Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.61.2.3
      1 /*	$NetBSD: kern_lwp.c,v 1.61.2.3 2007/03/21 20:10:20 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit (or thread) of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp".
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing in kernel simultaneously.
     52  *
     53  *	Note that LWPs differ from kernel threads (kthreads) in that kernel
     54  *	threads are distinct processes (system processes) with no user space
     55  *	component, which themselves may contain one or more LWPs.
     56  *
     57  * Execution states
     58  *
     59  *	At any given time, an LWP has overall state that is described by
     60  *	lwp::l_stat.  The states are broken into two sets below.  The first
     61  *	set is guaranteed to represent the absolute, current state of the
     62  *	LWP:
     63  *
     64  * 	LSONPROC
     65  *
     66  * 		On processor: the LWP is executing on a CPU, either in the
     67  * 		kernel or in user space.
     68  *
     69  * 	LSRUN
     70  *
     71  * 		Runnable: the LWP is parked on a run queue, and may soon be
     72  * 		chosen to run by a idle processor, or by a processor that
     73  * 		has been asked to preempt a currently runnning but lower
     74  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     75  *		then the LWP is not on a run queue, but may be soon.
     76  *
     77  * 	LSIDL
     78  *
     79  * 		Idle: the LWP has been created but has not yet executed.
     80  * 		Whoever created the new LWP can be expected to set it to
     81  * 		another state shortly.
     82  *
     83  * 	LSSUSPENDED:
     84  *
     85  * 		Suspended: the LWP has had its execution suspended by
     86  *		another LWP in the same process using the _lwp_suspend()
     87  *		system call.  User-level LWPs also enter the suspended
     88  *		state when the system is shutting down.
     89  *
     90  *	The second set represent a "statement of intent" on behalf of the
     91  *	LWP.  The LWP may in fact be executing on a processor, may be
     92  *	sleeping, idle, or on a run queue. It is expected to take the
     93  *	necessary action to stop executing or become "running" again within
     94  *	a short timeframe.
     95  *
     96  * 	LSZOMB:
     97  *
     98  * 		Dead: the LWP has released most of its resources and is
     99  * 		about to switch away into oblivion.  When it switches away,
    100  * 		its few remaining resources will be collected.
    101  *
    102  * 	LSSLEEP:
    103  *
    104  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    105  * 		will switch away shortly to allow other LWPs to run on the
    106  * 		CPU.
    107  *
    108  * 	LSSTOP:
    109  *
    110  * 		Stopped: the LWP has been stopped as a result of a job
    111  * 		control signal, or as a result of the ptrace() interface.
    112  * 		Stopped LWPs may run briefly within the kernel to handle
    113  * 		signals that they receive, but will not return to user space
    114  * 		until their process' state is changed away from stopped.
    115  * 		Single LWPs within a process can not be set stopped
    116  * 		selectively: all actions that can stop or continue LWPs
    117  * 		occur at the process level.
    118  *
    119  * State transitions
    120  *
    121  *	Note that the LSSTOP and LSSUSPENDED states may only be set
    122  *	when returning to user space in userret(), or when sleeping
    123  *	interruptably.  Before setting those states, we try to ensure
    124  *	that the LWPs will release all kernel locks that they hold,
    125  *	and at a minimum try to ensure that the LWP can be set runnable
    126  *	again by a signal.
    127  *
    128  *	LWPs may transition states in the following ways:
    129  *
    130  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131  *	            > STOPPED			    > SLEEP
    132  *	            > SUSPENDED			    > STOPPED
    133  *						    > SUSPENDED
    134  *						    > ZOMB
    135  *
    136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  *	            > SLEEP			    > SLEEP
    138  *
    139  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  *		    > RUN		            > SUSPENDED
    141  *		    > STOPPED                       > STOPPED
    142  *		    > SUSPENDED
    143  *
    144  * Locking
    145  *
    146  *	The majority of fields in 'struct lwp' are covered by a single,
    147  *	general spin mutex pointed to by lwp::l_mutex.  The locks covering
    148  *	each field are documented in sys/lwp.h.
    149  *
    150  *	State transitions must be made with the LWP's general lock held.  In
    151  *	a multiprocessor kernel, state transitions may cause the LWP's lock
    152  *	pointer to change.  On uniprocessor kernels, most scheduler and
    153  *	synchronisation objects such as sleep queues and LWPs are protected
    154  *	by only one mutex (sched_mutex).  In this case, LWPs' lock pointers
    155  *	will never change and will always reference sched_mutex.
    156  *
    157  *	Manipulation of the general lock is not performed directly, but
    158  *	through calls to lwp_lock(), lwp_relock() and similar.
    159  *
    160  *	States and their associated locks:
    161  *
    162  *	LSIDL, LSZOMB
    163  *
    164  *		Always covered by sched_mutex.
    165  *
    166  *	LSONPROC, LSRUN:
    167  *
    168  *		Always covered by sched_mutex, which protects the run queues
    169  *		and other miscellaneous items.  If the scheduler is changed
    170  *		to use per-CPU run queues, this may become a per-CPU mutex.
    171  *
    172  *	LSSLEEP:
    173  *
    174  *		Covered by a mutex associated with the sleep queue that the
    175  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    176  *
    177  *	LSSTOP, LSSUSPENDED:
    178  *
    179  *		If the LWP was previously sleeping (l_wchan != NULL), then
    180  *		l_mutex references the sleep queue mutex.  If the LWP was
    181  *		runnable or on the CPU when halted, or has been removed from
    182  *		the sleep queue since halted, then the mutex is sched_mutex.
    183  *
    184  *	The lock order is as follows:
    185  *
    186  *		sleepq_t::sq_mutex  |---> sched_mutex
    187  *		tschain_t::tc_mutex |
    188  *
    189  *	Each process has an scheduler state mutex (proc::p_smutex), and a
    190  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    191  *	so on.  When an LWP is to be entered into or removed from one of the
    192  *	following states, p_mutex must be held and the process wide counters
    193  *	adjusted:
    194  *
    195  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    196  *
    197  *	Note that an LWP is considered running or likely to run soon if in
    198  *	one of the following states.  This affects the value of p_nrlwps:
    199  *
    200  *		LSRUN, LSONPROC, LSSLEEP
    201  *
    202  *	p_smutex does not need to be held when transitioning among these
    203  *	three states.
    204  */
    205 
    206 #include <sys/cdefs.h>
    207 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.61.2.3 2007/03/21 20:10:20 ad Exp $");
    208 
    209 #include "opt_multiprocessor.h"
    210 #include "opt_lockdebug.h"
    211 
    212 #define _LWP_API_PRIVATE
    213 
    214 #include <sys/param.h>
    215 #include <sys/systm.h>
    216 #include <sys/pool.h>
    217 #include <sys/proc.h>
    218 #include <sys/syscallargs.h>
    219 #include <sys/syscall_stats.h>
    220 #include <sys/kauth.h>
    221 #include <sys/sleepq.h>
    222 #include <sys/lockdebug.h>
    223 #include <sys/kmem.h>
    224 
    225 #include <uvm/uvm_extern.h>
    226 
    227 struct lwplist	alllwp;
    228 
    229 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    230     &pool_allocator_nointr, IPL_NONE);
    231 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    232     &pool_allocator_nointr, IPL_NONE);
    233 
    234 static specificdata_domain_t lwp_specificdata_domain;
    235 
    236 #define LWP_DEBUG
    237 
    238 #ifdef LWP_DEBUG
    239 int lwp_debug = 0;
    240 #define DPRINTF(x) if (lwp_debug) printf x
    241 #else
    242 #define DPRINTF(x)
    243 #endif
    244 
    245 void
    246 lwpinit(void)
    247 {
    248 
    249 	lwp_specificdata_domain = specificdata_domain_create();
    250 	KASSERT(lwp_specificdata_domain != NULL);
    251 	lwp_sys_init();
    252 }
    253 
    254 /*
    255  * Set an suspended.
    256  *
    257  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    258  * LWP before return.
    259  */
    260 int
    261 lwp_suspend(struct lwp *curl, struct lwp *t)
    262 {
    263 	int error;
    264 
    265 	KASSERT(mutex_owned(&t->l_proc->p_smutex));
    266 	KASSERT(lwp_locked(t, NULL));
    267 
    268 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    269 
    270 	/*
    271 	 * If the current LWP has been told to exit, we must not suspend anyone
    272 	 * else or deadlock could occur.  We won't return to userspace.
    273 	 */
    274 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    275 		lwp_unlock(t);
    276 		return (EDEADLK);
    277 	}
    278 
    279 	error = 0;
    280 
    281 	switch (t->l_stat) {
    282 	case LSRUN:
    283 	case LSONPROC:
    284 		t->l_flag |= LW_WSUSPEND;
    285 		lwp_need_userret(t);
    286 		lwp_unlock(t);
    287 		break;
    288 
    289 	case LSSLEEP:
    290 		t->l_flag |= LW_WSUSPEND;
    291 
    292 		/*
    293 		 * Kick the LWP and try to get it to the kernel boundary
    294 		 * so that it will release any locks that it holds.
    295 		 * setrunnable() will release the lock.
    296 		 */
    297 		if ((t->l_flag & LW_SINTR) != 0)
    298 			setrunnable(t);
    299 		else
    300 			lwp_unlock(t);
    301 		break;
    302 
    303 	case LSSUSPENDED:
    304 		lwp_unlock(t);
    305 		break;
    306 
    307 	case LSSTOP:
    308 		t->l_flag |= LW_WSUSPEND;
    309 		setrunnable(t);
    310 		break;
    311 
    312 	case LSIDL:
    313 	case LSZOMB:
    314 		error = EINTR; /* It's what Solaris does..... */
    315 		lwp_unlock(t);
    316 		break;
    317 	}
    318 
    319 	/*
    320 	 * XXXLWP Wait for:
    321 	 *
    322 	 * o process exiting
    323 	 * o target LWP suspended
    324 	 * o target LWP not suspended and L_WSUSPEND clear
    325 	 * o target LWP exited
    326 	 */
    327 
    328 	 return (error);
    329 }
    330 
    331 /*
    332  * Restart a suspended LWP.
    333  *
    334  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    335  * LWP before return.
    336  */
    337 void
    338 lwp_continue(struct lwp *l)
    339 {
    340 
    341 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
    342 	KASSERT(lwp_locked(l, NULL));
    343 
    344 	DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
    345 	    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
    346 	    l->l_wchan));
    347 
    348 	/* If rebooting or not suspended, then just bail out. */
    349 	if ((l->l_flag & LW_WREBOOT) != 0) {
    350 		lwp_unlock(l);
    351 		return;
    352 	}
    353 
    354 	l->l_flag &= ~LW_WSUSPEND;
    355 
    356 	if (l->l_stat != LSSUSPENDED) {
    357 		lwp_unlock(l);
    358 		return;
    359 	}
    360 
    361 	/* setrunnable() will release the lock. */
    362 	setrunnable(l);
    363 }
    364 
    365 /*
    366  * Wait for an LWP within the current process to exit.  If 'lid' is
    367  * non-zero, we are waiting for a specific LWP.
    368  *
    369  * Must be called with p->p_smutex held.
    370  */
    371 int
    372 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    373 {
    374 	struct proc *p = l->l_proc;
    375 	struct lwp *l2;
    376 	int nfound, error;
    377 
    378 	DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
    379 	    p->p_pid, l->l_lid, lid));
    380 
    381 	KASSERT(mutex_owned(&p->p_smutex));
    382 
    383 	/*
    384 	 * We try to check for deadlock:
    385 	 *
    386 	 * 1) If all other LWPs are waiting for exits or suspended.
    387 	 * 2) If we are trying to wait on ourself.
    388 	 *
    389 	 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
    390 	 * waits, not any-LWP waits) and detect that sort of deadlock, but
    391 	 * we don't have a good place to store the lwp that is being waited
    392 	 * for. wchan is already filled with &p->p_nlwps, and putting the
    393 	 * lwp address in there for deadlock tracing would require exiting
    394 	 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
    395 	 * get threads sleeping on any LWP exiting.
    396 	 */
    397 	if (lid == l->l_lid)
    398 		return EDEADLK;
    399 
    400 	p->p_nlwpwait++;
    401 
    402 	for (;;) {
    403 		/*
    404 		 * Avoid a race between exit1() and sigexit(): if the
    405 		 * process is dumping core, then we need to bail out: call
    406 		 * into lwp_userret() where we will be suspended until the
    407 		 * deed is done.
    408 		 */
    409 		if ((p->p_sflag & PS_WCORE) != 0) {
    410 			mutex_exit(&p->p_smutex);
    411 			lwp_userret(l);
    412 #ifdef DIAGNOSTIC
    413 			panic("lwp_wait1");
    414 #endif
    415 			/* NOTREACHED */
    416 		}
    417 
    418 		/*
    419 		 * First off, drain any detached LWP that is waiting to be
    420 		 * reaped.
    421 		 */
    422 		while ((l2 = p->p_zomblwp) != NULL) {
    423 			p->p_zomblwp = NULL;
    424 			lwp_free(l2, 0, 0);	/* releases proc mutex */
    425 			mutex_enter(&p->p_smutex);
    426 		}
    427 
    428 		/*
    429 		 * Now look for an LWP to collect.  If the whole process is
    430 		 * exiting, count detached LWPs as eligible to be collected,
    431 		 * but don't drain them here.
    432 		 */
    433 		nfound = 0;
    434 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    435 			if (l2 == l || (lid != 0 && l2->l_lid != lid))
    436 				continue;
    437 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    438 				nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
    439 				continue;
    440 			}
    441 			nfound++;
    442 
    443 			/* No need to lock the LWP in order to see LSZOMB. */
    444 			if (l2->l_stat != LSZOMB)
    445 				continue;
    446 
    447 			if (departed)
    448 				*departed = l2->l_lid;
    449 			lwp_free(l2, 0, 0);
    450 			mutex_enter(&p->p_smutex);
    451 			p->p_nlwpwait--;
    452 			return 0;
    453 		}
    454 
    455 		if (nfound == 0) {
    456 			error = ESRCH;
    457 			break;
    458 		}
    459 		if ((flags & LWPWAIT_EXITCONTROL) != 0) {
    460 			KASSERT(p->p_nlwps > 1);
    461 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    462 			continue;
    463 		}
    464 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    465 		    p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
    466 			error = EDEADLK;
    467 			break;
    468 		}
    469 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    470 			break;
    471 	}
    472 
    473 	p->p_nlwpwait--;
    474 	return error;
    475 }
    476 
    477 /*
    478  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    479  * The new LWP is created in state LSIDL and must be set running,
    480  * suspended, or stopped by the caller.
    481  */
    482 int
    483 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
    484     int flags, void *stack, size_t stacksize,
    485     void (*func)(void *), void *arg, struct lwp **rnewlwpp)
    486 {
    487 	struct lwp *l2, *isfree;
    488 	turnstile_t *ts;
    489 
    490 	/*
    491 	 * First off, reap any detached LWP waiting to be collected.
    492 	 * We can re-use its LWP structure and turnstile.
    493 	 */
    494 	isfree = NULL;
    495 	if (p2->p_zomblwp != NULL) {
    496 		mutex_enter(&p2->p_smutex);
    497 		if ((isfree = p2->p_zomblwp) != NULL) {
    498 			p2->p_zomblwp = NULL;
    499 			lwp_free(isfree, 1, 0);	/* releases proc mutex */
    500 		} else
    501 			mutex_exit(&p2->p_smutex);
    502 	}
    503 	if (isfree == NULL) {
    504 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    505 		memset(l2, 0, sizeof(*l2));
    506 		l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
    507 		SLIST_INIT(&l2->l_pi_lenders);
    508 	} else {
    509 		l2 = isfree;
    510 		ts = l2->l_ts;
    511 		KASSERT(l2->l_inheritedprio == MAXPRI);
    512 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    513 		memset(l2, 0, sizeof(*l2));
    514 		l2->l_ts = ts;
    515 	}
    516 
    517 	l2->l_stat = LSIDL;
    518 	l2->l_proc = p2;
    519 	l2->l_refcnt = 1;
    520 	l2->l_priority = l1->l_priority;
    521 	l2->l_usrpri = l1->l_usrpri;
    522 	l2->l_inheritedprio = MAXPRI;
    523 	l2->l_mutex = &sched_mutex;
    524 	l2->l_cpu = l1->l_cpu;
    525 	l2->l_flag = inmem ? LW_INMEM : 0;
    526 	lwp_initspecific(l2);
    527 
    528 	if (p2->p_flag & PK_SYSTEM) {
    529 		/*
    530 		 * Mark it as a system process and not a candidate for
    531 		 * swapping.
    532 		 */
    533 		l2->l_flag |= LW_SYSTEM;
    534 	}
    535 
    536 	lwp_update_creds(l2);
    537 	callout_init(&l2->l_tsleep_ch);
    538 	cv_init(&l2->l_sigcv, "sigwait");
    539 	l2->l_syncobj = &sched_syncobj;
    540 
    541 	if (rnewlwpp != NULL)
    542 		*rnewlwpp = l2;
    543 
    544 	l2->l_addr = UAREA_TO_USER(uaddr);
    545 	KERNEL_LOCK(1, curlwp);
    546 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    547 	    (arg != NULL) ? arg : l2);
    548 	KERNEL_UNLOCK_ONE(curlwp);
    549 
    550 	mutex_enter(&p2->p_smutex);
    551 
    552 	if ((flags & LWP_DETACHED) != 0) {
    553 		l2->l_prflag = LPR_DETACHED;
    554 		p2->p_ndlwps++;
    555 	} else
    556 		l2->l_prflag = 0;
    557 
    558 	l2->l_sigmask = l1->l_sigmask;
    559 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    560 	sigemptyset(&l2->l_sigpend.sp_set);
    561 
    562 	p2->p_nlwpid++;
    563 	if (p2->p_nlwpid == 0)
    564 		p2->p_nlwpid++;
    565 	l2->l_lid = p2->p_nlwpid;
    566 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    567 	p2->p_nlwps++;
    568 
    569 	mutex_exit(&p2->p_smutex);
    570 
    571 	mutex_enter(&proclist_mutex);
    572 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    573 	mutex_exit(&proclist_mutex);
    574 
    575 	SYSCALL_TIME_LWP_INIT(l2);
    576 
    577 	if (p2->p_emul->e_lwp_fork)
    578 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    579 
    580 	return (0);
    581 }
    582 
    583 /*
    584  * Quit the process.  This will call cpu_exit, which will call cpu_switch,
    585  * so this can only be used meaningfully if you're willing to switch away.
    586  * Calling with l!=curlwp would be weird.
    587  */
    588 void
    589 lwp_exit(struct lwp *l)
    590 {
    591 	struct proc *p = l->l_proc;
    592 	struct lwp *l2;
    593 
    594 	DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
    595 	DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
    596 
    597 	/*
    598 	 * Verify that we hold no locks other than the kernel lock.
    599 	 */
    600 #ifdef MULTIPROCESSOR
    601 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    602 #else
    603 	LOCKDEBUG_BARRIER(NULL, 0);
    604 #endif
    605 
    606 	/*
    607 	 * If we are the last live LWP in a process, we need to exit the
    608 	 * entire process.  We do so with an exit status of zero, because
    609 	 * it's a "controlled" exit, and because that's what Solaris does.
    610 	 *
    611 	 * We are not quite a zombie yet, but for accounting purposes we
    612 	 * must increment the count of zombies here.
    613 	 *
    614 	 * Note: the last LWP's specificdata will be deleted here.
    615 	 */
    616 	mutex_enter(&p->p_smutex);
    617 	if (p->p_nlwps - p->p_nzlwps == 1) {
    618 		DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
    619 		    p->p_pid, l->l_lid));
    620 		exit1(l, 0);
    621 		/* NOTREACHED */
    622 	}
    623 	p->p_nzlwps++;
    624 	mutex_exit(&p->p_smutex);
    625 
    626 	if (p->p_emul->e_lwp_exit)
    627 		(*p->p_emul->e_lwp_exit)(l);
    628 
    629 	/* Delete the specificdata while it's still safe to sleep. */
    630 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    631 
    632 	/*
    633 	 * Release our cached credentials.
    634 	 */
    635 	kauth_cred_free(l->l_cred);
    636 
    637 	/*
    638 	 * Remove the LWP from the global list.
    639 	 */
    640 	mutex_enter(&proclist_mutex);
    641 	LIST_REMOVE(l, l_list);
    642 	mutex_exit(&proclist_mutex);
    643 
    644 	/*
    645 	 * Get rid of all references to the LWP that others (e.g. procfs)
    646 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    647 	 * mark it waiting for collection in the proc structure.  Note that
    648 	 * before we can do that, we need to free any other dead, deatched
    649 	 * LWP waiting to meet its maker.
    650 	 *
    651 	 * XXXSMP disable preemption.
    652 	 */
    653 	mutex_enter(&p->p_smutex);
    654 	lwp_drainrefs(l);
    655 
    656 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    657 		while ((l2 = p->p_zomblwp) != NULL) {
    658 			p->p_zomblwp = NULL;
    659 			lwp_free(l2, 0, 0);	/* releases proc mutex */
    660 			mutex_enter(&p->p_smutex);
    661 		}
    662 		p->p_zomblwp = l;
    663 	}
    664 
    665 	/*
    666 	 * If we find a pending signal for the process and we have been
    667 	 * asked to check for signals, then we loose: arrange to have
    668 	 * all other LWPs in the process check for signals.
    669 	 */
    670 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    671 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    672 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    673 			lwp_lock(l2);
    674 			l2->l_flag |= LW_PENDSIG;
    675 			lwp_unlock(l2);
    676 		}
    677 	}
    678 
    679 	lwp_lock(l);
    680 	l->l_stat = LSZOMB;
    681 	lwp_unlock(l);
    682 	p->p_nrlwps--;
    683 	cv_broadcast(&p->p_lwpcv);
    684 	mutex_exit(&p->p_smutex);
    685 
    686 	/*
    687 	 * We can no longer block.  At this point, lwp_free() may already
    688 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    689 	 *
    690 	 * Free MD LWP resources.
    691 	 */
    692 #ifndef __NO_CPU_LWP_FREE
    693 	cpu_lwp_free(l, 0);
    694 #endif
    695 	pmap_deactivate(l);
    696 
    697 	/*
    698 	 * Release the kernel lock, signal another LWP to collect us,
    699 	 * and switch away into oblivion.
    700 	 */
    701 #ifdef notyet
    702 	/* XXXSMP hold in lwp_userret() */
    703 	KERNEL_UNLOCK_LAST(l);
    704 #else
    705 	KERNEL_UNLOCK_ALL(l, NULL);
    706 #endif
    707 
    708 	cpu_exit(l);
    709 }
    710 
    711 /*
    712  * We are called from cpu_exit() once it is safe to schedule the dead LWP's
    713  * resources to be freed (i.e., once we've switched to the idle PCB for the
    714  * current CPU).
    715  */
    716 void
    717 lwp_exit2(struct lwp *l)
    718 {
    719 	/* XXXSMP re-enable preemption */
    720 }
    721 
    722 /*
    723  * Free a dead LWP's remaining resources.
    724  *
    725  * XXXLWP limits.
    726  */
    727 void
    728 lwp_free(struct lwp *l, int recycle, int last)
    729 {
    730 	struct proc *p = l->l_proc;
    731 	ksiginfoq_t kq;
    732 
    733 	/*
    734 	 * If this was not the last LWP in the process, then adjust
    735 	 * counters and unlock.
    736 	 */
    737 	if (!last) {
    738 		/*
    739 		 * Add the LWP's run time to the process' base value.
    740 		 * This needs to co-incide with coming off p_lwps.
    741 		 */
    742 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    743 		LIST_REMOVE(l, l_sibling);
    744 		p->p_nlwps--;
    745 		p->p_nzlwps--;
    746 		if ((l->l_prflag & LPR_DETACHED) != 0)
    747 			p->p_ndlwps--;
    748 		mutex_exit(&p->p_smutex);
    749 
    750 #ifdef MULTIPROCESSOR
    751 		/*
    752 		 * In the unlikely event that the LWP is still on the CPU,
    753 		 * then spin until it has switched away.  We need to release
    754 		 * all locks to avoid deadlock against interrupt handlers on
    755 		 * the target CPU.
    756 		 */
    757 		if (l->l_cpu->ci_curlwp == l) {
    758 			int count;
    759 			KERNEL_UNLOCK_ALL(curlwp, &count);
    760 			while (l->l_cpu->ci_curlwp == l)
    761 				SPINLOCK_BACKOFF_HOOK;
    762 			KERNEL_LOCK(count, curlwp);
    763 		}
    764 #endif
    765 	}
    766 
    767 	/*
    768 	 * Destroy the LWP's remaining signal information.
    769 	 */
    770 	ksiginfo_queue_init(&kq);
    771 	sigclear(&l->l_sigpend, NULL, &kq);
    772 	ksiginfo_queue_drain(&kq);
    773 	cv_destroy(&l->l_sigcv);
    774 
    775 	/*
    776 	 * Free the LWP's turnstile and the LWP structure itself unless the
    777 	 * caller wants to recycle them.
    778 	 *
    779 	 * We can't return turnstile0 to the pool (it didn't come from it),
    780 	 * so if it comes up just drop it quietly and move on.
    781 	 *
    782 	 * We don't recycle the VM resources at this time.
    783 	 */
    784 	if (!recycle && l->l_ts != &turnstile0)
    785 		pool_cache_put(&turnstile_cache, l->l_ts);
    786 #ifndef __NO_CPU_LWP_FREE
    787 	cpu_lwp_free2(l);
    788 #endif
    789 	uvm_lwp_exit(l);
    790 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    791 	KASSERT(l->l_inheritedprio == MAXPRI);
    792 	if (!recycle)
    793 		pool_put(&lwp_pool, l);
    794 }
    795 
    796 /*
    797  * Pick a LWP to represent the process for those operations which
    798  * want information about a "process" that is actually associated
    799  * with a LWP.
    800  *
    801  * If 'locking' is false, no locking or lock checks are performed.
    802  * This is intended for use by DDB.
    803  *
    804  * We don't bother locking the LWP here, since code that uses this
    805  * interface is broken by design and an exact match is not required.
    806  */
    807 struct lwp *
    808 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    809 {
    810 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    811 	struct lwp *signalled;
    812 	int cnt;
    813 
    814 	if (locking) {
    815 		KASSERT(mutex_owned(&p->p_smutex));
    816 	}
    817 
    818 	/* Trivial case: only one LWP */
    819 	if (p->p_nlwps == 1) {
    820 		l = LIST_FIRST(&p->p_lwps);
    821 		if (nrlwps)
    822 			*nrlwps = (l->l_stat == LSONPROC || LSRUN);
    823 		return l;
    824 	}
    825 
    826 	cnt = 0;
    827 	switch (p->p_stat) {
    828 	case SSTOP:
    829 	case SACTIVE:
    830 		/* Pick the most live LWP */
    831 		onproc = running = sleeping = stopped = suspended = NULL;
    832 		signalled = NULL;
    833 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    834 			if (l->l_lid == p->p_sigctx.ps_lwp)
    835 				signalled = l;
    836 			switch (l->l_stat) {
    837 			case LSONPROC:
    838 				onproc = l;
    839 				cnt++;
    840 				break;
    841 			case LSRUN:
    842 				running = l;
    843 				cnt++;
    844 				break;
    845 			case LSSLEEP:
    846 				sleeping = l;
    847 				break;
    848 			case LSSTOP:
    849 				stopped = l;
    850 				break;
    851 			case LSSUSPENDED:
    852 				suspended = l;
    853 				break;
    854 			}
    855 		}
    856 		if (nrlwps)
    857 			*nrlwps = cnt;
    858 		if (signalled)
    859 			l = signalled;
    860 		else if (onproc)
    861 			l = onproc;
    862 		else if (running)
    863 			l = running;
    864 		else if (sleeping)
    865 			l = sleeping;
    866 		else if (stopped)
    867 			l = stopped;
    868 		else if (suspended)
    869 			l = suspended;
    870 		else
    871 			break;
    872 		return l;
    873 		if (nrlwps)
    874 			*nrlwps = 0;
    875 		l = LIST_FIRST(&p->p_lwps);
    876 		return l;
    877 #ifdef DIAGNOSTIC
    878 	case SIDL:
    879 	case SZOMB:
    880 	case SDYING:
    881 	case SDEAD:
    882 		if (locking)
    883 			mutex_exit(&p->p_smutex);
    884 		/* We have more than one LWP and we're in SIDL?
    885 		 * How'd that happen?
    886 		 */
    887 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
    888 		    p->p_pid, p->p_comm, p->p_stat);
    889 		break;
    890 	default:
    891 		if (locking)
    892 			mutex_exit(&p->p_smutex);
    893 		panic("Process %d (%s) in unknown state %d",
    894 		    p->p_pid, p->p_comm, p->p_stat);
    895 #endif
    896 	}
    897 
    898 	if (locking)
    899 		mutex_exit(&p->p_smutex);
    900 	panic("proc_representative_lwp: couldn't find a lwp for process"
    901 		" %d (%s)", p->p_pid, p->p_comm);
    902 	/* NOTREACHED */
    903 	return NULL;
    904 }
    905 
    906 /*
    907  * Look up a live LWP within the speicifed process, and return it locked.
    908  *
    909  * Must be called with p->p_smutex held.
    910  */
    911 struct lwp *
    912 lwp_find(struct proc *p, int id)
    913 {
    914 	struct lwp *l;
    915 
    916 	KASSERT(mutex_owned(&p->p_smutex));
    917 
    918 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    919 		if (l->l_lid == id)
    920 			break;
    921 	}
    922 
    923 	/*
    924 	 * No need to lock - all of these conditions will
    925 	 * be visible with the process level mutex held.
    926 	 */
    927 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
    928 		l = NULL;
    929 
    930 	return l;
    931 }
    932 
    933 /*
    934  * Update an LWP's cached credentials to mirror the process' master copy.
    935  *
    936  * This happens early in the syscall path, on user trap, and on LWP
    937  * creation.  A long-running LWP can also voluntarily choose to update
    938  * it's credentials by calling this routine.  This may be called from
    939  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
    940  */
    941 void
    942 lwp_update_creds(struct lwp *l)
    943 {
    944 	kauth_cred_t oc;
    945 	struct proc *p;
    946 
    947 	p = l->l_proc;
    948 	oc = l->l_cred;
    949 
    950 	mutex_enter(&p->p_mutex);
    951 	kauth_cred_hold(p->p_cred);
    952 	l->l_cred = p->p_cred;
    953 	mutex_exit(&p->p_mutex);
    954 	if (oc != NULL)
    955 		kauth_cred_free(oc);
    956 }
    957 
    958 /*
    959  * Verify that an LWP is locked, and optionally verify that the lock matches
    960  * one we specify.
    961  */
    962 int
    963 lwp_locked(struct lwp *l, kmutex_t *mtx)
    964 {
    965 	kmutex_t *cur = l->l_mutex;
    966 
    967 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    968 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
    969 #else
    970 	return mutex_owned(cur);
    971 #endif
    972 }
    973 
    974 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    975 /*
    976  * Lock an LWP.
    977  */
    978 void
    979 lwp_lock_retry(struct lwp *l, kmutex_t *old)
    980 {
    981 
    982 	/*
    983 	 * XXXgcc ignoring kmutex_t * volatile on i386
    984 	 *
    985 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
    986 	 */
    987 #if 1
    988 	while (l->l_mutex != old) {
    989 #else
    990 	for (;;) {
    991 #endif
    992 		mutex_spin_exit(old);
    993 		old = l->l_mutex;
    994 		mutex_spin_enter(old);
    995 
    996 		/*
    997 		 * mutex_enter() will have posted a read barrier.  Re-test
    998 		 * l->l_mutex.  If it has changed, we need to try again.
    999 		 */
   1000 #if 1
   1001 	}
   1002 #else
   1003 	} while (__predict_false(l->l_mutex != old));
   1004 #endif
   1005 }
   1006 #endif
   1007 
   1008 /*
   1009  * Lend a new mutex to an LWP.  The old mutex must be held.
   1010  */
   1011 void
   1012 lwp_setlock(struct lwp *l, kmutex_t *new)
   1013 {
   1014 
   1015 	KASSERT(mutex_owned(l->l_mutex));
   1016 
   1017 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1018 	mb_write();
   1019 	l->l_mutex = new;
   1020 #else
   1021 	(void)new;
   1022 #endif
   1023 }
   1024 
   1025 /*
   1026  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1027  * must be held.
   1028  */
   1029 void
   1030 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1031 {
   1032 	kmutex_t *old;
   1033 
   1034 	KASSERT(mutex_owned(l->l_mutex));
   1035 
   1036 	old = l->l_mutex;
   1037 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1038 	mb_write();
   1039 	l->l_mutex = new;
   1040 #else
   1041 	(void)new;
   1042 #endif
   1043 	mutex_spin_exit(old);
   1044 }
   1045 
   1046 /*
   1047  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1048  * locked.
   1049  */
   1050 void
   1051 lwp_relock(struct lwp *l, kmutex_t *new)
   1052 {
   1053 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1054 	kmutex_t *old;
   1055 #endif
   1056 
   1057 	KASSERT(mutex_owned(l->l_mutex));
   1058 
   1059 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1060 	old = l->l_mutex;
   1061 	if (old != new) {
   1062 		mutex_spin_enter(new);
   1063 		l->l_mutex = new;
   1064 		mutex_spin_exit(old);
   1065 	}
   1066 #else
   1067 	(void)new;
   1068 #endif
   1069 }
   1070 
   1071 int
   1072 lwp_trylock(struct lwp *l)
   1073 {
   1074 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1075 	kmutex_t *old;
   1076 
   1077 	for (;;) {
   1078 		if (!mutex_tryenter(old = l->l_mutex))
   1079 			return 0;
   1080 		if (__predict_true(l->l_mutex == old))
   1081 			return 1;
   1082 		mutex_spin_exit(old);
   1083 	}
   1084 #else
   1085 	return mutex_tryenter(l->l_mutex);
   1086 #endif
   1087 }
   1088 
   1089 /*
   1090  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1091  * set.
   1092  */
   1093 void
   1094 lwp_userret(struct lwp *l)
   1095 {
   1096 	struct proc *p;
   1097 	void (*hook)(void);
   1098 	int sig;
   1099 
   1100 	p = l->l_proc;
   1101 
   1102 	/*
   1103 	 * It should be safe to do this read unlocked on a multiprocessor
   1104 	 * system..
   1105 	 */
   1106 	while ((l->l_flag & LW_USERRET) != 0) {
   1107 		/*
   1108 		 * Process pending signals first, unless the process
   1109 		 * is dumping core or exiting, where we will instead
   1110 		 * enter the L_WSUSPEND case below.
   1111 		 */
   1112 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1113 		    LW_PENDSIG) {
   1114 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1115 			mutex_enter(&p->p_smutex);
   1116 			while ((sig = issignal(l)) != 0)
   1117 				postsig(sig);
   1118 			mutex_exit(&p->p_smutex);
   1119 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1120 		}
   1121 
   1122 		/*
   1123 		 * Core-dump or suspend pending.
   1124 		 *
   1125 		 * In case of core dump, suspend ourselves, so that the
   1126 		 * kernel stack and therefore the userland registers saved
   1127 		 * in the trapframe are around for coredump() to write them
   1128 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1129 		 * will write the core file out once all other LWPs are
   1130 		 * suspended.
   1131 		 */
   1132 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1133 			mutex_enter(&p->p_smutex);
   1134 			p->p_nrlwps--;
   1135 			cv_broadcast(&p->p_lwpcv);
   1136 			lwp_lock(l);
   1137 			l->l_stat = LSSUSPENDED;
   1138 			mutex_exit(&p->p_smutex);
   1139 			mi_switch(l, NULL);
   1140 		}
   1141 
   1142 		/* Process is exiting. */
   1143 		if ((l->l_flag & LW_WEXIT) != 0) {
   1144 			KERNEL_LOCK(1, l);
   1145 			lwp_exit(l);
   1146 			KASSERT(0);
   1147 			/* NOTREACHED */
   1148 		}
   1149 
   1150 		/* Call userret hook; used by Linux emulation. */
   1151 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1152 			lwp_lock(l);
   1153 			l->l_flag &= ~LW_WUSERRET;
   1154 			lwp_unlock(l);
   1155 			hook = p->p_userret;
   1156 			p->p_userret = NULL;
   1157 			(*hook)();
   1158 		}
   1159 	}
   1160 }
   1161 
   1162 /*
   1163  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1164  */
   1165 void
   1166 lwp_need_userret(struct lwp *l)
   1167 {
   1168 	KASSERT(lwp_locked(l, NULL));
   1169 
   1170 	/*
   1171 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1172 	 * that the condition will be seen before forcing the LWP to enter
   1173 	 * kernel mode.
   1174 	 */
   1175 	mb_write();
   1176 	cpu_signotify(l);
   1177 }
   1178 
   1179 /*
   1180  * Add one reference to an LWP.  This will prevent the LWP from
   1181  * exiting, thus keep the lwp structure and PCB around to inspect.
   1182  */
   1183 void
   1184 lwp_addref(struct lwp *l)
   1185 {
   1186 
   1187 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1188 	KASSERT(l->l_stat != LSZOMB);
   1189 	KASSERT(l->l_refcnt != 0);
   1190 
   1191 	l->l_refcnt++;
   1192 }
   1193 
   1194 /*
   1195  * Remove one reference to an LWP.  If this is the last reference,
   1196  * then we must finalize the LWP's death.
   1197  */
   1198 void
   1199 lwp_delref(struct lwp *l)
   1200 {
   1201 	struct proc *p = l->l_proc;
   1202 
   1203 	mutex_enter(&p->p_smutex);
   1204 	if (--l->l_refcnt == 0)
   1205 		cv_broadcast(&p->p_refcv);
   1206 	mutex_exit(&p->p_smutex);
   1207 }
   1208 
   1209 /*
   1210  * Drain all references to the current LWP.
   1211  */
   1212 void
   1213 lwp_drainrefs(struct lwp *l)
   1214 {
   1215 	struct proc *p = l->l_proc;
   1216 
   1217 	KASSERT(mutex_owned(&p->p_smutex));
   1218 	KASSERT(l->l_refcnt != 0);
   1219 
   1220 	l->l_refcnt--;
   1221 	while (l->l_refcnt != 0)
   1222 		cv_wait(&p->p_refcv, &p->p_smutex);
   1223 }
   1224 
   1225 /*
   1226  * lwp_specific_key_create --
   1227  *	Create a key for subsystem lwp-specific data.
   1228  */
   1229 int
   1230 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1231 {
   1232 
   1233 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1234 }
   1235 
   1236 /*
   1237  * lwp_specific_key_delete --
   1238  *	Delete a key for subsystem lwp-specific data.
   1239  */
   1240 void
   1241 lwp_specific_key_delete(specificdata_key_t key)
   1242 {
   1243 
   1244 	specificdata_key_delete(lwp_specificdata_domain, key);
   1245 }
   1246 
   1247 /*
   1248  * lwp_initspecific --
   1249  *	Initialize an LWP's specificdata container.
   1250  */
   1251 void
   1252 lwp_initspecific(struct lwp *l)
   1253 {
   1254 	int error;
   1255 
   1256 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1257 	KASSERT(error == 0);
   1258 }
   1259 
   1260 /*
   1261  * lwp_finispecific --
   1262  *	Finalize an LWP's specificdata container.
   1263  */
   1264 void
   1265 lwp_finispecific(struct lwp *l)
   1266 {
   1267 
   1268 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1269 }
   1270 
   1271 /*
   1272  * lwp_getspecific --
   1273  *	Return lwp-specific data corresponding to the specified key.
   1274  *
   1275  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1276  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1277  *	LWP's specifc data, care must be taken to ensure that doing so
   1278  *	would not cause internal data structure inconsistency (i.e. caller
   1279  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1280  *	or lwp_setspecific() call).
   1281  */
   1282 void *
   1283 lwp_getspecific(specificdata_key_t key)
   1284 {
   1285 
   1286 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1287 						  &curlwp->l_specdataref, key));
   1288 }
   1289 
   1290 void *
   1291 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1292 {
   1293 
   1294 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1295 						  &l->l_specdataref, key));
   1296 }
   1297 
   1298 /*
   1299  * lwp_setspecific --
   1300  *	Set lwp-specific data corresponding to the specified key.
   1301  */
   1302 void
   1303 lwp_setspecific(specificdata_key_t key, void *data)
   1304 {
   1305 
   1306 	specificdata_setspecific(lwp_specificdata_domain,
   1307 				 &curlwp->l_specdataref, key, data);
   1308 }
   1309