Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.61.2.23
      1 /*	$NetBSD: kern_lwp.c,v 1.61.2.23 2007/10/23 20:17:10 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit or thread of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp", also known as lwp_t.
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing concurrently in the kernel.
     52  *
     53  * Execution states
     54  *
     55  *	At any given time, an LWP has overall state that is described by
     56  *	lwp::l_stat.  The states are broken into two sets below.  The first
     57  *	set is guaranteed to represent the absolute, current state of the
     58  *	LWP:
     59  *
     60  * 	LSONPROC
     61  *
     62  * 		On processor: the LWP is executing on a CPU, either in the
     63  * 		kernel or in user space.
     64  *
     65  * 	LSRUN
     66  *
     67  * 		Runnable: the LWP is parked on a run queue, and may soon be
     68  * 		chosen to run by a idle processor, or by a processor that
     69  * 		has been asked to preempt a currently runnning but lower
     70  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     71  *		then the LWP is not on a run queue, but may be soon.
     72  *
     73  * 	LSIDL
     74  *
     75  * 		Idle: the LWP has been created but has not yet executed,
     76  *		or it has ceased executing a unit of work and is waiting
     77  *		to be started again.
     78  *
     79  * 	LSSUSPENDED:
     80  *
     81  * 		Suspended: the LWP has had its execution suspended by
     82  *		another LWP in the same process using the _lwp_suspend()
     83  *		system call.  User-level LWPs also enter the suspended
     84  *		state when the system is shutting down.
     85  *
     86  *	The second set represent a "statement of intent" on behalf of the
     87  *	LWP.  The LWP may in fact be executing on a processor, may be
     88  *	sleeping or idle. It is expected to take the necessary action to
     89  *	stop executing or become "running" again within	a short timeframe.
     90  *	The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
     91  *	Importantly, in indicates that its state is tied to a CPU.
     92  *
     93  * 	LSZOMB:
     94  *
     95  * 		Dead or dying: the LWP has released most of its resources
     96  *		and is a) about to switch away into oblivion b) has already
     97  *		switched away.  When it switches away, its few remaining
     98  *		resources can be collected.
     99  *
    100  * 	LSSLEEP:
    101  *
    102  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    103  * 		has switched away or will switch away shortly to allow other
    104  *		LWPs to run on the CPU.
    105  *
    106  * 	LSSTOP:
    107  *
    108  * 		Stopped: the LWP has been stopped as a result of a job
    109  * 		control signal, or as a result of the ptrace() interface.
    110  *
    111  * 		Stopped LWPs may run briefly within the kernel to handle
    112  * 		signals that they receive, but will not return to user space
    113  * 		until their process' state is changed away from stopped.
    114  *
    115  * 		Single LWPs within a process can not be set stopped
    116  * 		selectively: all actions that can stop or continue LWPs
    117  * 		occur at the process level.
    118  *
    119  * State transitions
    120  *
    121  *	Note that the LSSTOP state may only be set when returning to
    122  *	user space in userret(), or when sleeping interruptably.  The
    123  *	LSSUSPENDED state may only be set in userret().  Before setting
    124  *	those states, we try to ensure that the LWPs will release all
    125  *	locks that they hold, and at a minimum try to ensure that the
    126  *	LWP can be set runnable again by a signal.
    127  *
    128  *	LWPs may transition states in the following ways:
    129  *
    130  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131  *	            > STOPPED			    > SLEEP
    132  *	            > SUSPENDED			    > STOPPED
    133  *						    > SUSPENDED
    134  *						    > ZOMB
    135  *
    136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  *	            > SLEEP			    > SLEEP
    138  *
    139  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  *		    > RUN		            > SUSPENDED
    141  *		    > STOPPED                       > STOPPED
    142  *		    > SUSPENDED
    143  *
    144  *	Other state transitions are possible with kernel threads (eg
    145  *	ONPROC -> IDL), but only happen under tightly controlled
    146  *	circumstances the side effects are understood.
    147  *
    148  * Locking
    149  *
    150  *	The majority of fields in 'struct lwp' are covered by a single,
    151  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    152  *	each field are documented in sys/lwp.h.
    153  *
    154  *	State transitions must be made with the LWP's general lock held,
    155  * 	and may cause the LWP's lock pointer to change. Manipulation of
    156  *	the general lock is not performed directly, but through calls to
    157  *	lwp_lock(), lwp_relock() and similar.
    158  *
    159  *	States and their associated locks:
    160  *
    161  *	LSONPROC, LSZOMB:
    162  *
    163  *		Always covered by spc_lwplock, which protects running LWPs.
    164  *		This is a per-CPU lock.
    165  *
    166  *	LSIDL, LSRUN:
    167  *
    168  *		Always covered by spc_mutex, which protects the run queues.
    169  *		This may be a per-CPU lock, depending on the scheduler.
    170  *
    171  *	LSSLEEP:
    172  *
    173  *		Covered by a lock associated with the sleep queue that the
    174  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    175  *
    176  *	LSSTOP, LSSUSPENDED:
    177  *
    178  *		If the LWP was previously sleeping (l_wchan != NULL), then
    179  *		l_mutex references the sleep queue lock.  If the LWP was
    180  *		runnable or on the CPU when halted, or has been removed from
    181  *		the sleep queue since halted, then the lock is spc_lwplock.
    182  *
    183  *	The lock order is as follows:
    184  *
    185  *		spc::spc_lwplock ->
    186  *		    sleepq_t::sq_mutex ->
    187  *			tschain_t::tc_mutex ->
    188  *			    spc::spc_mutex
    189  *
    190  *	Each process has an scheduler state lock (proc::p_smutex), and a
    191  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    192  *	so on.  When an LWP is to be entered into or removed from one of the
    193  *	following states, p_mutex must be held and the process wide counters
    194  *	adjusted:
    195  *
    196  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    197  *
    198  *	Note that an LWP is considered running or likely to run soon if in
    199  *	one of the following states.  This affects the value of p_nrlwps:
    200  *
    201  *		LSRUN, LSONPROC, LSSLEEP
    202  *
    203  *	p_smutex does not need to be held when transitioning among these
    204  *	three states.
    205  */
    206 
    207 #include <sys/cdefs.h>
    208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.61.2.23 2007/10/23 20:17:10 ad Exp $");
    209 
    210 #include "opt_multiprocessor.h"
    211 #include "opt_lockdebug.h"
    212 
    213 #define _LWP_API_PRIVATE
    214 
    215 #include <sys/param.h>
    216 #include <sys/systm.h>
    217 #include <sys/cpu.h>
    218 #include <sys/pool.h>
    219 #include <sys/proc.h>
    220 #include <sys/syscallargs.h>
    221 #include <sys/syscall_stats.h>
    222 #include <sys/kauth.h>
    223 #include <sys/sleepq.h>
    224 #include <sys/lockdebug.h>
    225 #include <sys/kmem.h>
    226 #include <sys/intr.h>
    227 
    228 #include <uvm/uvm_extern.h>
    229 
    230 struct lwplist	alllwp;
    231 
    232 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    233     &pool_allocator_nointr, IPL_NONE);
    234 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    235     &pool_allocator_nointr, IPL_NONE);
    236 
    237 static specificdata_domain_t lwp_specificdata_domain;
    238 
    239 #define LWP_DEBUG
    240 
    241 #ifdef LWP_DEBUG
    242 int lwp_debug = 0;
    243 #define DPRINTF(x) if (lwp_debug) printf x
    244 #else
    245 #define DPRINTF(x)
    246 #endif
    247 
    248 void
    249 lwpinit(void)
    250 {
    251 
    252 	lwp_specificdata_domain = specificdata_domain_create();
    253 	KASSERT(lwp_specificdata_domain != NULL);
    254 	lwp_sys_init();
    255 }
    256 
    257 /*
    258  * Set an suspended.
    259  *
    260  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    261  * LWP before return.
    262  */
    263 int
    264 lwp_suspend(struct lwp *curl, struct lwp *t)
    265 {
    266 	int error;
    267 
    268 	KASSERT(mutex_owned(&t->l_proc->p_smutex));
    269 	KASSERT(lwp_locked(t, NULL));
    270 
    271 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    272 
    273 	/*
    274 	 * If the current LWP has been told to exit, we must not suspend anyone
    275 	 * else or deadlock could occur.  We won't return to userspace.
    276 	 */
    277 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    278 		lwp_unlock(t);
    279 		return (EDEADLK);
    280 	}
    281 
    282 	error = 0;
    283 
    284 	switch (t->l_stat) {
    285 	case LSRUN:
    286 	case LSONPROC:
    287 		t->l_flag |= LW_WSUSPEND;
    288 		lwp_need_userret(t);
    289 		lwp_unlock(t);
    290 		break;
    291 
    292 	case LSSLEEP:
    293 		t->l_flag |= LW_WSUSPEND;
    294 
    295 		/*
    296 		 * Kick the LWP and try to get it to the kernel boundary
    297 		 * so that it will release any locks that it holds.
    298 		 * setrunnable() will release the lock.
    299 		 */
    300 		if ((t->l_flag & LW_SINTR) != 0)
    301 			setrunnable(t);
    302 		else
    303 			lwp_unlock(t);
    304 		break;
    305 
    306 	case LSSUSPENDED:
    307 		lwp_unlock(t);
    308 		break;
    309 
    310 	case LSSTOP:
    311 		t->l_flag |= LW_WSUSPEND;
    312 		setrunnable(t);
    313 		break;
    314 
    315 	case LSIDL:
    316 	case LSZOMB:
    317 		error = EINTR; /* It's what Solaris does..... */
    318 		lwp_unlock(t);
    319 		break;
    320 	}
    321 
    322 	return (error);
    323 }
    324 
    325 /*
    326  * Restart a suspended LWP.
    327  *
    328  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    329  * LWP before return.
    330  */
    331 void
    332 lwp_continue(struct lwp *l)
    333 {
    334 
    335 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
    336 	KASSERT(lwp_locked(l, NULL));
    337 
    338 	DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
    339 	    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
    340 	    l->l_wchan));
    341 
    342 	/* If rebooting or not suspended, then just bail out. */
    343 	if ((l->l_flag & LW_WREBOOT) != 0) {
    344 		lwp_unlock(l);
    345 		return;
    346 	}
    347 
    348 	l->l_flag &= ~LW_WSUSPEND;
    349 
    350 	if (l->l_stat != LSSUSPENDED) {
    351 		lwp_unlock(l);
    352 		return;
    353 	}
    354 
    355 	/* setrunnable() will release the lock. */
    356 	setrunnable(l);
    357 }
    358 
    359 /*
    360  * Wait for an LWP within the current process to exit.  If 'lid' is
    361  * non-zero, we are waiting for a specific LWP.
    362  *
    363  * Must be called with p->p_smutex held.
    364  */
    365 int
    366 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    367 {
    368 	struct proc *p = l->l_proc;
    369 	struct lwp *l2;
    370 	int nfound, error;
    371 	lwpid_t curlid;
    372 	bool exiting;
    373 
    374 	DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
    375 	    p->p_pid, l->l_lid, lid));
    376 
    377 	KASSERT(mutex_owned(&p->p_smutex));
    378 
    379 	p->p_nlwpwait++;
    380 	l->l_waitingfor = lid;
    381 	curlid = l->l_lid;
    382 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    383 
    384 	for (;;) {
    385 		/*
    386 		 * Avoid a race between exit1() and sigexit(): if the
    387 		 * process is dumping core, then we need to bail out: call
    388 		 * into lwp_userret() where we will be suspended until the
    389 		 * deed is done.
    390 		 */
    391 		if ((p->p_sflag & PS_WCORE) != 0) {
    392 			mutex_exit(&p->p_smutex);
    393 			lwp_userret(l);
    394 #ifdef DIAGNOSTIC
    395 			panic("lwp_wait1");
    396 #endif
    397 			/* NOTREACHED */
    398 		}
    399 
    400 		/*
    401 		 * First off, drain any detached LWP that is waiting to be
    402 		 * reaped.
    403 		 */
    404 		while ((l2 = p->p_zomblwp) != NULL) {
    405 			p->p_zomblwp = NULL;
    406 			lwp_free(l2, false, false);/* releases proc mutex */
    407 			mutex_enter(&p->p_smutex);
    408 		}
    409 
    410 		/*
    411 		 * Now look for an LWP to collect.  If the whole process is
    412 		 * exiting, count detached LWPs as eligible to be collected,
    413 		 * but don't drain them here.
    414 		 */
    415 		nfound = 0;
    416 		error = 0;
    417 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    418 			/*
    419 			 * If a specific wait and the target is waiting on
    420 			 * us, then avoid deadlock.  This also traps LWPs
    421 			 * that try to wait on themselves.
    422 			 *
    423 			 * Note that this does not handle more complicated
    424 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    425 			 * can still be killed so it is not a major problem.
    426 			 */
    427 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    428 				error = EDEADLK;
    429 				break;
    430 			}
    431 			if (l2 == l)
    432 				continue;
    433 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    434 				nfound += exiting;
    435 				continue;
    436 			}
    437 			if (lid != 0) {
    438 				if (l2->l_lid != lid)
    439 					continue;
    440 				/*
    441 				 * Mark this LWP as the first waiter, if there
    442 				 * is no other.
    443 				 */
    444 				if (l2->l_waiter == 0)
    445 					l2->l_waiter = curlid;
    446 			} else if (l2->l_waiter != 0) {
    447 				/*
    448 				 * It already has a waiter - so don't
    449 				 * collect it.  If the waiter doesn't
    450 				 * grab it we'll get another chance
    451 				 * later.
    452 				 */
    453 				nfound++;
    454 				continue;
    455 			}
    456 			nfound++;
    457 
    458 			/* No need to lock the LWP in order to see LSZOMB. */
    459 			if (l2->l_stat != LSZOMB)
    460 				continue;
    461 
    462 			/*
    463 			 * We're no longer waiting.  Reset the "first waiter"
    464 			 * pointer on the target, in case it was us.
    465 			 */
    466 			l->l_waitingfor = 0;
    467 			l2->l_waiter = 0;
    468 			p->p_nlwpwait--;
    469 			if (departed)
    470 				*departed = l2->l_lid;
    471 
    472 			/* lwp_free() releases the proc lock. */
    473 			lwp_free(l2, false, false);
    474 			mutex_enter(&p->p_smutex);
    475 			return 0;
    476 		}
    477 
    478 		if (error != 0)
    479 			break;
    480 		if (nfound == 0) {
    481 			error = ESRCH;
    482 			break;
    483 		}
    484 
    485 		/*
    486 		 * The kernel is careful to ensure that it can not deadlock
    487 		 * when exiting - just keep waiting.
    488 		 */
    489 		if (exiting) {
    490 			KASSERT(p->p_nlwps > 1);
    491 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    492 			continue;
    493 		}
    494 
    495 		/*
    496 		 * If all other LWPs are waiting for exits or suspends
    497 		 * and the supply of zombies and potential zombies is
    498 		 * exhausted, then we are about to deadlock.
    499 		 *
    500 		 * If the process is exiting (and this LWP is not the one
    501 		 * that is coordinating the exit) then bail out now.
    502 		 */
    503 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    504 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    505 			error = EDEADLK;
    506 			break;
    507 		}
    508 
    509 		/*
    510 		 * Sit around and wait for something to happen.  We'll be
    511 		 * awoken if any of the conditions examined change: if an
    512 		 * LWP exits, is collected, or is detached.
    513 		 */
    514 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    515 			break;
    516 	}
    517 
    518 	/*
    519 	 * We didn't find any LWPs to collect, we may have received a
    520 	 * signal, or some other condition has caused us to bail out.
    521 	 *
    522 	 * If waiting on a specific LWP, clear the waiters marker: some
    523 	 * other LWP may want it.  Then, kick all the remaining waiters
    524 	 * so that they can re-check for zombies and for deadlock.
    525 	 */
    526 	if (lid != 0) {
    527 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    528 			if (l2->l_lid == lid) {
    529 				if (l2->l_waiter == curlid)
    530 					l2->l_waiter = 0;
    531 				break;
    532 			}
    533 		}
    534 	}
    535 	p->p_nlwpwait--;
    536 	l->l_waitingfor = 0;
    537 	cv_broadcast(&p->p_lwpcv);
    538 
    539 	return error;
    540 }
    541 
    542 /*
    543  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    544  * The new LWP is created in state LSIDL and must be set running,
    545  * suspended, or stopped by the caller.
    546  */
    547 int
    548 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
    549     int flags, void *stack, size_t stacksize,
    550     void (*func)(void *), void *arg, struct lwp **rnewlwpp)
    551 {
    552 	struct lwp *l2, *isfree;
    553 	turnstile_t *ts;
    554 
    555 	/*
    556 	 * First off, reap any detached LWP waiting to be collected.
    557 	 * We can re-use its LWP structure and turnstile.
    558 	 */
    559 	isfree = NULL;
    560 	if (p2->p_zomblwp != NULL) {
    561 		mutex_enter(&p2->p_smutex);
    562 		if ((isfree = p2->p_zomblwp) != NULL) {
    563 			p2->p_zomblwp = NULL;
    564 			lwp_free(isfree, true, false);/* releases proc mutex */
    565 		} else
    566 			mutex_exit(&p2->p_smutex);
    567 	}
    568 	if (isfree == NULL) {
    569 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    570 		memset(l2, 0, sizeof(*l2));
    571 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    572 		SLIST_INIT(&l2->l_pi_lenders);
    573 	} else {
    574 		l2 = isfree;
    575 		ts = l2->l_ts;
    576 		KASSERT(l2->l_inheritedprio == -1);
    577 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    578 		memset(l2, 0, sizeof(*l2));
    579 		l2->l_ts = ts;
    580 	}
    581 
    582 	l2->l_stat = LSIDL;
    583 	l2->l_proc = p2;
    584 	l2->l_refcnt = 1;
    585 	l2->l_priority = l1->l_priority;
    586 	l2->l_usrpri = l1->l_usrpri;
    587 	l2->l_inheritedprio = -1;
    588 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    589 	l2->l_cpu = l1->l_cpu;
    590 	l2->l_flag = inmem ? LW_INMEM : 0;
    591 	l2->l_pflag = LP_MPSAFE;
    592 
    593 	if (p2->p_flag & PK_SYSTEM) {
    594 		/*
    595 		 * Mark it as a system process and not a candidate for
    596 		 * swapping.
    597 		 */
    598 		l2->l_flag |= LW_SYSTEM;
    599 	} else {
    600 		/* Look for a CPU to start */
    601 		l2->l_cpu = sched_takecpu(l2);
    602 		l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
    603 	}
    604 
    605 	lwp_initspecific(l2);
    606 	sched_lwp_fork(l2);
    607 	lwp_update_creds(l2);
    608 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    609 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    610 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    611 	cv_init(&l2->l_sigcv, "sigwait");
    612 	l2->l_syncobj = &sched_syncobj;
    613 
    614 	if (rnewlwpp != NULL)
    615 		*rnewlwpp = l2;
    616 
    617 	l2->l_addr = UAREA_TO_USER(uaddr);
    618 	KERNEL_LOCK(1, curlwp);
    619 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    620 	    (arg != NULL) ? arg : l2);
    621 	KERNEL_UNLOCK_ONE(curlwp);
    622 
    623 	mutex_enter(&p2->p_smutex);
    624 
    625 	if ((flags & LWP_DETACHED) != 0) {
    626 		l2->l_prflag = LPR_DETACHED;
    627 		p2->p_ndlwps++;
    628 	} else
    629 		l2->l_prflag = 0;
    630 
    631 	l2->l_sigmask = l1->l_sigmask;
    632 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    633 	sigemptyset(&l2->l_sigpend.sp_set);
    634 
    635 	p2->p_nlwpid++;
    636 	if (p2->p_nlwpid == 0)
    637 		p2->p_nlwpid++;
    638 	l2->l_lid = p2->p_nlwpid;
    639 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    640 	p2->p_nlwps++;
    641 
    642 	mutex_exit(&p2->p_smutex);
    643 
    644 	mutex_enter(&proclist_lock);
    645 	mutex_enter(&proclist_mutex);
    646 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    647 	mutex_exit(&proclist_mutex);
    648 	mutex_exit(&proclist_lock);
    649 
    650 	SYSCALL_TIME_LWP_INIT(l2);
    651 
    652 	if (p2->p_emul->e_lwp_fork)
    653 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    654 
    655 	return (0);
    656 }
    657 
    658 /*
    659  * Called by MD code when a new LWP begins execution.  Must be called
    660  * with the previous LWP locked (so at splsched), or if there is no
    661  * previous LWP, at splsched.
    662  */
    663 void
    664 lwp_startup(struct lwp *prev, struct lwp *new)
    665 {
    666 
    667 	if (prev != NULL) {
    668 		lwp_unlock(prev);
    669 	}
    670 	spl0();
    671 	pmap_activate(new);
    672 	LOCKDEBUG_BARRIER(NULL, 0);
    673 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    674 		KERNEL_LOCK(1, new);
    675 	}
    676 }
    677 
    678 /*
    679  * Exit an LWP.
    680  */
    681 void
    682 lwp_exit(struct lwp *l)
    683 {
    684 	struct proc *p = l->l_proc;
    685 	struct lwp *l2;
    686 	bool current;
    687 
    688 	current = (l == curlwp);
    689 
    690 	DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
    691 	DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
    692 	KASSERT(current || l->l_stat == LSIDL);
    693 
    694 	/*
    695 	 * Verify that we hold no locks other than the kernel lock.
    696 	 */
    697 #ifdef MULTIPROCESSOR
    698 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    699 #else
    700 	LOCKDEBUG_BARRIER(NULL, 0);
    701 #endif
    702 
    703 	/*
    704 	 * If we are the last live LWP in a process, we need to exit the
    705 	 * entire process.  We do so with an exit status of zero, because
    706 	 * it's a "controlled" exit, and because that's what Solaris does.
    707 	 *
    708 	 * We are not quite a zombie yet, but for accounting purposes we
    709 	 * must increment the count of zombies here.
    710 	 *
    711 	 * Note: the last LWP's specificdata will be deleted here.
    712 	 */
    713 	mutex_enter(&p->p_smutex);
    714 	if (p->p_nlwps - p->p_nzlwps == 1) {
    715 		KASSERT(current == true);
    716 		DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
    717 		    p->p_pid, l->l_lid));
    718 		exit1(l, 0);
    719 		/* NOTREACHED */
    720 	}
    721 	p->p_nzlwps++;
    722 	mutex_exit(&p->p_smutex);
    723 
    724 	if (p->p_emul->e_lwp_exit)
    725 		(*p->p_emul->e_lwp_exit)(l);
    726 
    727 	/* Delete the specificdata while it's still safe to sleep. */
    728 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    729 
    730 	/*
    731 	 * Release our cached credentials.
    732 	 */
    733 	kauth_cred_free(l->l_cred);
    734 	callout_destroy(&l->l_timeout_ch);
    735 
    736 	/*
    737 	 * While we can still block, mark the LWP as unswappable to
    738 	 * prevent conflicts with the with the swapper.
    739 	 */
    740 	if (current)
    741 		uvm_lwp_hold(l);
    742 
    743 	/*
    744 	 * Remove the LWP from the global list.
    745 	 */
    746 	mutex_enter(&proclist_lock);
    747 	mutex_enter(&proclist_mutex);
    748 	LIST_REMOVE(l, l_list);
    749 	mutex_exit(&proclist_mutex);
    750 	mutex_exit(&proclist_lock);
    751 
    752 	/*
    753 	 * Get rid of all references to the LWP that others (e.g. procfs)
    754 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    755 	 * mark it waiting for collection in the proc structure.  Note that
    756 	 * before we can do that, we need to free any other dead, deatched
    757 	 * LWP waiting to meet its maker.
    758 	 *
    759 	 * XXXSMP disable preemption.
    760 	 */
    761 	mutex_enter(&p->p_smutex);
    762 	lwp_drainrefs(l);
    763 
    764 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    765 		while ((l2 = p->p_zomblwp) != NULL) {
    766 			p->p_zomblwp = NULL;
    767 			lwp_free(l2, false, false);/* releases proc mutex */
    768 			mutex_enter(&p->p_smutex);
    769 			l->l_refcnt++;
    770 			lwp_drainrefs(l);
    771 		}
    772 		p->p_zomblwp = l;
    773 	}
    774 
    775 	/*
    776 	 * If we find a pending signal for the process and we have been
    777 	 * asked to check for signals, then we loose: arrange to have
    778 	 * all other LWPs in the process check for signals.
    779 	 */
    780 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    781 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    782 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    783 			lwp_lock(l2);
    784 			l2->l_flag |= LW_PENDSIG;
    785 			lwp_unlock(l2);
    786 		}
    787 	}
    788 
    789 	lwp_lock(l);
    790 	l->l_stat = LSZOMB;
    791 	lwp_unlock(l);
    792 	p->p_nrlwps--;
    793 	cv_broadcast(&p->p_lwpcv);
    794 	mutex_exit(&p->p_smutex);
    795 
    796 	/*
    797 	 * We can no longer block.  At this point, lwp_free() may already
    798 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    799 	 *
    800 	 * Free MD LWP resources.
    801 	 */
    802 #ifndef __NO_CPU_LWP_FREE
    803 	cpu_lwp_free(l, 0);
    804 #endif
    805 
    806 	if (current) {
    807 		pmap_deactivate(l);
    808 
    809 		/*
    810 		 * Release the kernel lock, and switch away into
    811 		 * oblivion.
    812 		 */
    813 #ifdef notyet
    814 		/* XXXSMP hold in lwp_userret() */
    815 		KERNEL_UNLOCK_LAST(l);
    816 #else
    817 		KERNEL_UNLOCK_ALL(l, NULL);
    818 #endif
    819 		lwp_exit_switchaway(l);
    820 	}
    821 }
    822 
    823 void
    824 lwp_exit_switchaway(struct lwp *l)
    825 {
    826 	struct cpu_info *ci;
    827 	struct lwp *idlelwp;
    828 
    829 	/* Unlocked, but is for statistics only. */
    830 	uvmexp.swtch++;
    831 
    832 	(void)splsched();
    833 	l->l_flag &= ~LW_RUNNING;
    834 	ci = curcpu();
    835 	idlelwp = ci->ci_data.cpu_idlelwp;
    836 	idlelwp->l_stat = LSONPROC;
    837 	cpu_switchto(NULL, idlelwp, false);
    838 }
    839 
    840 /*
    841  * Free a dead LWP's remaining resources.
    842  *
    843  * XXXLWP limits.
    844  */
    845 void
    846 lwp_free(struct lwp *l, bool recycle, bool last)
    847 {
    848 	struct proc *p = l->l_proc;
    849 	ksiginfoq_t kq;
    850 
    851 	/*
    852 	 * If this was not the last LWP in the process, then adjust
    853 	 * counters and unlock.
    854 	 */
    855 	if (!last) {
    856 		/*
    857 		 * Add the LWP's run time to the process' base value.
    858 		 * This needs to co-incide with coming off p_lwps.
    859 		 */
    860 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    861 		p->p_pctcpu += l->l_pctcpu;
    862 		LIST_REMOVE(l, l_sibling);
    863 		p->p_nlwps--;
    864 		p->p_nzlwps--;
    865 		if ((l->l_prflag & LPR_DETACHED) != 0)
    866 			p->p_ndlwps--;
    867 
    868 		/*
    869 		 * Have any LWPs sleeping in lwp_wait() recheck for
    870 		 * deadlock.
    871 		 */
    872 		cv_broadcast(&p->p_lwpcv);
    873 		mutex_exit(&p->p_smutex);
    874 	}
    875 
    876 #ifdef MULTIPROCESSOR
    877 	/*
    878 	 * In the unlikely event that the LWP is still on the CPU,
    879 	 * then spin until it has switched away.  We need to release
    880 	 * all locks to avoid deadlock against interrupt handlers on
    881 	 * the target CPU.
    882 	 */
    883 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    884 		int count;
    885 		(void)count; /* XXXgcc */
    886 		KERNEL_UNLOCK_ALL(curlwp, &count);
    887 		while ((l->l_flag & LW_RUNNING) != 0 ||
    888 		    l->l_cpu->ci_curlwp == l)
    889 			SPINLOCK_BACKOFF_HOOK;
    890 		KERNEL_LOCK(count, curlwp);
    891 	}
    892 #endif
    893 
    894 	/*
    895 	 * Destroy the LWP's remaining signal information.
    896 	 */
    897 	ksiginfo_queue_init(&kq);
    898 	sigclear(&l->l_sigpend, NULL, &kq);
    899 	ksiginfo_queue_drain(&kq);
    900 	cv_destroy(&l->l_sigcv);
    901 	mutex_destroy(&l->l_swaplock);
    902 
    903 	/*
    904 	 * Free the LWP's turnstile and the LWP structure itself unless the
    905 	 * caller wants to recycle them.  Also, free the scheduler specific data.
    906 	 *
    907 	 * We can't return turnstile0 to the pool (it didn't come from it),
    908 	 * so if it comes up just drop it quietly and move on.
    909 	 *
    910 	 * We don't recycle the VM resources at this time.
    911 	 */
    912 	if (!recycle && l->l_ts != &turnstile0)
    913 		pool_cache_put(turnstile_cache, l->l_ts);
    914 #ifndef __NO_CPU_LWP_FREE
    915 	cpu_lwp_free2(l);
    916 #endif
    917 	uvm_lwp_exit(l);
    918 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    919 	KASSERT(l->l_inheritedprio == -1);
    920 	sched_lwp_exit(l);
    921 	if (!recycle)
    922 		pool_put(&lwp_pool, l);
    923 }
    924 
    925 /*
    926  * Pick a LWP to represent the process for those operations which
    927  * want information about a "process" that is actually associated
    928  * with a LWP.
    929  *
    930  * If 'locking' is false, no locking or lock checks are performed.
    931  * This is intended for use by DDB.
    932  *
    933  * We don't bother locking the LWP here, since code that uses this
    934  * interface is broken by design and an exact match is not required.
    935  */
    936 struct lwp *
    937 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    938 {
    939 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    940 	struct lwp *signalled;
    941 	int cnt;
    942 
    943 	if (locking) {
    944 		KASSERT(mutex_owned(&p->p_smutex));
    945 	}
    946 
    947 	/* Trivial case: only one LWP */
    948 	if (p->p_nlwps == 1) {
    949 		l = LIST_FIRST(&p->p_lwps);
    950 		if (nrlwps)
    951 			*nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
    952 		return l;
    953 	}
    954 
    955 	cnt = 0;
    956 	switch (p->p_stat) {
    957 	case SSTOP:
    958 	case SACTIVE:
    959 		/* Pick the most live LWP */
    960 		onproc = running = sleeping = stopped = suspended = NULL;
    961 		signalled = NULL;
    962 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    963 			if ((l->l_flag & LW_IDLE) != 0) {
    964 				continue;
    965 			}
    966 			if (l->l_lid == p->p_sigctx.ps_lwp)
    967 				signalled = l;
    968 			switch (l->l_stat) {
    969 			case LSONPROC:
    970 				onproc = l;
    971 				cnt++;
    972 				break;
    973 			case LSRUN:
    974 				running = l;
    975 				cnt++;
    976 				break;
    977 			case LSSLEEP:
    978 				sleeping = l;
    979 				break;
    980 			case LSSTOP:
    981 				stopped = l;
    982 				break;
    983 			case LSSUSPENDED:
    984 				suspended = l;
    985 				break;
    986 			}
    987 		}
    988 		if (nrlwps)
    989 			*nrlwps = cnt;
    990 		if (signalled)
    991 			l = signalled;
    992 		else if (onproc)
    993 			l = onproc;
    994 		else if (running)
    995 			l = running;
    996 		else if (sleeping)
    997 			l = sleeping;
    998 		else if (stopped)
    999 			l = stopped;
   1000 		else if (suspended)
   1001 			l = suspended;
   1002 		else
   1003 			break;
   1004 		return l;
   1005 #ifdef DIAGNOSTIC
   1006 	case SIDL:
   1007 	case SZOMB:
   1008 	case SDYING:
   1009 	case SDEAD:
   1010 		if (locking)
   1011 			mutex_exit(&p->p_smutex);
   1012 		/* We have more than one LWP and we're in SIDL?
   1013 		 * How'd that happen?
   1014 		 */
   1015 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
   1016 		    p->p_pid, p->p_comm, p->p_stat);
   1017 		break;
   1018 	default:
   1019 		if (locking)
   1020 			mutex_exit(&p->p_smutex);
   1021 		panic("Process %d (%s) in unknown state %d",
   1022 		    p->p_pid, p->p_comm, p->p_stat);
   1023 #endif
   1024 	}
   1025 
   1026 	if (locking)
   1027 		mutex_exit(&p->p_smutex);
   1028 	panic("proc_representative_lwp: couldn't find a lwp for process"
   1029 		" %d (%s)", p->p_pid, p->p_comm);
   1030 	/* NOTREACHED */
   1031 	return NULL;
   1032 }
   1033 
   1034 /*
   1035  * Look up a live LWP within the speicifed process, and return it locked.
   1036  *
   1037  * Must be called with p->p_smutex held.
   1038  */
   1039 struct lwp *
   1040 lwp_find(struct proc *p, int id)
   1041 {
   1042 	struct lwp *l;
   1043 
   1044 	KASSERT(mutex_owned(&p->p_smutex));
   1045 
   1046 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1047 		if (l->l_lid == id)
   1048 			break;
   1049 	}
   1050 
   1051 	/*
   1052 	 * No need to lock - all of these conditions will
   1053 	 * be visible with the process level mutex held.
   1054 	 */
   1055 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1056 		l = NULL;
   1057 
   1058 	return l;
   1059 }
   1060 
   1061 /*
   1062  * Update an LWP's cached credentials to mirror the process' master copy.
   1063  *
   1064  * This happens early in the syscall path, on user trap, and on LWP
   1065  * creation.  A long-running LWP can also voluntarily choose to update
   1066  * it's credentials by calling this routine.  This may be called from
   1067  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1068  */
   1069 void
   1070 lwp_update_creds(struct lwp *l)
   1071 {
   1072 	kauth_cred_t oc;
   1073 	struct proc *p;
   1074 
   1075 	p = l->l_proc;
   1076 	oc = l->l_cred;
   1077 
   1078 	mutex_enter(&p->p_mutex);
   1079 	kauth_cred_hold(p->p_cred);
   1080 	l->l_cred = p->p_cred;
   1081 	mutex_exit(&p->p_mutex);
   1082 	if (oc != NULL)
   1083 		kauth_cred_free(oc);
   1084 }
   1085 
   1086 /*
   1087  * Verify that an LWP is locked, and optionally verify that the lock matches
   1088  * one we specify.
   1089  */
   1090 int
   1091 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1092 {
   1093 	kmutex_t *cur = l->l_mutex;
   1094 
   1095 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1096 }
   1097 
   1098 /*
   1099  * Lock an LWP.
   1100  */
   1101 void
   1102 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1103 {
   1104 
   1105 	/*
   1106 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1107 	 *
   1108 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1109 	 */
   1110 #if 1
   1111 	while (l->l_mutex != old) {
   1112 #else
   1113 	for (;;) {
   1114 #endif
   1115 		mutex_spin_exit(old);
   1116 		old = l->l_mutex;
   1117 		mutex_spin_enter(old);
   1118 
   1119 		/*
   1120 		 * mutex_enter() will have posted a read barrier.  Re-test
   1121 		 * l->l_mutex.  If it has changed, we need to try again.
   1122 		 */
   1123 #if 1
   1124 	}
   1125 #else
   1126 	} while (__predict_false(l->l_mutex != old));
   1127 #endif
   1128 }
   1129 
   1130 /*
   1131  * Lend a new mutex to an LWP.  The old mutex must be held.
   1132  */
   1133 void
   1134 lwp_setlock(struct lwp *l, kmutex_t *new)
   1135 {
   1136 
   1137 	KASSERT(mutex_owned(l->l_mutex));
   1138 
   1139 	mb_write();
   1140 	l->l_mutex = new;
   1141 }
   1142 
   1143 /*
   1144  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1145  * must be held.
   1146  */
   1147 void
   1148 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1149 {
   1150 	kmutex_t *old;
   1151 
   1152 	KASSERT(mutex_owned(l->l_mutex));
   1153 
   1154 	old = l->l_mutex;
   1155 	mb_write();
   1156 	l->l_mutex = new;
   1157 	mutex_spin_exit(old);
   1158 }
   1159 
   1160 /*
   1161  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1162  * locked.
   1163  */
   1164 void
   1165 lwp_relock(struct lwp *l, kmutex_t *new)
   1166 {
   1167 	kmutex_t *old;
   1168 
   1169 	KASSERT(mutex_owned(l->l_mutex));
   1170 
   1171 	old = l->l_mutex;
   1172 	if (old != new) {
   1173 		mutex_spin_enter(new);
   1174 		l->l_mutex = new;
   1175 		mutex_spin_exit(old);
   1176 	}
   1177 }
   1178 
   1179 int
   1180 lwp_trylock(struct lwp *l)
   1181 {
   1182 	kmutex_t *old;
   1183 
   1184 	for (;;) {
   1185 		if (!mutex_tryenter(old = l->l_mutex))
   1186 			return 0;
   1187 		if (__predict_true(l->l_mutex == old))
   1188 			return 1;
   1189 		mutex_spin_exit(old);
   1190 	}
   1191 }
   1192 
   1193 /*
   1194  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1195  * set.
   1196  */
   1197 void
   1198 lwp_userret(struct lwp *l)
   1199 {
   1200 	struct proc *p;
   1201 	void (*hook)(void);
   1202 	int sig;
   1203 
   1204 	p = l->l_proc;
   1205 
   1206 	/*
   1207 	 * It should be safe to do this read unlocked on a multiprocessor
   1208 	 * system..
   1209 	 */
   1210 	while ((l->l_flag & LW_USERRET) != 0) {
   1211 		/*
   1212 		 * Process pending signals first, unless the process
   1213 		 * is dumping core or exiting, where we will instead
   1214 		 * enter the L_WSUSPEND case below.
   1215 		 */
   1216 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1217 		    LW_PENDSIG) {
   1218 			mutex_enter(&p->p_smutex);
   1219 			while ((sig = issignal(l)) != 0)
   1220 				postsig(sig);
   1221 			mutex_exit(&p->p_smutex);
   1222 		}
   1223 
   1224 		/*
   1225 		 * Core-dump or suspend pending.
   1226 		 *
   1227 		 * In case of core dump, suspend ourselves, so that the
   1228 		 * kernel stack and therefore the userland registers saved
   1229 		 * in the trapframe are around for coredump() to write them
   1230 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1231 		 * will write the core file out once all other LWPs are
   1232 		 * suspended.
   1233 		 */
   1234 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1235 			mutex_enter(&p->p_smutex);
   1236 			p->p_nrlwps--;
   1237 			cv_broadcast(&p->p_lwpcv);
   1238 			lwp_lock(l);
   1239 			l->l_stat = LSSUSPENDED;
   1240 			mutex_exit(&p->p_smutex);
   1241 			mi_switch(l);
   1242 		}
   1243 
   1244 		/* Process is exiting. */
   1245 		if ((l->l_flag & LW_WEXIT) != 0) {
   1246 			KERNEL_LOCK(1, l);
   1247 			lwp_exit(l);
   1248 			KASSERT(0);
   1249 			/* NOTREACHED */
   1250 		}
   1251 
   1252 		/* Call userret hook; used by Linux emulation. */
   1253 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1254 			lwp_lock(l);
   1255 			l->l_flag &= ~LW_WUSERRET;
   1256 			lwp_unlock(l);
   1257 			hook = p->p_userret;
   1258 			p->p_userret = NULL;
   1259 			(*hook)();
   1260 		}
   1261 	}
   1262 
   1263 #ifndef __HAVE_FAST_SOFTINTS
   1264 	/* If there are pending soft interrupts, then run them. */
   1265 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1266 		softint_overlay();
   1267 #endif
   1268 }
   1269 
   1270 /*
   1271  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1272  */
   1273 void
   1274 lwp_need_userret(struct lwp *l)
   1275 {
   1276 	KASSERT(lwp_locked(l, NULL));
   1277 
   1278 	/*
   1279 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1280 	 * that the condition will be seen before forcing the LWP to enter
   1281 	 * kernel mode.
   1282 	 */
   1283 	mb_write();
   1284 	cpu_signotify(l);
   1285 }
   1286 
   1287 /*
   1288  * Add one reference to an LWP.  This will prevent the LWP from
   1289  * exiting, thus keep the lwp structure and PCB around to inspect.
   1290  */
   1291 void
   1292 lwp_addref(struct lwp *l)
   1293 {
   1294 
   1295 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1296 	KASSERT(l->l_stat != LSZOMB);
   1297 	KASSERT(l->l_refcnt != 0);
   1298 
   1299 	l->l_refcnt++;
   1300 }
   1301 
   1302 /*
   1303  * Remove one reference to an LWP.  If this is the last reference,
   1304  * then we must finalize the LWP's death.
   1305  */
   1306 void
   1307 lwp_delref(struct lwp *l)
   1308 {
   1309 	struct proc *p = l->l_proc;
   1310 
   1311 	mutex_enter(&p->p_smutex);
   1312 	KASSERT(l->l_stat != LSZOMB);
   1313 	KASSERT(l->l_refcnt > 0);
   1314 	if (--l->l_refcnt == 0)
   1315 		cv_broadcast(&p->p_refcv);
   1316 	mutex_exit(&p->p_smutex);
   1317 }
   1318 
   1319 /*
   1320  * Drain all references to the current LWP.
   1321  */
   1322 void
   1323 lwp_drainrefs(struct lwp *l)
   1324 {
   1325 	struct proc *p = l->l_proc;
   1326 
   1327 	KASSERT(mutex_owned(&p->p_smutex));
   1328 	KASSERT(l->l_refcnt != 0);
   1329 
   1330 	l->l_refcnt--;
   1331 	while (l->l_refcnt != 0)
   1332 		cv_wait(&p->p_refcv, &p->p_smutex);
   1333 }
   1334 
   1335 /*
   1336  * lwp_specific_key_create --
   1337  *	Create a key for subsystem lwp-specific data.
   1338  */
   1339 int
   1340 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1341 {
   1342 
   1343 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1344 }
   1345 
   1346 /*
   1347  * lwp_specific_key_delete --
   1348  *	Delete a key for subsystem lwp-specific data.
   1349  */
   1350 void
   1351 lwp_specific_key_delete(specificdata_key_t key)
   1352 {
   1353 
   1354 	specificdata_key_delete(lwp_specificdata_domain, key);
   1355 }
   1356 
   1357 /*
   1358  * lwp_initspecific --
   1359  *	Initialize an LWP's specificdata container.
   1360  */
   1361 void
   1362 lwp_initspecific(struct lwp *l)
   1363 {
   1364 	int error;
   1365 
   1366 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1367 	KASSERT(error == 0);
   1368 }
   1369 
   1370 /*
   1371  * lwp_finispecific --
   1372  *	Finalize an LWP's specificdata container.
   1373  */
   1374 void
   1375 lwp_finispecific(struct lwp *l)
   1376 {
   1377 
   1378 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1379 }
   1380 
   1381 /*
   1382  * lwp_getspecific --
   1383  *	Return lwp-specific data corresponding to the specified key.
   1384  *
   1385  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1386  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1387  *	LWP's specifc data, care must be taken to ensure that doing so
   1388  *	would not cause internal data structure inconsistency (i.e. caller
   1389  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1390  *	or lwp_setspecific() call).
   1391  */
   1392 void *
   1393 lwp_getspecific(specificdata_key_t key)
   1394 {
   1395 
   1396 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1397 						  &curlwp->l_specdataref, key));
   1398 }
   1399 
   1400 void *
   1401 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1402 {
   1403 
   1404 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1405 						  &l->l_specdataref, key));
   1406 }
   1407 
   1408 /*
   1409  * lwp_setspecific --
   1410  *	Set lwp-specific data corresponding to the specified key.
   1411  */
   1412 void
   1413 lwp_setspecific(specificdata_key_t key, void *data)
   1414 {
   1415 
   1416 	specificdata_setspecific(lwp_specificdata_domain,
   1417 				 &curlwp->l_specdataref, key, data);
   1418 }
   1419