kern_lwp.c revision 1.61.2.4 1 /* $NetBSD: kern_lwp.c,v 1.61.2.4 2007/04/05 21:38:36 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit (or thread) of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp".
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing in kernel simultaneously.
52 *
53 * Note that LWPs differ from kernel threads (kthreads) in that kernel
54 * threads are distinct processes (system processes) with no user space
55 * component, which themselves may contain one or more LWPs.
56 *
57 * Execution states
58 *
59 * At any given time, an LWP has overall state that is described by
60 * lwp::l_stat. The states are broken into two sets below. The first
61 * set is guaranteed to represent the absolute, current state of the
62 * LWP:
63 *
64 * LSONPROC
65 *
66 * On processor: the LWP is executing on a CPU, either in the
67 * kernel or in user space.
68 *
69 * LSRUN
70 *
71 * Runnable: the LWP is parked on a run queue, and may soon be
72 * chosen to run by a idle processor, or by a processor that
73 * has been asked to preempt a currently runnning but lower
74 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
75 * then the LWP is not on a run queue, but may be soon.
76 *
77 * LSIDL
78 *
79 * Idle: the LWP has been created but has not yet executed.
80 * Whoever created the new LWP can be expected to set it to
81 * another state shortly.
82 *
83 * LSSUSPENDED:
84 *
85 * Suspended: the LWP has had its execution suspended by
86 * another LWP in the same process using the _lwp_suspend()
87 * system call. User-level LWPs also enter the suspended
88 * state when the system is shutting down.
89 *
90 * The second set represent a "statement of intent" on behalf of the
91 * LWP. The LWP may in fact be executing on a processor, may be
92 * sleeping, idle, or on a run queue. It is expected to take the
93 * necessary action to stop executing or become "running" again within
94 * a short timeframe.
95 *
96 * LSZOMB:
97 *
98 * Dead: the LWP has released most of its resources and is
99 * about to switch away into oblivion. When it switches away,
100 * its few remaining resources will be collected.
101 *
102 * LSSLEEP:
103 *
104 * Sleeping: the LWP has entered itself onto a sleep queue, and
105 * will switch away shortly to allow other LWPs to run on the
106 * CPU.
107 *
108 * LSSTOP:
109 *
110 * Stopped: the LWP has been stopped as a result of a job
111 * control signal, or as a result of the ptrace() interface.
112 * Stopped LWPs may run briefly within the kernel to handle
113 * signals that they receive, but will not return to user space
114 * until their process' state is changed away from stopped.
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP and LSSUSPENDED states may only be set
122 * when returning to user space in userret(), or when sleeping
123 * interruptably. Before setting those states, we try to ensure
124 * that the LWPs will release all kernel locks that they hold,
125 * and at a minimum try to ensure that the LWP can be set runnable
126 * again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Locking
145 *
146 * The majority of fields in 'struct lwp' are covered by a single,
147 * general spin mutex pointed to by lwp::l_mutex. The locks covering
148 * each field are documented in sys/lwp.h.
149 *
150 * State transitions must be made with the LWP's general lock held. In
151 * a multiprocessor kernel, state transitions may cause the LWP's lock
152 * pointer to change. On uniprocessor kernels, most scheduler and
153 * synchronisation objects such as sleep queues and LWPs are protected
154 * by only one mutex (sched_mutex). In this case, LWPs' lock pointers
155 * will never change and will always reference sched_mutex.
156 *
157 * Manipulation of the general lock is not performed directly, but
158 * through calls to lwp_lock(), lwp_relock() and similar.
159 *
160 * States and their associated locks:
161 *
162 * LSIDL, LSZOMB
163 *
164 * Always covered by sched_mutex.
165 *
166 * LSONPROC, LSRUN:
167 *
168 * Always covered by sched_mutex, which protects the run queues
169 * and other miscellaneous items. If the scheduler is changed
170 * to use per-CPU run queues, this may become a per-CPU mutex.
171 *
172 * LSSLEEP:
173 *
174 * Covered by a mutex associated with the sleep queue that the
175 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
176 *
177 * LSSTOP, LSSUSPENDED:
178 *
179 * If the LWP was previously sleeping (l_wchan != NULL), then
180 * l_mutex references the sleep queue mutex. If the LWP was
181 * runnable or on the CPU when halted, or has been removed from
182 * the sleep queue since halted, then the mutex is sched_mutex.
183 *
184 * The lock order is as follows:
185 *
186 * sleepq_t::sq_mutex |---> sched_mutex
187 * tschain_t::tc_mutex |
188 *
189 * Each process has an scheduler state mutex (proc::p_smutex), and a
190 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
191 * so on. When an LWP is to be entered into or removed from one of the
192 * following states, p_mutex must be held and the process wide counters
193 * adjusted:
194 *
195 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
196 *
197 * Note that an LWP is considered running or likely to run soon if in
198 * one of the following states. This affects the value of p_nrlwps:
199 *
200 * LSRUN, LSONPROC, LSSLEEP
201 *
202 * p_smutex does not need to be held when transitioning among these
203 * three states.
204 */
205
206 #include <sys/cdefs.h>
207 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.61.2.4 2007/04/05 21:38:36 ad Exp $");
208
209 #include "opt_multiprocessor.h"
210 #include "opt_lockdebug.h"
211
212 #define _LWP_API_PRIVATE
213
214 #include <sys/param.h>
215 #include <sys/systm.h>
216 #include <sys/pool.h>
217 #include <sys/proc.h>
218 #include <sys/syscallargs.h>
219 #include <sys/syscall_stats.h>
220 #include <sys/kauth.h>
221 #include <sys/sleepq.h>
222 #include <sys/lockdebug.h>
223 #include <sys/kmem.h>
224
225 #include <uvm/uvm_extern.h>
226
227 struct lwplist alllwp;
228
229 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
230 &pool_allocator_nointr, IPL_NONE);
231 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
232 &pool_allocator_nointr, IPL_NONE);
233
234 static specificdata_domain_t lwp_specificdata_domain;
235
236 #define LWP_DEBUG
237
238 #ifdef LWP_DEBUG
239 int lwp_debug = 0;
240 #define DPRINTF(x) if (lwp_debug) printf x
241 #else
242 #define DPRINTF(x)
243 #endif
244
245 void
246 lwpinit(void)
247 {
248
249 lwp_specificdata_domain = specificdata_domain_create();
250 KASSERT(lwp_specificdata_domain != NULL);
251 lwp_sys_init();
252 }
253
254 /*
255 * Set an suspended.
256 *
257 * Must be called with p_smutex held, and the LWP locked. Will unlock the
258 * LWP before return.
259 */
260 int
261 lwp_suspend(struct lwp *curl, struct lwp *t)
262 {
263 int error;
264
265 KASSERT(mutex_owned(&t->l_proc->p_smutex));
266 KASSERT(lwp_locked(t, NULL));
267
268 KASSERT(curl != t || curl->l_stat == LSONPROC);
269
270 /*
271 * If the current LWP has been told to exit, we must not suspend anyone
272 * else or deadlock could occur. We won't return to userspace.
273 */
274 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
275 lwp_unlock(t);
276 return (EDEADLK);
277 }
278
279 error = 0;
280
281 switch (t->l_stat) {
282 case LSRUN:
283 case LSONPROC:
284 t->l_flag |= LW_WSUSPEND;
285 lwp_need_userret(t);
286 lwp_unlock(t);
287 break;
288
289 case LSSLEEP:
290 t->l_flag |= LW_WSUSPEND;
291
292 /*
293 * Kick the LWP and try to get it to the kernel boundary
294 * so that it will release any locks that it holds.
295 * setrunnable() will release the lock.
296 */
297 if ((t->l_flag & LW_SINTR) != 0)
298 setrunnable(t);
299 else
300 lwp_unlock(t);
301 break;
302
303 case LSSUSPENDED:
304 lwp_unlock(t);
305 break;
306
307 case LSSTOP:
308 t->l_flag |= LW_WSUSPEND;
309 setrunnable(t);
310 break;
311
312 case LSIDL:
313 case LSZOMB:
314 error = EINTR; /* It's what Solaris does..... */
315 lwp_unlock(t);
316 break;
317 }
318
319 /*
320 * XXXLWP Wait for:
321 *
322 * o process exiting
323 * o target LWP suspended
324 * o target LWP not suspended and L_WSUSPEND clear
325 * o target LWP exited
326 */
327
328 return (error);
329 }
330
331 /*
332 * Restart a suspended LWP.
333 *
334 * Must be called with p_smutex held, and the LWP locked. Will unlock the
335 * LWP before return.
336 */
337 void
338 lwp_continue(struct lwp *l)
339 {
340
341 KASSERT(mutex_owned(&l->l_proc->p_smutex));
342 KASSERT(lwp_locked(l, NULL));
343
344 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
345 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
346 l->l_wchan));
347
348 /* If rebooting or not suspended, then just bail out. */
349 if ((l->l_flag & LW_WREBOOT) != 0) {
350 lwp_unlock(l);
351 return;
352 }
353
354 l->l_flag &= ~LW_WSUSPEND;
355
356 if (l->l_stat != LSSUSPENDED) {
357 lwp_unlock(l);
358 return;
359 }
360
361 /* setrunnable() will release the lock. */
362 setrunnable(l);
363 }
364
365 /*
366 * Wait for an LWP within the current process to exit. If 'lid' is
367 * non-zero, we are waiting for a specific LWP.
368 *
369 * Must be called with p->p_smutex held.
370 */
371 int
372 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
373 {
374 struct proc *p = l->l_proc;
375 struct lwp *l2;
376 int nfound, error;
377
378 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
379 p->p_pid, l->l_lid, lid));
380
381 KASSERT(mutex_owned(&p->p_smutex));
382
383 /*
384 * We try to check for deadlock:
385 *
386 * 1) If all other LWPs are waiting for exits or suspended.
387 * 2) If we are trying to wait on ourself.
388 *
389 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
390 * waits, not any-LWP waits) and detect that sort of deadlock, but
391 * we don't have a good place to store the lwp that is being waited
392 * for. wchan is already filled with &p->p_nlwps, and putting the
393 * lwp address in there for deadlock tracing would require exiting
394 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
395 * get threads sleeping on any LWP exiting.
396 */
397 if (lid == l->l_lid)
398 return EDEADLK;
399
400 p->p_nlwpwait++;
401
402 for (;;) {
403 /*
404 * Avoid a race between exit1() and sigexit(): if the
405 * process is dumping core, then we need to bail out: call
406 * into lwp_userret() where we will be suspended until the
407 * deed is done.
408 */
409 if ((p->p_sflag & PS_WCORE) != 0) {
410 mutex_exit(&p->p_smutex);
411 lwp_userret(l);
412 #ifdef DIAGNOSTIC
413 panic("lwp_wait1");
414 #endif
415 /* NOTREACHED */
416 }
417
418 /*
419 * First off, drain any detached LWP that is waiting to be
420 * reaped.
421 */
422 while ((l2 = p->p_zomblwp) != NULL) {
423 p->p_zomblwp = NULL;
424 lwp_free(l2, 0, 0); /* releases proc mutex */
425 mutex_enter(&p->p_smutex);
426 }
427
428 /*
429 * Now look for an LWP to collect. If the whole process is
430 * exiting, count detached LWPs as eligible to be collected,
431 * but don't drain them here.
432 */
433 nfound = 0;
434 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
435 if (l2 == l || (lid != 0 && l2->l_lid != lid))
436 continue;
437 if ((l2->l_prflag & LPR_DETACHED) != 0) {
438 nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
439 continue;
440 }
441 nfound++;
442
443 /* No need to lock the LWP in order to see LSZOMB. */
444 if (l2->l_stat != LSZOMB)
445 continue;
446
447 if (departed)
448 *departed = l2->l_lid;
449 lwp_free(l2, 0, 0);
450 mutex_enter(&p->p_smutex);
451 p->p_nlwpwait--;
452 return 0;
453 }
454
455 if (nfound == 0) {
456 error = ESRCH;
457 break;
458 }
459 if ((flags & LWPWAIT_EXITCONTROL) != 0) {
460 KASSERT(p->p_nlwps > 1);
461 cv_wait(&p->p_lwpcv, &p->p_smutex);
462 continue;
463 }
464 if ((p->p_sflag & PS_WEXIT) != 0 ||
465 p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
466 error = EDEADLK;
467 break;
468 }
469 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
470 break;
471 }
472
473 p->p_nlwpwait--;
474 return error;
475 }
476
477 /*
478 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
479 * The new LWP is created in state LSIDL and must be set running,
480 * suspended, or stopped by the caller.
481 */
482 int
483 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
484 int flags, void *stack, size_t stacksize,
485 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
486 {
487 struct lwp *l2, *isfree;
488 turnstile_t *ts;
489
490 /*
491 * First off, reap any detached LWP waiting to be collected.
492 * We can re-use its LWP structure and turnstile.
493 */
494 isfree = NULL;
495 if (p2->p_zomblwp != NULL) {
496 mutex_enter(&p2->p_smutex);
497 if ((isfree = p2->p_zomblwp) != NULL) {
498 p2->p_zomblwp = NULL;
499 lwp_free(isfree, 1, 0); /* releases proc mutex */
500 } else
501 mutex_exit(&p2->p_smutex);
502 }
503 if (isfree == NULL) {
504 l2 = pool_get(&lwp_pool, PR_WAITOK);
505 memset(l2, 0, sizeof(*l2));
506 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
507 SLIST_INIT(&l2->l_pi_lenders);
508 } else {
509 l2 = isfree;
510 ts = l2->l_ts;
511 KASSERT(l2->l_inheritedprio == MAXPRI);
512 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
513 memset(l2, 0, sizeof(*l2));
514 l2->l_ts = ts;
515 }
516
517 l2->l_stat = LSIDL;
518 l2->l_proc = p2;
519 l2->l_refcnt = 1;
520 l2->l_priority = l1->l_priority;
521 l2->l_usrpri = l1->l_usrpri;
522 l2->l_inheritedprio = MAXPRI;
523 l2->l_mutex = &sched_mutex;
524 l2->l_cpu = l1->l_cpu;
525 l2->l_flag = inmem ? LW_INMEM : 0;
526 lwp_initspecific(l2);
527
528 if (p2->p_flag & PK_SYSTEM) {
529 /*
530 * Mark it as a system process and not a candidate for
531 * swapping.
532 */
533 l2->l_flag |= LW_SYSTEM;
534 }
535
536 lwp_update_creds(l2);
537 callout_init(&l2->l_tsleep_ch);
538 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
539 cv_init(&l2->l_sigcv, "sigwait");
540 l2->l_syncobj = &sched_syncobj;
541
542 if (rnewlwpp != NULL)
543 *rnewlwpp = l2;
544
545 l2->l_addr = UAREA_TO_USER(uaddr);
546 KERNEL_LOCK(1, curlwp);
547 uvm_lwp_fork(l1, l2, stack, stacksize, func,
548 (arg != NULL) ? arg : l2);
549 KERNEL_UNLOCK_ONE(curlwp);
550
551 mutex_enter(&p2->p_smutex);
552
553 if ((flags & LWP_DETACHED) != 0) {
554 l2->l_prflag = LPR_DETACHED;
555 p2->p_ndlwps++;
556 } else
557 l2->l_prflag = 0;
558
559 l2->l_sigmask = l1->l_sigmask;
560 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
561 sigemptyset(&l2->l_sigpend.sp_set);
562
563 p2->p_nlwpid++;
564 if (p2->p_nlwpid == 0)
565 p2->p_nlwpid++;
566 l2->l_lid = p2->p_nlwpid;
567 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
568 p2->p_nlwps++;
569
570 mutex_exit(&p2->p_smutex);
571
572 mutex_enter(&proclist_lock);
573 mutex_enter(&proclist_mutex);
574 LIST_INSERT_HEAD(&alllwp, l2, l_list);
575 mutex_exit(&proclist_mutex);
576 mutex_exit(&proclist_lock);
577
578 SYSCALL_TIME_LWP_INIT(l2);
579
580 if (p2->p_emul->e_lwp_fork)
581 (*p2->p_emul->e_lwp_fork)(l1, l2);
582
583 return (0);
584 }
585
586 /*
587 * Quit the process. This will call cpu_exit, which will call cpu_switch,
588 * so this can only be used meaningfully if you're willing to switch away.
589 * Calling with l!=curlwp would be weird.
590 */
591 void
592 lwp_exit(struct lwp *l)
593 {
594 struct proc *p = l->l_proc;
595 struct lwp *l2;
596
597 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
598 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
599
600 /*
601 * Verify that we hold no locks other than the kernel lock.
602 */
603 #ifdef MULTIPROCESSOR
604 LOCKDEBUG_BARRIER(&kernel_lock, 0);
605 #else
606 LOCKDEBUG_BARRIER(NULL, 0);
607 #endif
608
609 /*
610 * If we are the last live LWP in a process, we need to exit the
611 * entire process. We do so with an exit status of zero, because
612 * it's a "controlled" exit, and because that's what Solaris does.
613 *
614 * We are not quite a zombie yet, but for accounting purposes we
615 * must increment the count of zombies here.
616 *
617 * Note: the last LWP's specificdata will be deleted here.
618 */
619 mutex_enter(&p->p_smutex);
620 if (p->p_nlwps - p->p_nzlwps == 1) {
621 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
622 p->p_pid, l->l_lid));
623 exit1(l, 0);
624 /* NOTREACHED */
625 }
626 p->p_nzlwps++;
627 mutex_exit(&p->p_smutex);
628
629 if (p->p_emul->e_lwp_exit)
630 (*p->p_emul->e_lwp_exit)(l);
631
632 /* Delete the specificdata while it's still safe to sleep. */
633 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
634
635 /*
636 * Release our cached credentials.
637 */
638 kauth_cred_free(l->l_cred);
639
640 /*
641 * While we can still block, mark the LWP as unswappable to
642 * prevent conflicts with the with the swapper.
643 */
644 uvm_lwp_hold(l);
645
646 /*
647 * Remove the LWP from the global list.
648 */
649 mutex_enter(&proclist_lock);
650 mutex_enter(&proclist_mutex);
651 LIST_REMOVE(l, l_list);
652 mutex_exit(&proclist_mutex);
653 mutex_exit(&proclist_lock);
654
655 /*
656 * Get rid of all references to the LWP that others (e.g. procfs)
657 * may have, and mark the LWP as a zombie. If the LWP is detached,
658 * mark it waiting for collection in the proc structure. Note that
659 * before we can do that, we need to free any other dead, deatched
660 * LWP waiting to meet its maker.
661 *
662 * XXXSMP disable preemption.
663 */
664 mutex_enter(&p->p_smutex);
665 lwp_drainrefs(l);
666
667 if ((l->l_prflag & LPR_DETACHED) != 0) {
668 while ((l2 = p->p_zomblwp) != NULL) {
669 p->p_zomblwp = NULL;
670 lwp_free(l2, 0, 0); /* releases proc mutex */
671 mutex_enter(&p->p_smutex);
672 }
673 p->p_zomblwp = l;
674 }
675
676 /*
677 * If we find a pending signal for the process and we have been
678 * asked to check for signals, then we loose: arrange to have
679 * all other LWPs in the process check for signals.
680 */
681 if ((l->l_flag & LW_PENDSIG) != 0 &&
682 firstsig(&p->p_sigpend.sp_set) != 0) {
683 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
684 lwp_lock(l2);
685 l2->l_flag |= LW_PENDSIG;
686 lwp_unlock(l2);
687 }
688 }
689
690 lwp_lock(l);
691 l->l_stat = LSZOMB;
692 lwp_unlock(l);
693 p->p_nrlwps--;
694 cv_broadcast(&p->p_lwpcv);
695 mutex_exit(&p->p_smutex);
696
697 /*
698 * We can no longer block. At this point, lwp_free() may already
699 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
700 *
701 * Free MD LWP resources.
702 */
703 #ifndef __NO_CPU_LWP_FREE
704 cpu_lwp_free(l, 0);
705 #endif
706 pmap_deactivate(l);
707
708 /*
709 * Release the kernel lock, signal another LWP to collect us,
710 * and switch away into oblivion.
711 */
712 #ifdef notyet
713 /* XXXSMP hold in lwp_userret() */
714 KERNEL_UNLOCK_LAST(l);
715 #else
716 KERNEL_UNLOCK_ALL(l, NULL);
717 #endif
718
719 cpu_exit(l);
720 }
721
722 /*
723 * We are called from cpu_exit() once it is safe to schedule the dead LWP's
724 * resources to be freed (i.e., once we've switched to the idle PCB for the
725 * current CPU).
726 */
727 void
728 lwp_exit2(struct lwp *l)
729 {
730 /* XXXSMP re-enable preemption */
731 }
732
733 /*
734 * Free a dead LWP's remaining resources.
735 *
736 * XXXLWP limits.
737 */
738 void
739 lwp_free(struct lwp *l, int recycle, int last)
740 {
741 struct proc *p = l->l_proc;
742 ksiginfoq_t kq;
743
744 /*
745 * If this was not the last LWP in the process, then adjust
746 * counters and unlock.
747 */
748 if (!last) {
749 /*
750 * Add the LWP's run time to the process' base value.
751 * This needs to co-incide with coming off p_lwps.
752 */
753 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
754 LIST_REMOVE(l, l_sibling);
755 p->p_nlwps--;
756 p->p_nzlwps--;
757 if ((l->l_prflag & LPR_DETACHED) != 0)
758 p->p_ndlwps--;
759 mutex_exit(&p->p_smutex);
760
761 #ifdef MULTIPROCESSOR
762 /*
763 * In the unlikely event that the LWP is still on the CPU,
764 * then spin until it has switched away. We need to release
765 * all locks to avoid deadlock against interrupt handlers on
766 * the target CPU.
767 */
768 if (l->l_cpu->ci_curlwp == l) {
769 int count;
770 KERNEL_UNLOCK_ALL(curlwp, &count);
771 while (l->l_cpu->ci_curlwp == l)
772 SPINLOCK_BACKOFF_HOOK;
773 KERNEL_LOCK(count, curlwp);
774 }
775 #endif
776 }
777
778 /*
779 * Destroy the LWP's remaining signal information.
780 */
781 ksiginfo_queue_init(&kq);
782 sigclear(&l->l_sigpend, NULL, &kq);
783 ksiginfo_queue_drain(&kq);
784 cv_destroy(&l->l_sigcv);
785 mutex_destroy(&l->l_swaplock);
786
787 /*
788 * Free the LWP's turnstile and the LWP structure itself unless the
789 * caller wants to recycle them.
790 *
791 * We can't return turnstile0 to the pool (it didn't come from it),
792 * so if it comes up just drop it quietly and move on.
793 *
794 * We don't recycle the VM resources at this time.
795 */
796 if (!recycle && l->l_ts != &turnstile0)
797 pool_cache_put(&turnstile_cache, l->l_ts);
798 #ifndef __NO_CPU_LWP_FREE
799 cpu_lwp_free2(l);
800 #endif
801 uvm_lwp_exit(l);
802 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
803 KASSERT(l->l_inheritedprio == MAXPRI);
804 if (!recycle)
805 pool_put(&lwp_pool, l);
806 }
807
808 /*
809 * Pick a LWP to represent the process for those operations which
810 * want information about a "process" that is actually associated
811 * with a LWP.
812 *
813 * If 'locking' is false, no locking or lock checks are performed.
814 * This is intended for use by DDB.
815 *
816 * We don't bother locking the LWP here, since code that uses this
817 * interface is broken by design and an exact match is not required.
818 */
819 struct lwp *
820 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
821 {
822 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
823 struct lwp *signalled;
824 int cnt;
825
826 if (locking) {
827 KASSERT(mutex_owned(&p->p_smutex));
828 }
829
830 /* Trivial case: only one LWP */
831 if (p->p_nlwps == 1) {
832 l = LIST_FIRST(&p->p_lwps);
833 if (nrlwps)
834 *nrlwps = (l->l_stat == LSONPROC || LSRUN);
835 return l;
836 }
837
838 cnt = 0;
839 switch (p->p_stat) {
840 case SSTOP:
841 case SACTIVE:
842 /* Pick the most live LWP */
843 onproc = running = sleeping = stopped = suspended = NULL;
844 signalled = NULL;
845 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
846 if (l->l_lid == p->p_sigctx.ps_lwp)
847 signalled = l;
848 switch (l->l_stat) {
849 case LSONPROC:
850 onproc = l;
851 cnt++;
852 break;
853 case LSRUN:
854 running = l;
855 cnt++;
856 break;
857 case LSSLEEP:
858 sleeping = l;
859 break;
860 case LSSTOP:
861 stopped = l;
862 break;
863 case LSSUSPENDED:
864 suspended = l;
865 break;
866 }
867 }
868 if (nrlwps)
869 *nrlwps = cnt;
870 if (signalled)
871 l = signalled;
872 else if (onproc)
873 l = onproc;
874 else if (running)
875 l = running;
876 else if (sleeping)
877 l = sleeping;
878 else if (stopped)
879 l = stopped;
880 else if (suspended)
881 l = suspended;
882 else
883 break;
884 return l;
885 if (nrlwps)
886 *nrlwps = 0;
887 l = LIST_FIRST(&p->p_lwps);
888 return l;
889 #ifdef DIAGNOSTIC
890 case SIDL:
891 case SZOMB:
892 case SDYING:
893 case SDEAD:
894 if (locking)
895 mutex_exit(&p->p_smutex);
896 /* We have more than one LWP and we're in SIDL?
897 * How'd that happen?
898 */
899 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
900 p->p_pid, p->p_comm, p->p_stat);
901 break;
902 default:
903 if (locking)
904 mutex_exit(&p->p_smutex);
905 panic("Process %d (%s) in unknown state %d",
906 p->p_pid, p->p_comm, p->p_stat);
907 #endif
908 }
909
910 if (locking)
911 mutex_exit(&p->p_smutex);
912 panic("proc_representative_lwp: couldn't find a lwp for process"
913 " %d (%s)", p->p_pid, p->p_comm);
914 /* NOTREACHED */
915 return NULL;
916 }
917
918 /*
919 * Look up a live LWP within the speicifed process, and return it locked.
920 *
921 * Must be called with p->p_smutex held.
922 */
923 struct lwp *
924 lwp_find(struct proc *p, int id)
925 {
926 struct lwp *l;
927
928 KASSERT(mutex_owned(&p->p_smutex));
929
930 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
931 if (l->l_lid == id)
932 break;
933 }
934
935 /*
936 * No need to lock - all of these conditions will
937 * be visible with the process level mutex held.
938 */
939 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
940 l = NULL;
941
942 return l;
943 }
944
945 /*
946 * Update an LWP's cached credentials to mirror the process' master copy.
947 *
948 * This happens early in the syscall path, on user trap, and on LWP
949 * creation. A long-running LWP can also voluntarily choose to update
950 * it's credentials by calling this routine. This may be called from
951 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
952 */
953 void
954 lwp_update_creds(struct lwp *l)
955 {
956 kauth_cred_t oc;
957 struct proc *p;
958
959 p = l->l_proc;
960 oc = l->l_cred;
961
962 mutex_enter(&p->p_mutex);
963 kauth_cred_hold(p->p_cred);
964 l->l_cred = p->p_cred;
965 mutex_exit(&p->p_mutex);
966 if (oc != NULL)
967 kauth_cred_free(oc);
968 }
969
970 /*
971 * Verify that an LWP is locked, and optionally verify that the lock matches
972 * one we specify.
973 */
974 int
975 lwp_locked(struct lwp *l, kmutex_t *mtx)
976 {
977 kmutex_t *cur = l->l_mutex;
978
979 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
980 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
981 #else
982 return mutex_owned(cur);
983 #endif
984 }
985
986 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
987 /*
988 * Lock an LWP.
989 */
990 void
991 lwp_lock_retry(struct lwp *l, kmutex_t *old)
992 {
993
994 /*
995 * XXXgcc ignoring kmutex_t * volatile on i386
996 *
997 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
998 */
999 #if 1
1000 while (l->l_mutex != old) {
1001 #else
1002 for (;;) {
1003 #endif
1004 mutex_spin_exit(old);
1005 old = l->l_mutex;
1006 mutex_spin_enter(old);
1007
1008 /*
1009 * mutex_enter() will have posted a read barrier. Re-test
1010 * l->l_mutex. If it has changed, we need to try again.
1011 */
1012 #if 1
1013 }
1014 #else
1015 } while (__predict_false(l->l_mutex != old));
1016 #endif
1017 }
1018 #endif
1019
1020 /*
1021 * Lend a new mutex to an LWP. The old mutex must be held.
1022 */
1023 void
1024 lwp_setlock(struct lwp *l, kmutex_t *new)
1025 {
1026
1027 KASSERT(mutex_owned(l->l_mutex));
1028
1029 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1030 mb_write();
1031 l->l_mutex = new;
1032 #else
1033 (void)new;
1034 #endif
1035 }
1036
1037 /*
1038 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1039 * must be held.
1040 */
1041 void
1042 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1043 {
1044 kmutex_t *old;
1045
1046 KASSERT(mutex_owned(l->l_mutex));
1047
1048 old = l->l_mutex;
1049 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1050 mb_write();
1051 l->l_mutex = new;
1052 #else
1053 (void)new;
1054 #endif
1055 mutex_spin_exit(old);
1056 }
1057
1058 /*
1059 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1060 * locked.
1061 */
1062 void
1063 lwp_relock(struct lwp *l, kmutex_t *new)
1064 {
1065 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1066 kmutex_t *old;
1067 #endif
1068
1069 KASSERT(mutex_owned(l->l_mutex));
1070
1071 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1072 old = l->l_mutex;
1073 if (old != new) {
1074 mutex_spin_enter(new);
1075 l->l_mutex = new;
1076 mutex_spin_exit(old);
1077 }
1078 #else
1079 (void)new;
1080 #endif
1081 }
1082
1083 int
1084 lwp_trylock(struct lwp *l)
1085 {
1086 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
1087 kmutex_t *old;
1088
1089 for (;;) {
1090 if (!mutex_tryenter(old = l->l_mutex))
1091 return 0;
1092 if (__predict_true(l->l_mutex == old))
1093 return 1;
1094 mutex_spin_exit(old);
1095 }
1096 #else
1097 return mutex_tryenter(l->l_mutex);
1098 #endif
1099 }
1100
1101 /*
1102 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1103 * set.
1104 */
1105 void
1106 lwp_userret(struct lwp *l)
1107 {
1108 struct proc *p;
1109 void (*hook)(void);
1110 int sig;
1111
1112 p = l->l_proc;
1113
1114 /*
1115 * It should be safe to do this read unlocked on a multiprocessor
1116 * system..
1117 */
1118 while ((l->l_flag & LW_USERRET) != 0) {
1119 /*
1120 * Process pending signals first, unless the process
1121 * is dumping core or exiting, where we will instead
1122 * enter the L_WSUSPEND case below.
1123 */
1124 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1125 LW_PENDSIG) {
1126 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1127 mutex_enter(&p->p_smutex);
1128 while ((sig = issignal(l)) != 0)
1129 postsig(sig);
1130 mutex_exit(&p->p_smutex);
1131 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1132 }
1133
1134 /*
1135 * Core-dump or suspend pending.
1136 *
1137 * In case of core dump, suspend ourselves, so that the
1138 * kernel stack and therefore the userland registers saved
1139 * in the trapframe are around for coredump() to write them
1140 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1141 * will write the core file out once all other LWPs are
1142 * suspended.
1143 */
1144 if ((l->l_flag & LW_WSUSPEND) != 0) {
1145 mutex_enter(&p->p_smutex);
1146 p->p_nrlwps--;
1147 cv_broadcast(&p->p_lwpcv);
1148 lwp_lock(l);
1149 l->l_stat = LSSUSPENDED;
1150 mutex_exit(&p->p_smutex);
1151 mi_switch(l, NULL);
1152 }
1153
1154 /* Process is exiting. */
1155 if ((l->l_flag & LW_WEXIT) != 0) {
1156 KERNEL_LOCK(1, l);
1157 lwp_exit(l);
1158 KASSERT(0);
1159 /* NOTREACHED */
1160 }
1161
1162 /* Call userret hook; used by Linux emulation. */
1163 if ((l->l_flag & LW_WUSERRET) != 0) {
1164 lwp_lock(l);
1165 l->l_flag &= ~LW_WUSERRET;
1166 lwp_unlock(l);
1167 hook = p->p_userret;
1168 p->p_userret = NULL;
1169 (*hook)();
1170 }
1171 }
1172 }
1173
1174 /*
1175 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1176 */
1177 void
1178 lwp_need_userret(struct lwp *l)
1179 {
1180 KASSERT(lwp_locked(l, NULL));
1181
1182 /*
1183 * Since the tests in lwp_userret() are done unlocked, make sure
1184 * that the condition will be seen before forcing the LWP to enter
1185 * kernel mode.
1186 */
1187 mb_write();
1188 cpu_signotify(l);
1189 }
1190
1191 /*
1192 * Add one reference to an LWP. This will prevent the LWP from
1193 * exiting, thus keep the lwp structure and PCB around to inspect.
1194 */
1195 void
1196 lwp_addref(struct lwp *l)
1197 {
1198
1199 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1200 KASSERT(l->l_stat != LSZOMB);
1201 KASSERT(l->l_refcnt != 0);
1202
1203 l->l_refcnt++;
1204 }
1205
1206 /*
1207 * Remove one reference to an LWP. If this is the last reference,
1208 * then we must finalize the LWP's death.
1209 */
1210 void
1211 lwp_delref(struct lwp *l)
1212 {
1213 struct proc *p = l->l_proc;
1214
1215 mutex_enter(&p->p_smutex);
1216 if (--l->l_refcnt == 0)
1217 cv_broadcast(&p->p_refcv);
1218 mutex_exit(&p->p_smutex);
1219 }
1220
1221 /*
1222 * Drain all references to the current LWP.
1223 */
1224 void
1225 lwp_drainrefs(struct lwp *l)
1226 {
1227 struct proc *p = l->l_proc;
1228
1229 KASSERT(mutex_owned(&p->p_smutex));
1230 KASSERT(l->l_refcnt != 0);
1231
1232 l->l_refcnt--;
1233 while (l->l_refcnt != 0)
1234 cv_wait(&p->p_refcv, &p->p_smutex);
1235 }
1236
1237 /*
1238 * lwp_specific_key_create --
1239 * Create a key for subsystem lwp-specific data.
1240 */
1241 int
1242 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1243 {
1244
1245 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1246 }
1247
1248 /*
1249 * lwp_specific_key_delete --
1250 * Delete a key for subsystem lwp-specific data.
1251 */
1252 void
1253 lwp_specific_key_delete(specificdata_key_t key)
1254 {
1255
1256 specificdata_key_delete(lwp_specificdata_domain, key);
1257 }
1258
1259 /*
1260 * lwp_initspecific --
1261 * Initialize an LWP's specificdata container.
1262 */
1263 void
1264 lwp_initspecific(struct lwp *l)
1265 {
1266 int error;
1267
1268 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1269 KASSERT(error == 0);
1270 }
1271
1272 /*
1273 * lwp_finispecific --
1274 * Finalize an LWP's specificdata container.
1275 */
1276 void
1277 lwp_finispecific(struct lwp *l)
1278 {
1279
1280 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1281 }
1282
1283 /*
1284 * lwp_getspecific --
1285 * Return lwp-specific data corresponding to the specified key.
1286 *
1287 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1288 * only its OWN SPECIFIC DATA. If it is necessary to access another
1289 * LWP's specifc data, care must be taken to ensure that doing so
1290 * would not cause internal data structure inconsistency (i.e. caller
1291 * can guarantee that the target LWP is not inside an lwp_getspecific()
1292 * or lwp_setspecific() call).
1293 */
1294 void *
1295 lwp_getspecific(specificdata_key_t key)
1296 {
1297
1298 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1299 &curlwp->l_specdataref, key));
1300 }
1301
1302 void *
1303 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1304 {
1305
1306 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1307 &l->l_specdataref, key));
1308 }
1309
1310 /*
1311 * lwp_setspecific --
1312 * Set lwp-specific data corresponding to the specified key.
1313 */
1314 void
1315 lwp_setspecific(specificdata_key_t key, void *data)
1316 {
1317
1318 specificdata_setspecific(lwp_specificdata_domain,
1319 &curlwp->l_specdataref, key, data);
1320 }
1321