kern_lwp.c revision 1.61.2.25 1 /* $NetBSD: kern_lwp.c,v 1.61.2.25 2007/11/01 21:58:18 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit or thread of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp", also known as lwp_t.
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing concurrently in the kernel.
52 *
53 * Execution states
54 *
55 * At any given time, an LWP has overall state that is described by
56 * lwp::l_stat. The states are broken into two sets below. The first
57 * set is guaranteed to represent the absolute, current state of the
58 * LWP:
59 *
60 * LSONPROC
61 *
62 * On processor: the LWP is executing on a CPU, either in the
63 * kernel or in user space.
64 *
65 * LSRUN
66 *
67 * Runnable: the LWP is parked on a run queue, and may soon be
68 * chosen to run by a idle processor, or by a processor that
69 * has been asked to preempt a currently runnning but lower
70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 * then the LWP is not on a run queue, but may be soon.
72 *
73 * LSIDL
74 *
75 * Idle: the LWP has been created but has not yet executed,
76 * or it has ceased executing a unit of work and is waiting
77 * to be started again.
78 *
79 * LSSUSPENDED:
80 *
81 * Suspended: the LWP has had its execution suspended by
82 * another LWP in the same process using the _lwp_suspend()
83 * system call. User-level LWPs also enter the suspended
84 * state when the system is shutting down.
85 *
86 * The second set represent a "statement of intent" on behalf of the
87 * LWP. The LWP may in fact be executing on a processor, may be
88 * sleeping or idle. It is expected to take the necessary action to
89 * stop executing or become "running" again within a short timeframe.
90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91 * Importantly, in indicates that its state is tied to a CPU.
92 *
93 * LSZOMB:
94 *
95 * Dead or dying: the LWP has released most of its resources
96 * and is a) about to switch away into oblivion b) has already
97 * switched away. When it switches away, its few remaining
98 * resources can be collected.
99 *
100 * LSSLEEP:
101 *
102 * Sleeping: the LWP has entered itself onto a sleep queue, and
103 * has switched away or will switch away shortly to allow other
104 * LWPs to run on the CPU.
105 *
106 * LSSTOP:
107 *
108 * Stopped: the LWP has been stopped as a result of a job
109 * control signal, or as a result of the ptrace() interface.
110 *
111 * Stopped LWPs may run briefly within the kernel to handle
112 * signals that they receive, but will not return to user space
113 * until their process' state is changed away from stopped.
114 *
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP state may only be set when returning to
122 * user space in userret(), or when sleeping interruptably. The
123 * LSSUSPENDED state may only be set in userret(). Before setting
124 * those states, we try to ensure that the LWPs will release all
125 * locks that they hold, and at a minimum try to ensure that the
126 * LWP can be set runnable again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Other state transitions are possible with kernel threads (eg
145 * ONPROC -> IDL), but only happen under tightly controlled
146 * circumstances the side effects are understood.
147 *
148 * Locking
149 *
150 * The majority of fields in 'struct lwp' are covered by a single,
151 * general spin lock pointed to by lwp::l_mutex. The locks covering
152 * each field are documented in sys/lwp.h.
153 *
154 * State transitions must be made with the LWP's general lock held,
155 * and may cause the LWP's lock pointer to change. Manipulation of
156 * the general lock is not performed directly, but through calls to
157 * lwp_lock(), lwp_relock() and similar.
158 *
159 * States and their associated locks:
160 *
161 * LSONPROC, LSZOMB:
162 *
163 * Always covered by spc_lwplock, which protects running LWPs.
164 * This is a per-CPU lock.
165 *
166 * LSIDL, LSRUN:
167 *
168 * Always covered by spc_mutex, which protects the run queues.
169 * This may be a per-CPU lock, depending on the scheduler.
170 *
171 * LSSLEEP:
172 *
173 * Covered by a lock associated with the sleep queue that the
174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175 *
176 * LSSTOP, LSSUSPENDED:
177 *
178 * If the LWP was previously sleeping (l_wchan != NULL), then
179 * l_mutex references the sleep queue lock. If the LWP was
180 * runnable or on the CPU when halted, or has been removed from
181 * the sleep queue since halted, then the lock is spc_lwplock.
182 *
183 * The lock order is as follows:
184 *
185 * spc::spc_lwplock ->
186 * sleepq_t::sq_mutex ->
187 * tschain_t::tc_mutex ->
188 * spc::spc_mutex
189 *
190 * Each process has an scheduler state lock (proc::p_smutex), and a
191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192 * so on. When an LWP is to be entered into or removed from one of the
193 * following states, p_mutex must be held and the process wide counters
194 * adjusted:
195 *
196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197 *
198 * Note that an LWP is considered running or likely to run soon if in
199 * one of the following states. This affects the value of p_nrlwps:
200 *
201 * LSRUN, LSONPROC, LSSLEEP
202 *
203 * p_smutex does not need to be held when transitioning among these
204 * three states.
205 */
206
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.61.2.25 2007/11/01 21:58:18 ad Exp $");
209
210 #include "opt_multiprocessor.h"
211 #include "opt_lockdebug.h"
212
213 #define _LWP_API_PRIVATE
214
215 #include <sys/param.h>
216 #include <sys/systm.h>
217 #include <sys/cpu.h>
218 #include <sys/pool.h>
219 #include <sys/proc.h>
220 #include <sys/syscallargs.h>
221 #include <sys/syscall_stats.h>
222 #include <sys/kauth.h>
223 #include <sys/sleepq.h>
224 #include <sys/lockdebug.h>
225 #include <sys/kmem.h>
226 #include <sys/intr.h>
227
228 #include <uvm/uvm_extern.h>
229
230 struct lwplist alllwp;
231
232 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
233 &pool_allocator_nointr, IPL_NONE);
234 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
235 &pool_allocator_nointr, IPL_NONE);
236
237 static specificdata_domain_t lwp_specificdata_domain;
238
239 #define LWP_DEBUG
240
241 #ifdef LWP_DEBUG
242 int lwp_debug = 0;
243 #define DPRINTF(x) if (lwp_debug) printf x
244 #else
245 #define DPRINTF(x)
246 #endif
247
248 void
249 lwpinit(void)
250 {
251
252 lwp_specificdata_domain = specificdata_domain_create();
253 KASSERT(lwp_specificdata_domain != NULL);
254 lwp_sys_init();
255 }
256
257 /*
258 * Set an suspended.
259 *
260 * Must be called with p_smutex held, and the LWP locked. Will unlock the
261 * LWP before return.
262 */
263 int
264 lwp_suspend(struct lwp *curl, struct lwp *t)
265 {
266 int error;
267
268 KASSERT(mutex_owned(&t->l_proc->p_smutex));
269 KASSERT(lwp_locked(t, NULL));
270
271 KASSERT(curl != t || curl->l_stat == LSONPROC);
272
273 /*
274 * If the current LWP has been told to exit, we must not suspend anyone
275 * else or deadlock could occur. We won't return to userspace.
276 */
277 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
278 lwp_unlock(t);
279 return (EDEADLK);
280 }
281
282 error = 0;
283
284 switch (t->l_stat) {
285 case LSRUN:
286 case LSONPROC:
287 t->l_flag |= LW_WSUSPEND;
288 lwp_need_userret(t);
289 lwp_unlock(t);
290 break;
291
292 case LSSLEEP:
293 t->l_flag |= LW_WSUSPEND;
294
295 /*
296 * Kick the LWP and try to get it to the kernel boundary
297 * so that it will release any locks that it holds.
298 * setrunnable() will release the lock.
299 */
300 if ((t->l_flag & LW_SINTR) != 0)
301 setrunnable(t);
302 else
303 lwp_unlock(t);
304 break;
305
306 case LSSUSPENDED:
307 lwp_unlock(t);
308 break;
309
310 case LSSTOP:
311 t->l_flag |= LW_WSUSPEND;
312 setrunnable(t);
313 break;
314
315 case LSIDL:
316 case LSZOMB:
317 error = EINTR; /* It's what Solaris does..... */
318 lwp_unlock(t);
319 break;
320 }
321
322 return (error);
323 }
324
325 /*
326 * Restart a suspended LWP.
327 *
328 * Must be called with p_smutex held, and the LWP locked. Will unlock the
329 * LWP before return.
330 */
331 void
332 lwp_continue(struct lwp *l)
333 {
334
335 KASSERT(mutex_owned(&l->l_proc->p_smutex));
336 KASSERT(lwp_locked(l, NULL));
337
338 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
339 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
340 l->l_wchan));
341
342 /* If rebooting or not suspended, then just bail out. */
343 if ((l->l_flag & LW_WREBOOT) != 0) {
344 lwp_unlock(l);
345 return;
346 }
347
348 l->l_flag &= ~LW_WSUSPEND;
349
350 if (l->l_stat != LSSUSPENDED) {
351 lwp_unlock(l);
352 return;
353 }
354
355 /* setrunnable() will release the lock. */
356 setrunnable(l);
357 }
358
359 /*
360 * Wait for an LWP within the current process to exit. If 'lid' is
361 * non-zero, we are waiting for a specific LWP.
362 *
363 * Must be called with p->p_smutex held.
364 */
365 int
366 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
367 {
368 struct proc *p = l->l_proc;
369 struct lwp *l2;
370 int nfound, error;
371 lwpid_t curlid;
372 bool exiting;
373 fixpt_t estcpu;
374
375 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
376 p->p_pid, l->l_lid, lid));
377
378 KASSERT(mutex_owned(&p->p_smutex));
379
380 p->p_nlwpwait++;
381 l->l_waitingfor = lid;
382 curlid = l->l_lid;
383 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
384
385 for (;;) {
386 /*
387 * Avoid a race between exit1() and sigexit(): if the
388 * process is dumping core, then we need to bail out: call
389 * into lwp_userret() where we will be suspended until the
390 * deed is done.
391 */
392 if ((p->p_sflag & PS_WCORE) != 0) {
393 mutex_exit(&p->p_smutex);
394 lwp_userret(l);
395 #ifdef DIAGNOSTIC
396 panic("lwp_wait1");
397 #endif
398 /* NOTREACHED */
399 }
400
401 /*
402 * First off, drain any detached LWP that is waiting to be
403 * reaped.
404 */
405 while ((l2 = p->p_zomblwp) != NULL) {
406 p->p_zomblwp = NULL;
407 lwp_free(l2, false, false);/* releases proc mutex */
408 mutex_enter(&p->p_smutex);
409 }
410
411 /*
412 * Now look for an LWP to collect. If the whole process is
413 * exiting, count detached LWPs as eligible to be collected,
414 * but don't drain them here.
415 */
416 nfound = 0;
417 error = 0;
418 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
419 /*
420 * If a specific wait and the target is waiting on
421 * us, then avoid deadlock. This also traps LWPs
422 * that try to wait on themselves.
423 *
424 * Note that this does not handle more complicated
425 * cycles, like: t1 -> t2 -> t3 -> t1. The process
426 * can still be killed so it is not a major problem.
427 */
428 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
429 error = EDEADLK;
430 break;
431 }
432 if (l2 == l)
433 continue;
434 if ((l2->l_prflag & LPR_DETACHED) != 0) {
435 nfound += exiting;
436 continue;
437 }
438 if (lid != 0) {
439 if (l2->l_lid != lid)
440 continue;
441 /*
442 * Mark this LWP as the first waiter, if there
443 * is no other.
444 */
445 if (l2->l_waiter == 0)
446 l2->l_waiter = curlid;
447 } else if (l2->l_waiter != 0) {
448 /*
449 * It already has a waiter - so don't
450 * collect it. If the waiter doesn't
451 * grab it we'll get another chance
452 * later.
453 */
454 nfound++;
455 continue;
456 }
457 nfound++;
458
459 /* No need to lock the LWP in order to see LSZOMB. */
460 if (l2->l_stat != LSZOMB)
461 continue;
462
463 /*
464 * We're no longer waiting. Reset the "first waiter"
465 * pointer on the target, in case it was us.
466 */
467 l->l_waitingfor = 0;
468 l2->l_waiter = 0;
469 p->p_nlwpwait--;
470 if (departed)
471 *departed = l2->l_lid;
472 estcpu = l2->l_estcpu;
473
474 /* lwp_free() releases the proc lock. */
475 lwp_free(l2, false, false);
476 mutex_enter(&p->p_smutex);
477
478 /* Absorb estcpu value of collected LWP. */
479 lwp_lock(l);
480 l->l_estcpu += estcpu;
481 lwp_unlock(l);
482 return 0;
483 }
484
485 if (error != 0)
486 break;
487 if (nfound == 0) {
488 error = ESRCH;
489 break;
490 }
491
492 /*
493 * The kernel is careful to ensure that it can not deadlock
494 * when exiting - just keep waiting.
495 */
496 if (exiting) {
497 KASSERT(p->p_nlwps > 1);
498 cv_wait(&p->p_lwpcv, &p->p_smutex);
499 continue;
500 }
501
502 /*
503 * If all other LWPs are waiting for exits or suspends
504 * and the supply of zombies and potential zombies is
505 * exhausted, then we are about to deadlock.
506 *
507 * If the process is exiting (and this LWP is not the one
508 * that is coordinating the exit) then bail out now.
509 */
510 if ((p->p_sflag & PS_WEXIT) != 0 ||
511 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
512 error = EDEADLK;
513 break;
514 }
515
516 /*
517 * Sit around and wait for something to happen. We'll be
518 * awoken if any of the conditions examined change: if an
519 * LWP exits, is collected, or is detached.
520 */
521 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
522 break;
523 }
524
525 /*
526 * We didn't find any LWPs to collect, we may have received a
527 * signal, or some other condition has caused us to bail out.
528 *
529 * If waiting on a specific LWP, clear the waiters marker: some
530 * other LWP may want it. Then, kick all the remaining waiters
531 * so that they can re-check for zombies and for deadlock.
532 */
533 if (lid != 0) {
534 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
535 if (l2->l_lid == lid) {
536 if (l2->l_waiter == curlid)
537 l2->l_waiter = 0;
538 break;
539 }
540 }
541 }
542 p->p_nlwpwait--;
543 l->l_waitingfor = 0;
544 cv_broadcast(&p->p_lwpcv);
545
546 return error;
547 }
548
549 /*
550 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
551 * The new LWP is created in state LSIDL and must be set running,
552 * suspended, or stopped by the caller.
553 */
554 int
555 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
556 void *stack, size_t stacksize, void (*func)(void *), void *arg,
557 lwp_t **rnewlwpp, int sclass)
558 {
559 struct lwp *l2, *isfree;
560 turnstile_t *ts;
561
562 /*
563 * First off, reap any detached LWP waiting to be collected.
564 * We can re-use its LWP structure and turnstile.
565 */
566 isfree = NULL;
567 if (p2->p_zomblwp != NULL) {
568 mutex_enter(&p2->p_smutex);
569 if ((isfree = p2->p_zomblwp) != NULL) {
570 p2->p_zomblwp = NULL;
571 lwp_free(isfree, true, false);/* releases proc mutex */
572 } else
573 mutex_exit(&p2->p_smutex);
574 }
575 if (isfree == NULL) {
576 l2 = pool_get(&lwp_pool, PR_WAITOK);
577 memset(l2, 0, sizeof(*l2));
578 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
579 SLIST_INIT(&l2->l_pi_lenders);
580 } else {
581 l2 = isfree;
582 ts = l2->l_ts;
583 KASSERT(l2->l_inheritedprio == -1);
584 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
585 memset(l2, 0, sizeof(*l2));
586 l2->l_ts = ts;
587 }
588
589 l2->l_stat = LSIDL;
590 l2->l_proc = p2;
591 l2->l_refcnt = 1;
592 l2->l_class = sclass;
593 l2->l_kpriority = l1->l_kpriority;
594 l2->l_priority = l1->l_priority;
595 l2->l_inheritedprio = -1;
596 l2->l_estcpu = l1->l_estcpu;
597 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
598 l2->l_cpu = l1->l_cpu;
599 l2->l_flag = inmem ? LW_INMEM : 0;
600 l2->l_pflag = LP_MPSAFE;
601
602 if (p2->p_flag & PK_SYSTEM) {
603 /*
604 * Mark it as a system process and not a candidate for
605 * swapping.
606 */
607 l2->l_flag |= LW_SYSTEM;
608 } else {
609 /* Look for a CPU to start */
610 l2->l_cpu = sched_takecpu(l2);
611 l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
612 }
613
614 lwp_initspecific(l2);
615 sched_lwp_fork(l2);
616 lwp_update_creds(l2);
617 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
618 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
619 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
620 cv_init(&l2->l_sigcv, "sigwait");
621 l2->l_syncobj = &sched_syncobj;
622
623 if (rnewlwpp != NULL)
624 *rnewlwpp = l2;
625
626 l2->l_addr = UAREA_TO_USER(uaddr);
627 KERNEL_LOCK(1, curlwp);
628 uvm_lwp_fork(l1, l2, stack, stacksize, func,
629 (arg != NULL) ? arg : l2);
630 KERNEL_UNLOCK_ONE(curlwp);
631
632 mutex_enter(&p2->p_smutex);
633
634 if ((flags & LWP_DETACHED) != 0) {
635 l2->l_prflag = LPR_DETACHED;
636 p2->p_ndlwps++;
637 } else
638 l2->l_prflag = 0;
639
640 l2->l_sigmask = l1->l_sigmask;
641 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
642 sigemptyset(&l2->l_sigpend.sp_set);
643
644 p2->p_nlwpid++;
645 if (p2->p_nlwpid == 0)
646 p2->p_nlwpid++;
647 l2->l_lid = p2->p_nlwpid;
648 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
649 p2->p_nlwps++;
650
651 mutex_exit(&p2->p_smutex);
652
653 mutex_enter(&proclist_lock);
654 mutex_enter(&proclist_mutex);
655 LIST_INSERT_HEAD(&alllwp, l2, l_list);
656 mutex_exit(&proclist_mutex);
657 mutex_exit(&proclist_lock);
658
659 SYSCALL_TIME_LWP_INIT(l2);
660
661 if (p2->p_emul->e_lwp_fork)
662 (*p2->p_emul->e_lwp_fork)(l1, l2);
663
664 return (0);
665 }
666
667 /*
668 * Called by MD code when a new LWP begins execution. Must be called
669 * with the previous LWP locked (so at splsched), or if there is no
670 * previous LWP, at splsched.
671 */
672 void
673 lwp_startup(struct lwp *prev, struct lwp *new)
674 {
675
676 if (prev != NULL) {
677 lwp_unlock(prev);
678 }
679 spl0();
680 pmap_activate(new);
681 LOCKDEBUG_BARRIER(NULL, 0);
682 if ((new->l_pflag & LP_MPSAFE) == 0) {
683 KERNEL_LOCK(1, new);
684 }
685 }
686
687 /*
688 * Exit an LWP.
689 */
690 void
691 lwp_exit(struct lwp *l)
692 {
693 struct proc *p = l->l_proc;
694 struct lwp *l2;
695 bool current;
696
697 current = (l == curlwp);
698
699 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
700 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
701 KASSERT(current || l->l_stat == LSIDL);
702
703 /*
704 * Verify that we hold no locks other than the kernel lock.
705 */
706 #ifdef MULTIPROCESSOR
707 LOCKDEBUG_BARRIER(&kernel_lock, 0);
708 #else
709 LOCKDEBUG_BARRIER(NULL, 0);
710 #endif
711
712 /*
713 * If we are the last live LWP in a process, we need to exit the
714 * entire process. We do so with an exit status of zero, because
715 * it's a "controlled" exit, and because that's what Solaris does.
716 *
717 * We are not quite a zombie yet, but for accounting purposes we
718 * must increment the count of zombies here.
719 *
720 * Note: the last LWP's specificdata will be deleted here.
721 */
722 mutex_enter(&p->p_smutex);
723 if (p->p_nlwps - p->p_nzlwps == 1) {
724 KASSERT(current == true);
725 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
726 p->p_pid, l->l_lid));
727 exit1(l, 0);
728 /* NOTREACHED */
729 }
730 p->p_nzlwps++;
731 mutex_exit(&p->p_smutex);
732
733 if (p->p_emul->e_lwp_exit)
734 (*p->p_emul->e_lwp_exit)(l);
735
736 /* Delete the specificdata while it's still safe to sleep. */
737 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
738
739 /*
740 * Release our cached credentials.
741 */
742 kauth_cred_free(l->l_cred);
743 callout_destroy(&l->l_timeout_ch);
744
745 /*
746 * While we can still block, mark the LWP as unswappable to
747 * prevent conflicts with the with the swapper.
748 */
749 if (current)
750 uvm_lwp_hold(l);
751
752 /*
753 * Remove the LWP from the global list.
754 */
755 mutex_enter(&proclist_lock);
756 mutex_enter(&proclist_mutex);
757 LIST_REMOVE(l, l_list);
758 mutex_exit(&proclist_mutex);
759 mutex_exit(&proclist_lock);
760
761 /*
762 * Get rid of all references to the LWP that others (e.g. procfs)
763 * may have, and mark the LWP as a zombie. If the LWP is detached,
764 * mark it waiting for collection in the proc structure. Note that
765 * before we can do that, we need to free any other dead, deatched
766 * LWP waiting to meet its maker.
767 *
768 * XXXSMP disable preemption.
769 */
770 mutex_enter(&p->p_smutex);
771 lwp_drainrefs(l);
772
773 if ((l->l_prflag & LPR_DETACHED) != 0) {
774 while ((l2 = p->p_zomblwp) != NULL) {
775 p->p_zomblwp = NULL;
776 lwp_free(l2, false, false);/* releases proc mutex */
777 mutex_enter(&p->p_smutex);
778 l->l_refcnt++;
779 lwp_drainrefs(l);
780 }
781 p->p_zomblwp = l;
782 }
783
784 /*
785 * If we find a pending signal for the process and we have been
786 * asked to check for signals, then we loose: arrange to have
787 * all other LWPs in the process check for signals.
788 */
789 if ((l->l_flag & LW_PENDSIG) != 0 &&
790 firstsig(&p->p_sigpend.sp_set) != 0) {
791 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
792 lwp_lock(l2);
793 l2->l_flag |= LW_PENDSIG;
794 lwp_unlock(l2);
795 }
796 }
797
798 lwp_lock(l);
799 l->l_stat = LSZOMB;
800 lwp_unlock(l);
801 p->p_nrlwps--;
802 cv_broadcast(&p->p_lwpcv);
803 mutex_exit(&p->p_smutex);
804
805 /*
806 * We can no longer block. At this point, lwp_free() may already
807 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
808 *
809 * Free MD LWP resources.
810 */
811 #ifndef __NO_CPU_LWP_FREE
812 cpu_lwp_free(l, 0);
813 #endif
814
815 if (current) {
816 pmap_deactivate(l);
817
818 /*
819 * Release the kernel lock, and switch away into
820 * oblivion.
821 */
822 #ifdef notyet
823 /* XXXSMP hold in lwp_userret() */
824 KERNEL_UNLOCK_LAST(l);
825 #else
826 KERNEL_UNLOCK_ALL(l, NULL);
827 #endif
828 lwp_exit_switchaway(l);
829 }
830 }
831
832 void
833 lwp_exit_switchaway(struct lwp *l)
834 {
835 struct cpu_info *ci;
836 struct lwp *idlelwp;
837
838 /* Unlocked, but is for statistics only. */
839 uvmexp.swtch++;
840
841 (void)splsched();
842 l->l_flag &= ~LW_RUNNING;
843 ci = curcpu();
844 idlelwp = ci->ci_data.cpu_idlelwp;
845 idlelwp->l_stat = LSONPROC;
846
847 /*
848 * cpu_onproc must be updated with the CPU locked, as
849 * aston() may try to set a AST pending on the LWP (and
850 * it does so with the CPU locked). Otherwise, the LWP
851 * may be destroyed before the AST can be set, leading
852 * to a user-after-free.
853 */
854 spc_lock(ci);
855 ci->ci_data.cpu_onproc = idlelwp;
856 spc_unlock(ci);
857 cpu_switchto(NULL, idlelwp, false);
858 }
859
860 /*
861 * Free a dead LWP's remaining resources.
862 *
863 * XXXLWP limits.
864 */
865 void
866 lwp_free(struct lwp *l, bool recycle, bool last)
867 {
868 struct proc *p = l->l_proc;
869 ksiginfoq_t kq;
870
871 /*
872 * If this was not the last LWP in the process, then adjust
873 * counters and unlock.
874 */
875 if (!last) {
876 /*
877 * Add the LWP's run time to the process' base value.
878 * This needs to co-incide with coming off p_lwps.
879 */
880 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
881 p->p_pctcpu += l->l_pctcpu;
882 LIST_REMOVE(l, l_sibling);
883 p->p_nlwps--;
884 p->p_nzlwps--;
885 if ((l->l_prflag & LPR_DETACHED) != 0)
886 p->p_ndlwps--;
887
888 /*
889 * Have any LWPs sleeping in lwp_wait() recheck for
890 * deadlock.
891 */
892 cv_broadcast(&p->p_lwpcv);
893 mutex_exit(&p->p_smutex);
894 }
895
896 #ifdef MULTIPROCESSOR
897 /*
898 * In the unlikely event that the LWP is still on the CPU,
899 * then spin until it has switched away. We need to release
900 * all locks to avoid deadlock against interrupt handlers on
901 * the target CPU.
902 */
903 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
904 int count;
905 (void)count; /* XXXgcc */
906 KERNEL_UNLOCK_ALL(curlwp, &count);
907 while ((l->l_flag & LW_RUNNING) != 0 ||
908 l->l_cpu->ci_curlwp == l)
909 SPINLOCK_BACKOFF_HOOK;
910 KERNEL_LOCK(count, curlwp);
911 }
912 #endif
913
914 /*
915 * Destroy the LWP's remaining signal information.
916 */
917 ksiginfo_queue_init(&kq);
918 sigclear(&l->l_sigpend, NULL, &kq);
919 ksiginfo_queue_drain(&kq);
920 cv_destroy(&l->l_sigcv);
921 mutex_destroy(&l->l_swaplock);
922
923 /*
924 * Free the LWP's turnstile and the LWP structure itself unless the
925 * caller wants to recycle them. Also, free the scheduler specific data.
926 *
927 * We can't return turnstile0 to the pool (it didn't come from it),
928 * so if it comes up just drop it quietly and move on.
929 *
930 * We don't recycle the VM resources at this time.
931 */
932 if (!recycle && l->l_ts != &turnstile0)
933 pool_cache_put(turnstile_cache, l->l_ts);
934 #ifndef __NO_CPU_LWP_FREE
935 cpu_lwp_free2(l);
936 #endif
937 uvm_lwp_exit(l);
938 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
939 KASSERT(l->l_inheritedprio == -1);
940 sched_lwp_exit(l);
941 if (!recycle)
942 pool_put(&lwp_pool, l);
943 }
944
945 /*
946 * Pick a LWP to represent the process for those operations which
947 * want information about a "process" that is actually associated
948 * with a LWP.
949 *
950 * If 'locking' is false, no locking or lock checks are performed.
951 * This is intended for use by DDB.
952 *
953 * We don't bother locking the LWP here, since code that uses this
954 * interface is broken by design and an exact match is not required.
955 */
956 struct lwp *
957 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
958 {
959 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
960 struct lwp *signalled;
961 int cnt;
962
963 if (locking) {
964 KASSERT(mutex_owned(&p->p_smutex));
965 }
966
967 /* Trivial case: only one LWP */
968 if (p->p_nlwps == 1) {
969 l = LIST_FIRST(&p->p_lwps);
970 if (nrlwps)
971 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
972 return l;
973 }
974
975 cnt = 0;
976 switch (p->p_stat) {
977 case SSTOP:
978 case SACTIVE:
979 /* Pick the most live LWP */
980 onproc = running = sleeping = stopped = suspended = NULL;
981 signalled = NULL;
982 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
983 if ((l->l_flag & LW_IDLE) != 0) {
984 continue;
985 }
986 if (l->l_lid == p->p_sigctx.ps_lwp)
987 signalled = l;
988 switch (l->l_stat) {
989 case LSONPROC:
990 onproc = l;
991 cnt++;
992 break;
993 case LSRUN:
994 running = l;
995 cnt++;
996 break;
997 case LSSLEEP:
998 sleeping = l;
999 break;
1000 case LSSTOP:
1001 stopped = l;
1002 break;
1003 case LSSUSPENDED:
1004 suspended = l;
1005 break;
1006 }
1007 }
1008 if (nrlwps)
1009 *nrlwps = cnt;
1010 if (signalled)
1011 l = signalled;
1012 else if (onproc)
1013 l = onproc;
1014 else if (running)
1015 l = running;
1016 else if (sleeping)
1017 l = sleeping;
1018 else if (stopped)
1019 l = stopped;
1020 else if (suspended)
1021 l = suspended;
1022 else
1023 break;
1024 return l;
1025 #ifdef DIAGNOSTIC
1026 case SIDL:
1027 case SZOMB:
1028 case SDYING:
1029 case SDEAD:
1030 if (locking)
1031 mutex_exit(&p->p_smutex);
1032 /* We have more than one LWP and we're in SIDL?
1033 * How'd that happen?
1034 */
1035 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1036 p->p_pid, p->p_comm, p->p_stat);
1037 break;
1038 default:
1039 if (locking)
1040 mutex_exit(&p->p_smutex);
1041 panic("Process %d (%s) in unknown state %d",
1042 p->p_pid, p->p_comm, p->p_stat);
1043 #endif
1044 }
1045
1046 if (locking)
1047 mutex_exit(&p->p_smutex);
1048 panic("proc_representative_lwp: couldn't find a lwp for process"
1049 " %d (%s)", p->p_pid, p->p_comm);
1050 /* NOTREACHED */
1051 return NULL;
1052 }
1053
1054 /*
1055 * Look up a live LWP within the speicifed process, and return it locked.
1056 *
1057 * Must be called with p->p_smutex held.
1058 */
1059 struct lwp *
1060 lwp_find(struct proc *p, int id)
1061 {
1062 struct lwp *l;
1063
1064 KASSERT(mutex_owned(&p->p_smutex));
1065
1066 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1067 if (l->l_lid == id)
1068 break;
1069 }
1070
1071 /*
1072 * No need to lock - all of these conditions will
1073 * be visible with the process level mutex held.
1074 */
1075 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1076 l = NULL;
1077
1078 return l;
1079 }
1080
1081 /*
1082 * Update an LWP's cached credentials to mirror the process' master copy.
1083 *
1084 * This happens early in the syscall path, on user trap, and on LWP
1085 * creation. A long-running LWP can also voluntarily choose to update
1086 * it's credentials by calling this routine. This may be called from
1087 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1088 */
1089 void
1090 lwp_update_creds(struct lwp *l)
1091 {
1092 kauth_cred_t oc;
1093 struct proc *p;
1094
1095 p = l->l_proc;
1096 oc = l->l_cred;
1097
1098 mutex_enter(&p->p_mutex);
1099 kauth_cred_hold(p->p_cred);
1100 l->l_cred = p->p_cred;
1101 mutex_exit(&p->p_mutex);
1102 if (oc != NULL)
1103 kauth_cred_free(oc);
1104 }
1105
1106 /*
1107 * Verify that an LWP is locked, and optionally verify that the lock matches
1108 * one we specify.
1109 */
1110 int
1111 lwp_locked(struct lwp *l, kmutex_t *mtx)
1112 {
1113 kmutex_t *cur = l->l_mutex;
1114
1115 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1116 }
1117
1118 /*
1119 * Lock an LWP.
1120 */
1121 void
1122 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1123 {
1124
1125 /*
1126 * XXXgcc ignoring kmutex_t * volatile on i386
1127 *
1128 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1129 */
1130 #if 1
1131 while (l->l_mutex != old) {
1132 #else
1133 for (;;) {
1134 #endif
1135 mutex_spin_exit(old);
1136 old = l->l_mutex;
1137 mutex_spin_enter(old);
1138
1139 /*
1140 * mutex_enter() will have posted a read barrier. Re-test
1141 * l->l_mutex. If it has changed, we need to try again.
1142 */
1143 #if 1
1144 }
1145 #else
1146 } while (__predict_false(l->l_mutex != old));
1147 #endif
1148 }
1149
1150 /*
1151 * Lend a new mutex to an LWP. The old mutex must be held.
1152 */
1153 void
1154 lwp_setlock(struct lwp *l, kmutex_t *new)
1155 {
1156
1157 KASSERT(mutex_owned(l->l_mutex));
1158
1159 mb_write();
1160 l->l_mutex = new;
1161 }
1162
1163 /*
1164 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1165 * must be held.
1166 */
1167 void
1168 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1169 {
1170 kmutex_t *old;
1171
1172 KASSERT(mutex_owned(l->l_mutex));
1173
1174 old = l->l_mutex;
1175 mb_write();
1176 l->l_mutex = new;
1177 mutex_spin_exit(old);
1178 }
1179
1180 /*
1181 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1182 * locked.
1183 */
1184 void
1185 lwp_relock(struct lwp *l, kmutex_t *new)
1186 {
1187 kmutex_t *old;
1188
1189 KASSERT(mutex_owned(l->l_mutex));
1190
1191 old = l->l_mutex;
1192 if (old != new) {
1193 mutex_spin_enter(new);
1194 l->l_mutex = new;
1195 mutex_spin_exit(old);
1196 }
1197 }
1198
1199 int
1200 lwp_trylock(struct lwp *l)
1201 {
1202 kmutex_t *old;
1203
1204 for (;;) {
1205 if (!mutex_tryenter(old = l->l_mutex))
1206 return 0;
1207 if (__predict_true(l->l_mutex == old))
1208 return 1;
1209 mutex_spin_exit(old);
1210 }
1211 }
1212
1213 /*
1214 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1215 * set.
1216 */
1217 void
1218 lwp_userret(struct lwp *l)
1219 {
1220 struct proc *p;
1221 void (*hook)(void);
1222 int sig;
1223
1224 p = l->l_proc;
1225
1226 #ifndef __HAVE_FAST_SOFTINTS
1227 /* Run pending soft interrupts. */
1228 if (l->l_cpu->ci_data.cpu_softints != 0)
1229 softint_overlay();
1230 #endif
1231
1232 /*
1233 * It should be safe to do this read unlocked on a multiprocessor
1234 * system..
1235 */
1236 while ((l->l_flag & LW_USERRET) != 0) {
1237 /*
1238 * Process pending signals first, unless the process
1239 * is dumping core or exiting, where we will instead
1240 * enter the L_WSUSPEND case below.
1241 */
1242 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1243 LW_PENDSIG) {
1244 mutex_enter(&p->p_smutex);
1245 while ((sig = issignal(l)) != 0)
1246 postsig(sig);
1247 mutex_exit(&p->p_smutex);
1248 }
1249
1250 /*
1251 * Core-dump or suspend pending.
1252 *
1253 * In case of core dump, suspend ourselves, so that the
1254 * kernel stack and therefore the userland registers saved
1255 * in the trapframe are around for coredump() to write them
1256 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1257 * will write the core file out once all other LWPs are
1258 * suspended.
1259 */
1260 if ((l->l_flag & LW_WSUSPEND) != 0) {
1261 mutex_enter(&p->p_smutex);
1262 p->p_nrlwps--;
1263 cv_broadcast(&p->p_lwpcv);
1264 lwp_lock(l);
1265 l->l_stat = LSSUSPENDED;
1266 mutex_exit(&p->p_smutex);
1267 mi_switch(l);
1268 }
1269
1270 /* Process is exiting. */
1271 if ((l->l_flag & LW_WEXIT) != 0) {
1272 KERNEL_LOCK(1, l);
1273 lwp_exit(l);
1274 KASSERT(0);
1275 /* NOTREACHED */
1276 }
1277
1278 /* Call userret hook; used by Linux emulation. */
1279 if ((l->l_flag & LW_WUSERRET) != 0) {
1280 lwp_lock(l);
1281 l->l_flag &= ~LW_WUSERRET;
1282 lwp_unlock(l);
1283 hook = p->p_userret;
1284 p->p_userret = NULL;
1285 (*hook)();
1286 }
1287 }
1288 }
1289
1290 /*
1291 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1292 */
1293 void
1294 lwp_need_userret(struct lwp *l)
1295 {
1296 KASSERT(lwp_locked(l, NULL));
1297
1298 /*
1299 * Since the tests in lwp_userret() are done unlocked, make sure
1300 * that the condition will be seen before forcing the LWP to enter
1301 * kernel mode.
1302 */
1303 mb_write();
1304 cpu_signotify(l);
1305 }
1306
1307 /*
1308 * Add one reference to an LWP. This will prevent the LWP from
1309 * exiting, thus keep the lwp structure and PCB around to inspect.
1310 */
1311 void
1312 lwp_addref(struct lwp *l)
1313 {
1314
1315 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1316 KASSERT(l->l_stat != LSZOMB);
1317 KASSERT(l->l_refcnt != 0);
1318
1319 l->l_refcnt++;
1320 }
1321
1322 /*
1323 * Remove one reference to an LWP. If this is the last reference,
1324 * then we must finalize the LWP's death.
1325 */
1326 void
1327 lwp_delref(struct lwp *l)
1328 {
1329 struct proc *p = l->l_proc;
1330
1331 mutex_enter(&p->p_smutex);
1332 KASSERT(l->l_stat != LSZOMB);
1333 KASSERT(l->l_refcnt > 0);
1334 if (--l->l_refcnt == 0)
1335 cv_broadcast(&p->p_lwpcv);
1336 mutex_exit(&p->p_smutex);
1337 }
1338
1339 /*
1340 * Drain all references to the current LWP.
1341 */
1342 void
1343 lwp_drainrefs(struct lwp *l)
1344 {
1345 struct proc *p = l->l_proc;
1346
1347 KASSERT(mutex_owned(&p->p_smutex));
1348 KASSERT(l->l_refcnt != 0);
1349
1350 l->l_refcnt--;
1351 while (l->l_refcnt != 0)
1352 cv_wait(&p->p_lwpcv, &p->p_smutex);
1353 }
1354
1355 /*
1356 * lwp_specific_key_create --
1357 * Create a key for subsystem lwp-specific data.
1358 */
1359 int
1360 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1361 {
1362
1363 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1364 }
1365
1366 /*
1367 * lwp_specific_key_delete --
1368 * Delete a key for subsystem lwp-specific data.
1369 */
1370 void
1371 lwp_specific_key_delete(specificdata_key_t key)
1372 {
1373
1374 specificdata_key_delete(lwp_specificdata_domain, key);
1375 }
1376
1377 /*
1378 * lwp_initspecific --
1379 * Initialize an LWP's specificdata container.
1380 */
1381 void
1382 lwp_initspecific(struct lwp *l)
1383 {
1384 int error;
1385
1386 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1387 KASSERT(error == 0);
1388 }
1389
1390 /*
1391 * lwp_finispecific --
1392 * Finalize an LWP's specificdata container.
1393 */
1394 void
1395 lwp_finispecific(struct lwp *l)
1396 {
1397
1398 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1399 }
1400
1401 /*
1402 * lwp_getspecific --
1403 * Return lwp-specific data corresponding to the specified key.
1404 *
1405 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1406 * only its OWN SPECIFIC DATA. If it is necessary to access another
1407 * LWP's specifc data, care must be taken to ensure that doing so
1408 * would not cause internal data structure inconsistency (i.e. caller
1409 * can guarantee that the target LWP is not inside an lwp_getspecific()
1410 * or lwp_setspecific() call).
1411 */
1412 void *
1413 lwp_getspecific(specificdata_key_t key)
1414 {
1415
1416 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1417 &curlwp->l_specdataref, key));
1418 }
1419
1420 void *
1421 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1422 {
1423
1424 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1425 &l->l_specdataref, key));
1426 }
1427
1428 /*
1429 * lwp_setspecific --
1430 * Set lwp-specific data corresponding to the specified key.
1431 */
1432 void
1433 lwp_setspecific(specificdata_key_t key, void *data)
1434 {
1435
1436 specificdata_setspecific(lwp_specificdata_domain,
1437 &curlwp->l_specdataref, key, data);
1438 }
1439