kern_lwp.c revision 1.61.2.26 1 /* $NetBSD: kern_lwp.c,v 1.61.2.26 2007/11/05 15:04:42 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit or thread of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp", also known as lwp_t.
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing concurrently in the kernel.
52 *
53 * Execution states
54 *
55 * At any given time, an LWP has overall state that is described by
56 * lwp::l_stat. The states are broken into two sets below. The first
57 * set is guaranteed to represent the absolute, current state of the
58 * LWP:
59 *
60 * LSONPROC
61 *
62 * On processor: the LWP is executing on a CPU, either in the
63 * kernel or in user space.
64 *
65 * LSRUN
66 *
67 * Runnable: the LWP is parked on a run queue, and may soon be
68 * chosen to run by a idle processor, or by a processor that
69 * has been asked to preempt a currently runnning but lower
70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 * then the LWP is not on a run queue, but may be soon.
72 *
73 * LSIDL
74 *
75 * Idle: the LWP has been created but has not yet executed,
76 * or it has ceased executing a unit of work and is waiting
77 * to be started again.
78 *
79 * LSSUSPENDED:
80 *
81 * Suspended: the LWP has had its execution suspended by
82 * another LWP in the same process using the _lwp_suspend()
83 * system call. User-level LWPs also enter the suspended
84 * state when the system is shutting down.
85 *
86 * The second set represent a "statement of intent" on behalf of the
87 * LWP. The LWP may in fact be executing on a processor, may be
88 * sleeping or idle. It is expected to take the necessary action to
89 * stop executing or become "running" again within a short timeframe.
90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91 * Importantly, in indicates that its state is tied to a CPU.
92 *
93 * LSZOMB:
94 *
95 * Dead or dying: the LWP has released most of its resources
96 * and is a) about to switch away into oblivion b) has already
97 * switched away. When it switches away, its few remaining
98 * resources can be collected.
99 *
100 * LSSLEEP:
101 *
102 * Sleeping: the LWP has entered itself onto a sleep queue, and
103 * has switched away or will switch away shortly to allow other
104 * LWPs to run on the CPU.
105 *
106 * LSSTOP:
107 *
108 * Stopped: the LWP has been stopped as a result of a job
109 * control signal, or as a result of the ptrace() interface.
110 *
111 * Stopped LWPs may run briefly within the kernel to handle
112 * signals that they receive, but will not return to user space
113 * until their process' state is changed away from stopped.
114 *
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP state may only be set when returning to
122 * user space in userret(), or when sleeping interruptably. The
123 * LSSUSPENDED state may only be set in userret(). Before setting
124 * those states, we try to ensure that the LWPs will release all
125 * locks that they hold, and at a minimum try to ensure that the
126 * LWP can be set runnable again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Other state transitions are possible with kernel threads (eg
145 * ONPROC -> IDL), but only happen under tightly controlled
146 * circumstances the side effects are understood.
147 *
148 * Locking
149 *
150 * The majority of fields in 'struct lwp' are covered by a single,
151 * general spin lock pointed to by lwp::l_mutex. The locks covering
152 * each field are documented in sys/lwp.h.
153 *
154 * State transitions must be made with the LWP's general lock held,
155 * and may cause the LWP's lock pointer to change. Manipulation of
156 * the general lock is not performed directly, but through calls to
157 * lwp_lock(), lwp_relock() and similar.
158 *
159 * States and their associated locks:
160 *
161 * LSONPROC, LSZOMB:
162 *
163 * Always covered by spc_lwplock, which protects running LWPs.
164 * This is a per-CPU lock.
165 *
166 * LSIDL, LSRUN:
167 *
168 * Always covered by spc_mutex, which protects the run queues.
169 * This may be a per-CPU lock, depending on the scheduler.
170 *
171 * LSSLEEP:
172 *
173 * Covered by a lock associated with the sleep queue that the
174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175 *
176 * LSSTOP, LSSUSPENDED:
177 *
178 * If the LWP was previously sleeping (l_wchan != NULL), then
179 * l_mutex references the sleep queue lock. If the LWP was
180 * runnable or on the CPU when halted, or has been removed from
181 * the sleep queue since halted, then the lock is spc_lwplock.
182 *
183 * The lock order is as follows:
184 *
185 * spc::spc_lwplock ->
186 * sleepq_t::sq_mutex ->
187 * tschain_t::tc_mutex ->
188 * spc::spc_mutex
189 *
190 * Each process has an scheduler state lock (proc::p_smutex), and a
191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192 * so on. When an LWP is to be entered into or removed from one of the
193 * following states, p_mutex must be held and the process wide counters
194 * adjusted:
195 *
196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197 *
198 * Note that an LWP is considered running or likely to run soon if in
199 * one of the following states. This affects the value of p_nrlwps:
200 *
201 * LSRUN, LSONPROC, LSSLEEP
202 *
203 * p_smutex does not need to be held when transitioning among these
204 * three states.
205 */
206
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.61.2.26 2007/11/05 15:04:42 ad Exp $");
209
210 #include "opt_multiprocessor.h"
211 #include "opt_lockdebug.h"
212
213 #define _LWP_API_PRIVATE
214
215 #include <sys/param.h>
216 #include <sys/systm.h>
217 #include <sys/cpu.h>
218 #include <sys/pool.h>
219 #include <sys/proc.h>
220 #include <sys/syscallargs.h>
221 #include <sys/syscall_stats.h>
222 #include <sys/kauth.h>
223 #include <sys/sleepq.h>
224 #include <sys/lockdebug.h>
225 #include <sys/kmem.h>
226 #include <sys/intr.h>
227
228 #include <uvm/uvm_extern.h>
229
230 struct lwplist alllwp;
231
232 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
233 &pool_allocator_nointr, IPL_NONE);
234 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
235 &pool_allocator_nointr, IPL_NONE);
236
237 static specificdata_domain_t lwp_specificdata_domain;
238
239 #define LWP_DEBUG
240
241 #ifdef LWP_DEBUG
242 int lwp_debug = 0;
243 #define DPRINTF(x) if (lwp_debug) printf x
244 #else
245 #define DPRINTF(x)
246 #endif
247
248 void
249 lwpinit(void)
250 {
251
252 lwp_specificdata_domain = specificdata_domain_create();
253 KASSERT(lwp_specificdata_domain != NULL);
254 lwp_sys_init();
255 }
256
257 /*
258 * Set an suspended.
259 *
260 * Must be called with p_smutex held, and the LWP locked. Will unlock the
261 * LWP before return.
262 */
263 int
264 lwp_suspend(struct lwp *curl, struct lwp *t)
265 {
266 int error;
267
268 KASSERT(mutex_owned(&t->l_proc->p_smutex));
269 KASSERT(lwp_locked(t, NULL));
270
271 KASSERT(curl != t || curl->l_stat == LSONPROC);
272
273 /*
274 * If the current LWP has been told to exit, we must not suspend anyone
275 * else or deadlock could occur. We won't return to userspace.
276 */
277 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
278 lwp_unlock(t);
279 return (EDEADLK);
280 }
281
282 error = 0;
283
284 switch (t->l_stat) {
285 case LSRUN:
286 case LSONPROC:
287 t->l_flag |= LW_WSUSPEND;
288 lwp_need_userret(t);
289 lwp_unlock(t);
290 break;
291
292 case LSSLEEP:
293 t->l_flag |= LW_WSUSPEND;
294
295 /*
296 * Kick the LWP and try to get it to the kernel boundary
297 * so that it will release any locks that it holds.
298 * setrunnable() will release the lock.
299 */
300 if ((t->l_flag & LW_SINTR) != 0)
301 setrunnable(t);
302 else
303 lwp_unlock(t);
304 break;
305
306 case LSSUSPENDED:
307 lwp_unlock(t);
308 break;
309
310 case LSSTOP:
311 t->l_flag |= LW_WSUSPEND;
312 setrunnable(t);
313 break;
314
315 case LSIDL:
316 case LSZOMB:
317 error = EINTR; /* It's what Solaris does..... */
318 lwp_unlock(t);
319 break;
320 }
321
322 return (error);
323 }
324
325 /*
326 * Restart a suspended LWP.
327 *
328 * Must be called with p_smutex held, and the LWP locked. Will unlock the
329 * LWP before return.
330 */
331 void
332 lwp_continue(struct lwp *l)
333 {
334
335 KASSERT(mutex_owned(&l->l_proc->p_smutex));
336 KASSERT(lwp_locked(l, NULL));
337
338 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
339 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
340 l->l_wchan));
341
342 /* If rebooting or not suspended, then just bail out. */
343 if ((l->l_flag & LW_WREBOOT) != 0) {
344 lwp_unlock(l);
345 return;
346 }
347
348 l->l_flag &= ~LW_WSUSPEND;
349
350 if (l->l_stat != LSSUSPENDED) {
351 lwp_unlock(l);
352 return;
353 }
354
355 /* setrunnable() will release the lock. */
356 setrunnable(l);
357 }
358
359 /*
360 * Wait for an LWP within the current process to exit. If 'lid' is
361 * non-zero, we are waiting for a specific LWP.
362 *
363 * Must be called with p->p_smutex held.
364 */
365 int
366 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
367 {
368 struct proc *p = l->l_proc;
369 struct lwp *l2;
370 int nfound, error;
371 lwpid_t curlid;
372 bool exiting;
373
374 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
375 p->p_pid, l->l_lid, lid));
376
377 KASSERT(mutex_owned(&p->p_smutex));
378
379 p->p_nlwpwait++;
380 l->l_waitingfor = lid;
381 curlid = l->l_lid;
382 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
383
384 for (;;) {
385 /*
386 * Avoid a race between exit1() and sigexit(): if the
387 * process is dumping core, then we need to bail out: call
388 * into lwp_userret() where we will be suspended until the
389 * deed is done.
390 */
391 if ((p->p_sflag & PS_WCORE) != 0) {
392 mutex_exit(&p->p_smutex);
393 lwp_userret(l);
394 #ifdef DIAGNOSTIC
395 panic("lwp_wait1");
396 #endif
397 /* NOTREACHED */
398 }
399
400 /*
401 * First off, drain any detached LWP that is waiting to be
402 * reaped.
403 */
404 while ((l2 = p->p_zomblwp) != NULL) {
405 p->p_zomblwp = NULL;
406 lwp_free(l2, false, false);/* releases proc mutex */
407 mutex_enter(&p->p_smutex);
408 }
409
410 /*
411 * Now look for an LWP to collect. If the whole process is
412 * exiting, count detached LWPs as eligible to be collected,
413 * but don't drain them here.
414 */
415 nfound = 0;
416 error = 0;
417 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
418 /*
419 * If a specific wait and the target is waiting on
420 * us, then avoid deadlock. This also traps LWPs
421 * that try to wait on themselves.
422 *
423 * Note that this does not handle more complicated
424 * cycles, like: t1 -> t2 -> t3 -> t1. The process
425 * can still be killed so it is not a major problem.
426 */
427 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
428 error = EDEADLK;
429 break;
430 }
431 if (l2 == l)
432 continue;
433 if ((l2->l_prflag & LPR_DETACHED) != 0) {
434 nfound += exiting;
435 continue;
436 }
437 if (lid != 0) {
438 if (l2->l_lid != lid)
439 continue;
440 /*
441 * Mark this LWP as the first waiter, if there
442 * is no other.
443 */
444 if (l2->l_waiter == 0)
445 l2->l_waiter = curlid;
446 } else if (l2->l_waiter != 0) {
447 /*
448 * It already has a waiter - so don't
449 * collect it. If the waiter doesn't
450 * grab it we'll get another chance
451 * later.
452 */
453 nfound++;
454 continue;
455 }
456 nfound++;
457
458 /* No need to lock the LWP in order to see LSZOMB. */
459 if (l2->l_stat != LSZOMB)
460 continue;
461
462 /*
463 * We're no longer waiting. Reset the "first waiter"
464 * pointer on the target, in case it was us.
465 */
466 l->l_waitingfor = 0;
467 l2->l_waiter = 0;
468 p->p_nlwpwait--;
469 if (departed)
470 *departed = l2->l_lid;
471 sched_lwp_collect(l2);
472
473 /* lwp_free() releases the proc lock. */
474 lwp_free(l2, false, false);
475 mutex_enter(&p->p_smutex);
476 return 0;
477 }
478
479 if (error != 0)
480 break;
481 if (nfound == 0) {
482 error = ESRCH;
483 break;
484 }
485
486 /*
487 * The kernel is careful to ensure that it can not deadlock
488 * when exiting - just keep waiting.
489 */
490 if (exiting) {
491 KASSERT(p->p_nlwps > 1);
492 cv_wait(&p->p_lwpcv, &p->p_smutex);
493 continue;
494 }
495
496 /*
497 * If all other LWPs are waiting for exits or suspends
498 * and the supply of zombies and potential zombies is
499 * exhausted, then we are about to deadlock.
500 *
501 * If the process is exiting (and this LWP is not the one
502 * that is coordinating the exit) then bail out now.
503 */
504 if ((p->p_sflag & PS_WEXIT) != 0 ||
505 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
506 error = EDEADLK;
507 break;
508 }
509
510 /*
511 * Sit around and wait for something to happen. We'll be
512 * awoken if any of the conditions examined change: if an
513 * LWP exits, is collected, or is detached.
514 */
515 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
516 break;
517 }
518
519 /*
520 * We didn't find any LWPs to collect, we may have received a
521 * signal, or some other condition has caused us to bail out.
522 *
523 * If waiting on a specific LWP, clear the waiters marker: some
524 * other LWP may want it. Then, kick all the remaining waiters
525 * so that they can re-check for zombies and for deadlock.
526 */
527 if (lid != 0) {
528 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
529 if (l2->l_lid == lid) {
530 if (l2->l_waiter == curlid)
531 l2->l_waiter = 0;
532 break;
533 }
534 }
535 }
536 p->p_nlwpwait--;
537 l->l_waitingfor = 0;
538 cv_broadcast(&p->p_lwpcv);
539
540 return error;
541 }
542
543 /*
544 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
545 * The new LWP is created in state LSIDL and must be set running,
546 * suspended, or stopped by the caller.
547 */
548 int
549 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
550 void *stack, size_t stacksize, void (*func)(void *), void *arg,
551 lwp_t **rnewlwpp, int sclass)
552 {
553 struct lwp *l2, *isfree;
554 turnstile_t *ts;
555
556 /*
557 * First off, reap any detached LWP waiting to be collected.
558 * We can re-use its LWP structure and turnstile.
559 */
560 isfree = NULL;
561 if (p2->p_zomblwp != NULL) {
562 mutex_enter(&p2->p_smutex);
563 if ((isfree = p2->p_zomblwp) != NULL) {
564 p2->p_zomblwp = NULL;
565 lwp_free(isfree, true, false);/* releases proc mutex */
566 } else
567 mutex_exit(&p2->p_smutex);
568 }
569 if (isfree == NULL) {
570 l2 = pool_get(&lwp_pool, PR_WAITOK);
571 memset(l2, 0, sizeof(*l2));
572 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
573 SLIST_INIT(&l2->l_pi_lenders);
574 } else {
575 l2 = isfree;
576 ts = l2->l_ts;
577 KASSERT(l2->l_inheritedprio == -1);
578 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
579 memset(l2, 0, sizeof(*l2));
580 l2->l_ts = ts;
581 }
582
583 l2->l_stat = LSIDL;
584 l2->l_proc = p2;
585 l2->l_refcnt = 1;
586 l2->l_class = sclass;
587 l2->l_kpriority = l1->l_kpriority;
588 l2->l_priority = l1->l_priority;
589 l2->l_inheritedprio = -1;
590 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
591 l2->l_cpu = l1->l_cpu;
592 l2->l_flag = inmem ? LW_INMEM : 0;
593 l2->l_pflag = LP_MPSAFE;
594
595 if (p2->p_flag & PK_SYSTEM) {
596 /*
597 * Mark it as a system process and not a candidate for
598 * swapping.
599 */
600 l2->l_flag |= LW_SYSTEM;
601 } else {
602 /* Look for a CPU to start */
603 l2->l_cpu = sched_takecpu(l2);
604 l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
605 }
606
607 lwp_initspecific(l2);
608 sched_lwp_fork(l1, l2);
609 lwp_update_creds(l2);
610 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
611 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
612 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
613 cv_init(&l2->l_sigcv, "sigwait");
614 l2->l_syncobj = &sched_syncobj;
615
616 if (rnewlwpp != NULL)
617 *rnewlwpp = l2;
618
619 l2->l_addr = UAREA_TO_USER(uaddr);
620 KERNEL_LOCK(1, curlwp);
621 uvm_lwp_fork(l1, l2, stack, stacksize, func,
622 (arg != NULL) ? arg : l2);
623 KERNEL_UNLOCK_ONE(curlwp);
624
625 mutex_enter(&p2->p_smutex);
626
627 if ((flags & LWP_DETACHED) != 0) {
628 l2->l_prflag = LPR_DETACHED;
629 p2->p_ndlwps++;
630 } else
631 l2->l_prflag = 0;
632
633 l2->l_sigmask = l1->l_sigmask;
634 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
635 sigemptyset(&l2->l_sigpend.sp_set);
636
637 p2->p_nlwpid++;
638 if (p2->p_nlwpid == 0)
639 p2->p_nlwpid++;
640 l2->l_lid = p2->p_nlwpid;
641 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
642 p2->p_nlwps++;
643
644 mutex_exit(&p2->p_smutex);
645
646 mutex_enter(&proclist_lock);
647 mutex_enter(&proclist_mutex);
648 LIST_INSERT_HEAD(&alllwp, l2, l_list);
649 mutex_exit(&proclist_mutex);
650 mutex_exit(&proclist_lock);
651
652 SYSCALL_TIME_LWP_INIT(l2);
653
654 if (p2->p_emul->e_lwp_fork)
655 (*p2->p_emul->e_lwp_fork)(l1, l2);
656
657 return (0);
658 }
659
660 /*
661 * Called by MD code when a new LWP begins execution. Must be called
662 * with the previous LWP locked (so at splsched), or if there is no
663 * previous LWP, at splsched.
664 */
665 void
666 lwp_startup(struct lwp *prev, struct lwp *new)
667 {
668
669 if (prev != NULL) {
670 lwp_unlock(prev);
671 }
672 spl0();
673 pmap_activate(new);
674 LOCKDEBUG_BARRIER(NULL, 0);
675 if ((new->l_pflag & LP_MPSAFE) == 0) {
676 KERNEL_LOCK(1, new);
677 }
678 }
679
680 /*
681 * Exit an LWP.
682 */
683 void
684 lwp_exit(struct lwp *l)
685 {
686 struct proc *p = l->l_proc;
687 struct lwp *l2;
688 bool current;
689
690 current = (l == curlwp);
691
692 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
693 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
694 KASSERT(current || l->l_stat == LSIDL);
695
696 /*
697 * Verify that we hold no locks other than the kernel lock.
698 */
699 #ifdef MULTIPROCESSOR
700 LOCKDEBUG_BARRIER(&kernel_lock, 0);
701 #else
702 LOCKDEBUG_BARRIER(NULL, 0);
703 #endif
704
705 /*
706 * If we are the last live LWP in a process, we need to exit the
707 * entire process. We do so with an exit status of zero, because
708 * it's a "controlled" exit, and because that's what Solaris does.
709 *
710 * We are not quite a zombie yet, but for accounting purposes we
711 * must increment the count of zombies here.
712 *
713 * Note: the last LWP's specificdata will be deleted here.
714 */
715 mutex_enter(&p->p_smutex);
716 if (p->p_nlwps - p->p_nzlwps == 1) {
717 KASSERT(current == true);
718 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
719 p->p_pid, l->l_lid));
720 exit1(l, 0);
721 /* NOTREACHED */
722 }
723 p->p_nzlwps++;
724 mutex_exit(&p->p_smutex);
725
726 if (p->p_emul->e_lwp_exit)
727 (*p->p_emul->e_lwp_exit)(l);
728
729 /* Delete the specificdata while it's still safe to sleep. */
730 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
731
732 /*
733 * Release our cached credentials.
734 */
735 kauth_cred_free(l->l_cred);
736 callout_destroy(&l->l_timeout_ch);
737
738 /*
739 * While we can still block, mark the LWP as unswappable to
740 * prevent conflicts with the with the swapper.
741 */
742 if (current)
743 uvm_lwp_hold(l);
744
745 /*
746 * Remove the LWP from the global list.
747 */
748 mutex_enter(&proclist_lock);
749 mutex_enter(&proclist_mutex);
750 LIST_REMOVE(l, l_list);
751 mutex_exit(&proclist_mutex);
752 mutex_exit(&proclist_lock);
753
754 /*
755 * Get rid of all references to the LWP that others (e.g. procfs)
756 * may have, and mark the LWP as a zombie. If the LWP is detached,
757 * mark it waiting for collection in the proc structure. Note that
758 * before we can do that, we need to free any other dead, deatched
759 * LWP waiting to meet its maker.
760 *
761 * XXXSMP disable preemption.
762 */
763 mutex_enter(&p->p_smutex);
764 lwp_drainrefs(l);
765
766 if ((l->l_prflag & LPR_DETACHED) != 0) {
767 while ((l2 = p->p_zomblwp) != NULL) {
768 p->p_zomblwp = NULL;
769 lwp_free(l2, false, false);/* releases proc mutex */
770 mutex_enter(&p->p_smutex);
771 l->l_refcnt++;
772 lwp_drainrefs(l);
773 }
774 p->p_zomblwp = l;
775 }
776
777 /*
778 * If we find a pending signal for the process and we have been
779 * asked to check for signals, then we loose: arrange to have
780 * all other LWPs in the process check for signals.
781 */
782 if ((l->l_flag & LW_PENDSIG) != 0 &&
783 firstsig(&p->p_sigpend.sp_set) != 0) {
784 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
785 lwp_lock(l2);
786 l2->l_flag |= LW_PENDSIG;
787 lwp_unlock(l2);
788 }
789 }
790
791 lwp_lock(l);
792 l->l_stat = LSZOMB;
793 lwp_unlock(l);
794 p->p_nrlwps--;
795 cv_broadcast(&p->p_lwpcv);
796 mutex_exit(&p->p_smutex);
797
798 /*
799 * We can no longer block. At this point, lwp_free() may already
800 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
801 *
802 * Free MD LWP resources.
803 */
804 #ifndef __NO_CPU_LWP_FREE
805 cpu_lwp_free(l, 0);
806 #endif
807
808 if (current) {
809 pmap_deactivate(l);
810
811 /*
812 * Release the kernel lock, and switch away into
813 * oblivion.
814 */
815 #ifdef notyet
816 /* XXXSMP hold in lwp_userret() */
817 KERNEL_UNLOCK_LAST(l);
818 #else
819 KERNEL_UNLOCK_ALL(l, NULL);
820 #endif
821 lwp_exit_switchaway(l);
822 }
823 }
824
825 void
826 lwp_exit_switchaway(struct lwp *l)
827 {
828 struct cpu_info *ci;
829 struct lwp *idlelwp;
830
831 /* Unlocked, but is for statistics only. */
832 uvmexp.swtch++;
833
834 (void)splsched();
835 l->l_flag &= ~LW_RUNNING;
836 ci = curcpu();
837 idlelwp = ci->ci_data.cpu_idlelwp;
838 idlelwp->l_stat = LSONPROC;
839
840 /*
841 * cpu_onproc must be updated with the CPU locked, as
842 * aston() may try to set a AST pending on the LWP (and
843 * it does so with the CPU locked). Otherwise, the LWP
844 * may be destroyed before the AST can be set, leading
845 * to a user-after-free.
846 */
847 spc_lock(ci);
848 ci->ci_data.cpu_onproc = idlelwp;
849 spc_unlock(ci);
850 cpu_switchto(NULL, idlelwp, false);
851 }
852
853 /*
854 * Free a dead LWP's remaining resources.
855 *
856 * XXXLWP limits.
857 */
858 void
859 lwp_free(struct lwp *l, bool recycle, bool last)
860 {
861 struct proc *p = l->l_proc;
862 ksiginfoq_t kq;
863
864 /*
865 * If this was not the last LWP in the process, then adjust
866 * counters and unlock.
867 */
868 if (!last) {
869 /*
870 * Add the LWP's run time to the process' base value.
871 * This needs to co-incide with coming off p_lwps.
872 */
873 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
874 p->p_pctcpu += l->l_pctcpu;
875 LIST_REMOVE(l, l_sibling);
876 p->p_nlwps--;
877 p->p_nzlwps--;
878 if ((l->l_prflag & LPR_DETACHED) != 0)
879 p->p_ndlwps--;
880
881 /*
882 * Have any LWPs sleeping in lwp_wait() recheck for
883 * deadlock.
884 */
885 cv_broadcast(&p->p_lwpcv);
886 mutex_exit(&p->p_smutex);
887 }
888
889 #ifdef MULTIPROCESSOR
890 /*
891 * In the unlikely event that the LWP is still on the CPU,
892 * then spin until it has switched away. We need to release
893 * all locks to avoid deadlock against interrupt handlers on
894 * the target CPU.
895 */
896 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
897 int count;
898 (void)count; /* XXXgcc */
899 KERNEL_UNLOCK_ALL(curlwp, &count);
900 while ((l->l_flag & LW_RUNNING) != 0 ||
901 l->l_cpu->ci_curlwp == l)
902 SPINLOCK_BACKOFF_HOOK;
903 KERNEL_LOCK(count, curlwp);
904 }
905 #endif
906
907 /*
908 * Destroy the LWP's remaining signal information.
909 */
910 ksiginfo_queue_init(&kq);
911 sigclear(&l->l_sigpend, NULL, &kq);
912 ksiginfo_queue_drain(&kq);
913 cv_destroy(&l->l_sigcv);
914 mutex_destroy(&l->l_swaplock);
915
916 /*
917 * Free the LWP's turnstile and the LWP structure itself unless the
918 * caller wants to recycle them. Also, free the scheduler specific data.
919 *
920 * We can't return turnstile0 to the pool (it didn't come from it),
921 * so if it comes up just drop it quietly and move on.
922 *
923 * We don't recycle the VM resources at this time.
924 */
925 if (!recycle && l->l_ts != &turnstile0)
926 pool_cache_put(turnstile_cache, l->l_ts);
927 #ifndef __NO_CPU_LWP_FREE
928 cpu_lwp_free2(l);
929 #endif
930 uvm_lwp_exit(l);
931 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
932 KASSERT(l->l_inheritedprio == -1);
933 sched_lwp_exit(l);
934 if (!recycle)
935 pool_put(&lwp_pool, l);
936 }
937
938 /*
939 * Pick a LWP to represent the process for those operations which
940 * want information about a "process" that is actually associated
941 * with a LWP.
942 *
943 * If 'locking' is false, no locking or lock checks are performed.
944 * This is intended for use by DDB.
945 *
946 * We don't bother locking the LWP here, since code that uses this
947 * interface is broken by design and an exact match is not required.
948 */
949 struct lwp *
950 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
951 {
952 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
953 struct lwp *signalled;
954 int cnt;
955
956 if (locking) {
957 KASSERT(mutex_owned(&p->p_smutex));
958 }
959
960 /* Trivial case: only one LWP */
961 if (p->p_nlwps == 1) {
962 l = LIST_FIRST(&p->p_lwps);
963 if (nrlwps)
964 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
965 return l;
966 }
967
968 cnt = 0;
969 switch (p->p_stat) {
970 case SSTOP:
971 case SACTIVE:
972 /* Pick the most live LWP */
973 onproc = running = sleeping = stopped = suspended = NULL;
974 signalled = NULL;
975 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
976 if ((l->l_flag & LW_IDLE) != 0) {
977 continue;
978 }
979 if (l->l_lid == p->p_sigctx.ps_lwp)
980 signalled = l;
981 switch (l->l_stat) {
982 case LSONPROC:
983 onproc = l;
984 cnt++;
985 break;
986 case LSRUN:
987 running = l;
988 cnt++;
989 break;
990 case LSSLEEP:
991 sleeping = l;
992 break;
993 case LSSTOP:
994 stopped = l;
995 break;
996 case LSSUSPENDED:
997 suspended = l;
998 break;
999 }
1000 }
1001 if (nrlwps)
1002 *nrlwps = cnt;
1003 if (signalled)
1004 l = signalled;
1005 else if (onproc)
1006 l = onproc;
1007 else if (running)
1008 l = running;
1009 else if (sleeping)
1010 l = sleeping;
1011 else if (stopped)
1012 l = stopped;
1013 else if (suspended)
1014 l = suspended;
1015 else
1016 break;
1017 return l;
1018 #ifdef DIAGNOSTIC
1019 case SIDL:
1020 case SZOMB:
1021 case SDYING:
1022 case SDEAD:
1023 if (locking)
1024 mutex_exit(&p->p_smutex);
1025 /* We have more than one LWP and we're in SIDL?
1026 * How'd that happen?
1027 */
1028 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1029 p->p_pid, p->p_comm, p->p_stat);
1030 break;
1031 default:
1032 if (locking)
1033 mutex_exit(&p->p_smutex);
1034 panic("Process %d (%s) in unknown state %d",
1035 p->p_pid, p->p_comm, p->p_stat);
1036 #endif
1037 }
1038
1039 if (locking)
1040 mutex_exit(&p->p_smutex);
1041 panic("proc_representative_lwp: couldn't find a lwp for process"
1042 " %d (%s)", p->p_pid, p->p_comm);
1043 /* NOTREACHED */
1044 return NULL;
1045 }
1046
1047 /*
1048 * Look up a live LWP within the speicifed process, and return it locked.
1049 *
1050 * Must be called with p->p_smutex held.
1051 */
1052 struct lwp *
1053 lwp_find(struct proc *p, int id)
1054 {
1055 struct lwp *l;
1056
1057 KASSERT(mutex_owned(&p->p_smutex));
1058
1059 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1060 if (l->l_lid == id)
1061 break;
1062 }
1063
1064 /*
1065 * No need to lock - all of these conditions will
1066 * be visible with the process level mutex held.
1067 */
1068 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1069 l = NULL;
1070
1071 return l;
1072 }
1073
1074 /*
1075 * Update an LWP's cached credentials to mirror the process' master copy.
1076 *
1077 * This happens early in the syscall path, on user trap, and on LWP
1078 * creation. A long-running LWP can also voluntarily choose to update
1079 * it's credentials by calling this routine. This may be called from
1080 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1081 */
1082 void
1083 lwp_update_creds(struct lwp *l)
1084 {
1085 kauth_cred_t oc;
1086 struct proc *p;
1087
1088 p = l->l_proc;
1089 oc = l->l_cred;
1090
1091 mutex_enter(&p->p_mutex);
1092 kauth_cred_hold(p->p_cred);
1093 l->l_cred = p->p_cred;
1094 mutex_exit(&p->p_mutex);
1095 if (oc != NULL)
1096 kauth_cred_free(oc);
1097 }
1098
1099 /*
1100 * Verify that an LWP is locked, and optionally verify that the lock matches
1101 * one we specify.
1102 */
1103 int
1104 lwp_locked(struct lwp *l, kmutex_t *mtx)
1105 {
1106 kmutex_t *cur = l->l_mutex;
1107
1108 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1109 }
1110
1111 /*
1112 * Lock an LWP.
1113 */
1114 void
1115 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1116 {
1117
1118 /*
1119 * XXXgcc ignoring kmutex_t * volatile on i386
1120 *
1121 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1122 */
1123 #if 1
1124 while (l->l_mutex != old) {
1125 #else
1126 for (;;) {
1127 #endif
1128 mutex_spin_exit(old);
1129 old = l->l_mutex;
1130 mutex_spin_enter(old);
1131
1132 /*
1133 * mutex_enter() will have posted a read barrier. Re-test
1134 * l->l_mutex. If it has changed, we need to try again.
1135 */
1136 #if 1
1137 }
1138 #else
1139 } while (__predict_false(l->l_mutex != old));
1140 #endif
1141 }
1142
1143 /*
1144 * Lend a new mutex to an LWP. The old mutex must be held.
1145 */
1146 void
1147 lwp_setlock(struct lwp *l, kmutex_t *new)
1148 {
1149
1150 KASSERT(mutex_owned(l->l_mutex));
1151
1152 mb_write();
1153 l->l_mutex = new;
1154 }
1155
1156 /*
1157 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1158 * must be held.
1159 */
1160 void
1161 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1162 {
1163 kmutex_t *old;
1164
1165 KASSERT(mutex_owned(l->l_mutex));
1166
1167 old = l->l_mutex;
1168 mb_write();
1169 l->l_mutex = new;
1170 mutex_spin_exit(old);
1171 }
1172
1173 /*
1174 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1175 * locked.
1176 */
1177 void
1178 lwp_relock(struct lwp *l, kmutex_t *new)
1179 {
1180 kmutex_t *old;
1181
1182 KASSERT(mutex_owned(l->l_mutex));
1183
1184 old = l->l_mutex;
1185 if (old != new) {
1186 mutex_spin_enter(new);
1187 l->l_mutex = new;
1188 mutex_spin_exit(old);
1189 }
1190 }
1191
1192 int
1193 lwp_trylock(struct lwp *l)
1194 {
1195 kmutex_t *old;
1196
1197 for (;;) {
1198 if (!mutex_tryenter(old = l->l_mutex))
1199 return 0;
1200 if (__predict_true(l->l_mutex == old))
1201 return 1;
1202 mutex_spin_exit(old);
1203 }
1204 }
1205
1206 /*
1207 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1208 * set.
1209 */
1210 void
1211 lwp_userret(struct lwp *l)
1212 {
1213 struct proc *p;
1214 void (*hook)(void);
1215 int sig;
1216
1217 p = l->l_proc;
1218
1219 #ifndef __HAVE_FAST_SOFTINTS
1220 /* Run pending soft interrupts. */
1221 if (l->l_cpu->ci_data.cpu_softints != 0)
1222 softint_overlay();
1223 #endif
1224
1225 /*
1226 * It should be safe to do this read unlocked on a multiprocessor
1227 * system..
1228 */
1229 while ((l->l_flag & LW_USERRET) != 0) {
1230 /*
1231 * Process pending signals first, unless the process
1232 * is dumping core or exiting, where we will instead
1233 * enter the L_WSUSPEND case below.
1234 */
1235 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1236 LW_PENDSIG) {
1237 mutex_enter(&p->p_smutex);
1238 while ((sig = issignal(l)) != 0)
1239 postsig(sig);
1240 mutex_exit(&p->p_smutex);
1241 }
1242
1243 /*
1244 * Core-dump or suspend pending.
1245 *
1246 * In case of core dump, suspend ourselves, so that the
1247 * kernel stack and therefore the userland registers saved
1248 * in the trapframe are around for coredump() to write them
1249 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1250 * will write the core file out once all other LWPs are
1251 * suspended.
1252 */
1253 if ((l->l_flag & LW_WSUSPEND) != 0) {
1254 mutex_enter(&p->p_smutex);
1255 p->p_nrlwps--;
1256 cv_broadcast(&p->p_lwpcv);
1257 lwp_lock(l);
1258 l->l_stat = LSSUSPENDED;
1259 mutex_exit(&p->p_smutex);
1260 mi_switch(l);
1261 }
1262
1263 /* Process is exiting. */
1264 if ((l->l_flag & LW_WEXIT) != 0) {
1265 KERNEL_LOCK(1, l);
1266 lwp_exit(l);
1267 KASSERT(0);
1268 /* NOTREACHED */
1269 }
1270
1271 /* Call userret hook; used by Linux emulation. */
1272 if ((l->l_flag & LW_WUSERRET) != 0) {
1273 lwp_lock(l);
1274 l->l_flag &= ~LW_WUSERRET;
1275 lwp_unlock(l);
1276 hook = p->p_userret;
1277 p->p_userret = NULL;
1278 (*hook)();
1279 }
1280 }
1281 }
1282
1283 /*
1284 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1285 */
1286 void
1287 lwp_need_userret(struct lwp *l)
1288 {
1289 KASSERT(lwp_locked(l, NULL));
1290
1291 /*
1292 * Since the tests in lwp_userret() are done unlocked, make sure
1293 * that the condition will be seen before forcing the LWP to enter
1294 * kernel mode.
1295 */
1296 mb_write();
1297 cpu_signotify(l);
1298 }
1299
1300 /*
1301 * Add one reference to an LWP. This will prevent the LWP from
1302 * exiting, thus keep the lwp structure and PCB around to inspect.
1303 */
1304 void
1305 lwp_addref(struct lwp *l)
1306 {
1307
1308 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1309 KASSERT(l->l_stat != LSZOMB);
1310 KASSERT(l->l_refcnt != 0);
1311
1312 l->l_refcnt++;
1313 }
1314
1315 /*
1316 * Remove one reference to an LWP. If this is the last reference,
1317 * then we must finalize the LWP's death.
1318 */
1319 void
1320 lwp_delref(struct lwp *l)
1321 {
1322 struct proc *p = l->l_proc;
1323
1324 mutex_enter(&p->p_smutex);
1325 KASSERT(l->l_stat != LSZOMB);
1326 KASSERT(l->l_refcnt > 0);
1327 if (--l->l_refcnt == 0)
1328 cv_broadcast(&p->p_lwpcv);
1329 mutex_exit(&p->p_smutex);
1330 }
1331
1332 /*
1333 * Drain all references to the current LWP.
1334 */
1335 void
1336 lwp_drainrefs(struct lwp *l)
1337 {
1338 struct proc *p = l->l_proc;
1339
1340 KASSERT(mutex_owned(&p->p_smutex));
1341 KASSERT(l->l_refcnt != 0);
1342
1343 l->l_refcnt--;
1344 while (l->l_refcnt != 0)
1345 cv_wait(&p->p_lwpcv, &p->p_smutex);
1346 }
1347
1348 /*
1349 * lwp_specific_key_create --
1350 * Create a key for subsystem lwp-specific data.
1351 */
1352 int
1353 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1354 {
1355
1356 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1357 }
1358
1359 /*
1360 * lwp_specific_key_delete --
1361 * Delete a key for subsystem lwp-specific data.
1362 */
1363 void
1364 lwp_specific_key_delete(specificdata_key_t key)
1365 {
1366
1367 specificdata_key_delete(lwp_specificdata_domain, key);
1368 }
1369
1370 /*
1371 * lwp_initspecific --
1372 * Initialize an LWP's specificdata container.
1373 */
1374 void
1375 lwp_initspecific(struct lwp *l)
1376 {
1377 int error;
1378
1379 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1380 KASSERT(error == 0);
1381 }
1382
1383 /*
1384 * lwp_finispecific --
1385 * Finalize an LWP's specificdata container.
1386 */
1387 void
1388 lwp_finispecific(struct lwp *l)
1389 {
1390
1391 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1392 }
1393
1394 /*
1395 * lwp_getspecific --
1396 * Return lwp-specific data corresponding to the specified key.
1397 *
1398 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1399 * only its OWN SPECIFIC DATA. If it is necessary to access another
1400 * LWP's specifc data, care must be taken to ensure that doing so
1401 * would not cause internal data structure inconsistency (i.e. caller
1402 * can guarantee that the target LWP is not inside an lwp_getspecific()
1403 * or lwp_setspecific() call).
1404 */
1405 void *
1406 lwp_getspecific(specificdata_key_t key)
1407 {
1408
1409 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1410 &curlwp->l_specdataref, key));
1411 }
1412
1413 void *
1414 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1415 {
1416
1417 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1418 &l->l_specdataref, key));
1419 }
1420
1421 /*
1422 * lwp_setspecific --
1423 * Set lwp-specific data corresponding to the specified key.
1424 */
1425 void
1426 lwp_setspecific(specificdata_key_t key, void *data)
1427 {
1428
1429 specificdata_setspecific(lwp_specificdata_domain,
1430 &curlwp->l_specdataref, key, data);
1431 }
1432