104 /*
   1105  * Lend a new mutex to an LWP.  The old mutex must be held.
   1106  */
   1107 void
   1108 lwp_setlock(struct lwp *l, kmutex_t *new)
   1109 {
   1110 
   1111 	KASSERT(mutex_owned(l->l_mutex));
   1112 
   1113 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1114 	mb_write();
   1115 	l->l_mutex = new;
   1116 #else
   1117 	(void)new;
   1118 #endif
   1119 }
   1120 
   1121 /*
   1122  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1123  * must be held.
   1124  */
   1125 void
   1126 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1127 {
   1128 	kmutex_t *old;
   1129 
   1130 	KASSERT(mutex_owned(l->l_mutex));
   1131 
   1132 	old = l->l_mutex;
   1133 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1134 	mb_write();
   1135 	l->l_mutex = new;
   1136 #else
   1137 	(void)new;
   1138 #endif
   1139 	mutex_spin_exit(old);
   1140 }
   1141 
   1142 /*
   1143  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1144  * locked.
   1145  */
   1146 void
   1147 lwp_relock(struct lwp *l, kmutex_t *new)
   1148 {
   1149 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1150 	kmutex_t *old;
   1151 #endif
   1152 
   1153 	KASSERT(mutex_owned(l->l_mutex));
   1154 
   1155 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1156 	old = l->l_mutex;
   1157 	if (old != new) {
   1158 		mutex_spin_enter(new);
   1159 		l->l_mutex = new;
   1160 		mutex_spin_exit(old);
   1161 	}
   1162 #else
   1163 	(void)new;
   1164 #endif
   1165 }
   1166 
   1167 int
   1168 lwp_trylock(struct lwp *l)
   1169 {
   1170 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1171 	kmutex_t *old;
   1172 
   1173 	for (;;) {
   1174 		if (!mutex_tryenter(old = l->l_mutex))
   1175 			return 0;
   1176 		if (__predict_true(l->l_mutex == old))
   1177 			return 1;
   1178 		mutex_spin_exit(old);
   1179 	}
   1180 #else
   1181 	return mutex_tryenter(l->l_mutex);
   1182 #endif
   1183 }
   1184 
   1185 /*
   1186  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1187  * set.
   1188  */
   1189 void
   1190 lwp_userret(struct lwp *l)
   1191 {
   1192 	struct proc *p;
   1193 	void (*hook)(void);
   1194 	int sig;
   1195 
   1196 	p = l->l_proc;
   1197 
   1198 	/*
   1199 	 * It should be safe to do this read unlocked on a multiprocessor
   1200 	 * system..
   1201 	 */
   1202 	while ((l->l_flag & LW_USERRET) != 0) {
   1203 		/*
   1204 		 * Process pending signals first, unless the process
   1205 		 * is dumping core or exiting, where we will instead
   1206 		 * enter the L_WSUSPEND case below.
   1207 		 */
   1208 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1209 		    LW_PENDSIG) {
   1210 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1211 			mutex_enter(&p->p_smutex);
   1212 			while ((sig = issignal(l)) != 0)
   1213 				postsig(sig);
   1214 			mutex_exit(&p->p_smutex);
   1215 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1216 		}
   1217 
   1218 		/*
   1219 		 * Core-dump or suspend pending.
   1220 		 *
   1221 		 * In case of core dump, suspend ourselves, so that the
   1222 		 * kernel stack and therefore the userland registers saved
   1223 		 * in the trapframe are around for coredump() to write them
   1224 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1225 		 * will write the core file out once all other LWPs are
   1226 		 * suspended.
   1227 		 */
   1228 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1229 			mutex_enter(&p->p_smutex);
   1230 			p->p_nrlwps--;
   1231 			cv_broadcast(&p->p_lwpcv);
   1232 			lwp_lock(l);
   1233 			l->l_stat = LSSUSPENDED;
   1234 			mutex_exit(&p->p_smutex);
   1235 			mi_switch(l);
   1236 		}
   1237 
   1238 		/* Process is exiting. */
   1239 		if ((l->l_flag & LW_WEXIT) != 0) {
   1240 			KERNEL_LOCK(1, l);
   1241 			lwp_exit(l);
   1242 			KASSERT(0);
   1243 			/* NOTREACHED */
   1244 		}
   1245 
   1246 		/* Call userret hook; used by Linux emulation. */
   1247 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1248 			lwp_lock(l);
   1249 			l->l_flag &= ~LW_WUSERRET;
   1250 			lwp_unlock(l);
   1251 			hook = p->p_userret;
   1252 			p->p_userret = NULL;
   1253 			(*hook)();
   1254 		}
   1255 	}
   1256 }
   1257 
   1258 /*
   1259  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1260  */
   1261 void
   1262 lwp_need_userret(struct lwp *l)
   1263 {
   1264 	KASSERT(lwp_locked(l, NULL));
   1265 
   1266 	/*
   1267 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1268 	 * that the condition will be seen before forcing the LWP to enter
   1269 	 * kernel mode.
   1270 	 */
   1271 	mb_write();
   1272 	cpu_signotify(l);
   1273 }
   1274 
   1275 /*
   1276  * Add one reference to an LWP.  This will prevent the LWP from
   1277  * exiting, thus keep the lwp structure and PCB around to inspect.
   1278  */
   1279 void
   1280 lwp_addref(struct lwp *l)
   1281 {
   1282 
   1283 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1284 	KASSERT(l->l_stat != LSZOMB);
   1285 	KASSERT(l->l_refcnt != 0);
   1286 
   1287 	l->l_refcnt++;
   1288 }
   1289 
   1290 /*
   1291  * Remove one reference to an LWP.  If this is the last reference,
   1292  * then we must finalize the LWP's death.
   1293  */
   1294 void
   1295 lwp_delref(struct lwp *l)
   1296 {
   1297 	struct proc *p = l->l_proc;
   1298 
   1299 	mutex_enter(&p->p_smutex);
   1300 	if (--l->l_refcnt == 0)
   1301 		cv_broadcast(&p->p_refcv);
   1302 	mutex_exit(&p->p_smutex);
   1303 }
   1304 
   1305 /*
   1306  * Drain all references to the current LWP.
   1307  */
   1308 void
   1309 lwp_drainrefs(struct lwp *l)
   1310 {
   1311 	struct proc *p = l->l_proc;
   1312 
   1313 	KASSERT(mutex_owned(&p->p_smutex));
   1314 	KASSERT(l->l_refcnt != 0);
   1315 
   1316 	l->l_refcnt--;
   1317 	while (l->l_refcnt != 0)
   1318 		cv_wait(&p->p_refcv, &p->p_smutex);
   1319 }
   1320 
   1321 /*
   1322  * lwp_specific_key_create --
   1323  *	Create a key for subsystem lwp-specific data.
   1324  */
   1325 int
   1326 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1327 {
   1328 
   1329 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1330 }
   1331 
   1332 /*
   1333  * lwp_specific_key_delete --
   1334  *	Delete a key for subsystem lwp-specific data.
   1335  */
   1336 void
   1337 lwp_specific_key_delete(specificdata_key_t key)
   1338 {
   1339 
   1340 	specificdata_key_delete(lwp_specificdata_domain, key);
   1341 }
   1342 
   1343 /*
   1344  * lwp_initspecific --
   1345  *	Initialize an LWP's specificdata container.
   1346  */
   1347 void
   1348 lwp_initspecific(struct lwp *l)
   1349 {
   1350 	int error;
   1351 
   1352 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1353 	KASSERT(error == 0);
   1354 }
   1355 
   1356 /*
   1357  * lwp_finispecific --
   1358  *	Finalize an LWP's specificdata container.
   1359  */
   1360 void
   1361 lwp_finispecific(struct lwp *l)
   1362 {
   1363 
   1364 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1365 }
   1366 
   1367 /*
   1368  * lwp_getspecific --
   1369  *	Return lwp-specific data corresponding to the specified key.
   1370  *
   1371  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1372  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1373  *	LWP's specifc data, care must be taken to ensure that doing so
   1374  *	would not cause internal data structure inconsistency (i.e. caller
   1375  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1376  *	or lwp_setspecific() call).
   1377  */
   1378 void *
   1379 lwp_getspecific(specificdata_key_t key)
   1380 {
   1381 
   1382 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1383 						  &curlwp->l_specdataref, key));
   1384 }
   1385 
   1386 void *
   1387 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1388 {
   1389 
   1390 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1391 						  &l->l_specdataref, key));
   1392 }
   1393 
   1394 /*
   1395  * lwp_setspecific --
   1396  *	Set lwp-specific data corresponding to the specified key.
   1397  */
   1398 void
   1399 lwp_setspecific(specificdata_key_t key, void *data)
   1400 {
   1401 
   1402 	specificdata_setspecific(lwp_specificdata_domain,
   1403 				 &curlwp->l_specdataref, key, data);
   1404 }
   1405