Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.61.2.5
      1 /*	$NetBSD: kern_lwp.c,v 1.61.2.5 2007/04/09 22:10:03 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit (or thread) of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp".
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing in kernel simultaneously.
     52  *
     53  * Execution states
     54  *
     55  *	At any given time, an LWP has overall state that is described by
     56  *	lwp::l_stat.  The states are broken into two sets below.  The first
     57  *	set is guaranteed to represent the absolute, current state of the
     58  *	LWP:
     59  *
     60  * 	LSONPROC
     61  *
     62  * 		On processor: the LWP is executing on a CPU, either in the
     63  * 		kernel or in user space.
     64  *
     65  * 	LSRUN
     66  *
     67  * 		Runnable: the LWP is parked on a run queue, and may soon be
     68  * 		chosen to run by a idle processor, or by a processor that
     69  * 		has been asked to preempt a currently runnning but lower
     70  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     71  *		then the LWP is not on a run queue, but may be soon.
     72  *
     73  * 	LSIDL
     74  *
     75  * 		Idle: the LWP has been created but has not yet executed.
     76  * 		Whoever created the new LWP can be expected to set it to
     77  * 		another state shortly.
     78  *
     79  * 	LSSUSPENDED:
     80  *
     81  * 		Suspended: the LWP has had its execution suspended by
     82  *		another LWP in the same process using the _lwp_suspend()
     83  *		system call.  User-level LWPs also enter the suspended
     84  *		state when the system is shutting down.
     85  *
     86  *	The second set represent a "statement of intent" on behalf of the
     87  *	LWP.  The LWP may in fact be executing on a processor, may be
     88  *	sleeping, idle, or on a run queue. It is expected to take the
     89  *	necessary action to stop executing or become "running" again within
     90  *	a short timeframe.
     91  *
     92  * 	LSZOMB:
     93  *
     94  * 		Dead: the LWP has released most of its resources and is
     95  * 		about to switch away into oblivion.  When it switches away,
     96  * 		its few remaining resources will be collected.
     97  *
     98  * 	LSSLEEP:
     99  *
    100  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    101  * 		will switch away shortly to allow other LWPs to run on the
    102  * 		CPU.
    103  *
    104  * 	LSSTOP:
    105  *
    106  * 		Stopped: the LWP has been stopped as a result of a job
    107  * 		control signal, or as a result of the ptrace() interface.
    108  * 		Stopped LWPs may run briefly within the kernel to handle
    109  * 		signals that they receive, but will not return to user space
    110  * 		until their process' state is changed away from stopped.
    111  * 		Single LWPs within a process can not be set stopped
    112  * 		selectively: all actions that can stop or continue LWPs
    113  * 		occur at the process level.
    114  *
    115  * State transitions
    116  *
    117  *	Note that the LSSTOP and LSSUSPENDED states may only be set
    118  *	when returning to user space in userret(), or when sleeping
    119  *	interruptably.  Before setting those states, we try to ensure
    120  *	that the LWPs will release all kernel locks that they hold,
    121  *	and at a minimum try to ensure that the LWP can be set runnable
    122  *	again by a signal.
    123  *
    124  *	LWPs may transition states in the following ways:
    125  *
    126  *	 RUN -------> ONPROC		ONPROC -----> RUN
    127  *	            > STOPPED			    > SLEEP
    128  *	            > SUSPENDED			    > STOPPED
    129  *						    > SUSPENDED
    130  *						    > ZOMB
    131  *
    132  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    133  *	            > SLEEP			    > SLEEP
    134  *
    135  *	 SLEEP -----> ONPROC		IDL --------> RUN
    136  *		    > RUN		            > SUSPENDED
    137  *		    > STOPPED                       > STOPPED
    138  *		    > SUSPENDED
    139  *
    140  * Locking
    141  *
    142  *	The majority of fields in 'struct lwp' are covered by a single,
    143  *	general spin mutex pointed to by lwp::l_mutex.  The locks covering
    144  *	each field are documented in sys/lwp.h.
    145  *
    146  *	State transitions must be made with the LWP's general lock held.  In
    147  *	a multiprocessor kernel, state transitions may cause the LWP's lock
    148  *	pointer to change.  On uniprocessor kernels, most scheduler and
    149  *	synchronisation objects such as sleep queues and LWPs are protected
    150  *	by only one mutex (sched_mutex).  In this case, LWPs' lock pointers
    151  *	will never change and will always reference sched_mutex.
    152  *
    153  *	Manipulation of the general lock is not performed directly, but
    154  *	through calls to lwp_lock(), lwp_relock() and similar.
    155  *
    156  *	States and their associated locks:
    157  *
    158  *	LSIDL, LSZOMB
    159  *
    160  *		Always covered by sched_mutex.
    161  *
    162  *	LSONPROC, LSRUN:
    163  *
    164  *		Always covered by sched_mutex, which protects the run queues
    165  *		and other miscellaneous items.  If the scheduler is changed
    166  *		to use per-CPU run queues, this may become a per-CPU mutex.
    167  *
    168  *	LSSLEEP:
    169  *
    170  *		Covered by a mutex associated with the sleep queue that the
    171  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    172  *
    173  *	LSSTOP, LSSUSPENDED:
    174  *
    175  *		If the LWP was previously sleeping (l_wchan != NULL), then
    176  *		l_mutex references the sleep queue mutex.  If the LWP was
    177  *		runnable or on the CPU when halted, or has been removed from
    178  *		the sleep queue since halted, then the mutex is sched_mutex.
    179  *
    180  *	The lock order is as follows:
    181  *
    182  *		sleepq_t::sq_mutex  |---> sched_mutex
    183  *		tschain_t::tc_mutex |
    184  *
    185  *	Each process has an scheduler state mutex (proc::p_smutex), and a
    186  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    187  *	so on.  When an LWP is to be entered into or removed from one of the
    188  *	following states, p_mutex must be held and the process wide counters
    189  *	adjusted:
    190  *
    191  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    192  *
    193  *	Note that an LWP is considered running or likely to run soon if in
    194  *	one of the following states.  This affects the value of p_nrlwps:
    195  *
    196  *		LSRUN, LSONPROC, LSSLEEP
    197  *
    198  *	p_smutex does not need to be held when transitioning among these
    199  *	three states.
    200  */
    201 
    202 #include <sys/cdefs.h>
    203 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.61.2.5 2007/04/09 22:10:03 ad Exp $");
    204 
    205 #include "opt_multiprocessor.h"
    206 #include "opt_lockdebug.h"
    207 
    208 #define _LWP_API_PRIVATE
    209 
    210 #include <sys/param.h>
    211 #include <sys/systm.h>
    212 #include <sys/pool.h>
    213 #include <sys/proc.h>
    214 #include <sys/syscallargs.h>
    215 #include <sys/syscall_stats.h>
    216 #include <sys/kauth.h>
    217 #include <sys/sleepq.h>
    218 #include <sys/lockdebug.h>
    219 #include <sys/kmem.h>
    220 
    221 #include <uvm/uvm_extern.h>
    222 
    223 struct lwplist	alllwp;
    224 
    225 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    226     &pool_allocator_nointr, IPL_NONE);
    227 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    228     &pool_allocator_nointr, IPL_NONE);
    229 
    230 static specificdata_domain_t lwp_specificdata_domain;
    231 
    232 #define LWP_DEBUG
    233 
    234 #ifdef LWP_DEBUG
    235 int lwp_debug = 0;
    236 #define DPRINTF(x) if (lwp_debug) printf x
    237 #else
    238 #define DPRINTF(x)
    239 #endif
    240 
    241 void
    242 lwpinit(void)
    243 {
    244 
    245 	lwp_specificdata_domain = specificdata_domain_create();
    246 	KASSERT(lwp_specificdata_domain != NULL);
    247 	lwp_sys_init();
    248 }
    249 
    250 /*
    251  * Set an suspended.
    252  *
    253  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    254  * LWP before return.
    255  */
    256 int
    257 lwp_suspend(struct lwp *curl, struct lwp *t)
    258 {
    259 	int error;
    260 
    261 	KASSERT(mutex_owned(&t->l_proc->p_smutex));
    262 	KASSERT(lwp_locked(t, NULL));
    263 
    264 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    265 
    266 	/*
    267 	 * If the current LWP has been told to exit, we must not suspend anyone
    268 	 * else or deadlock could occur.  We won't return to userspace.
    269 	 */
    270 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    271 		lwp_unlock(t);
    272 		return (EDEADLK);
    273 	}
    274 
    275 	error = 0;
    276 
    277 	switch (t->l_stat) {
    278 	case LSRUN:
    279 	case LSONPROC:
    280 		t->l_flag |= LW_WSUSPEND;
    281 		lwp_need_userret(t);
    282 		lwp_unlock(t);
    283 		break;
    284 
    285 	case LSSLEEP:
    286 		t->l_flag |= LW_WSUSPEND;
    287 
    288 		/*
    289 		 * Kick the LWP and try to get it to the kernel boundary
    290 		 * so that it will release any locks that it holds.
    291 		 * setrunnable() will release the lock.
    292 		 */
    293 		if ((t->l_flag & LW_SINTR) != 0)
    294 			setrunnable(t);
    295 		else
    296 			lwp_unlock(t);
    297 		break;
    298 
    299 	case LSSUSPENDED:
    300 		lwp_unlock(t);
    301 		break;
    302 
    303 	case LSSTOP:
    304 		t->l_flag |= LW_WSUSPEND;
    305 		setrunnable(t);
    306 		break;
    307 
    308 	case LSIDL:
    309 	case LSZOMB:
    310 		error = EINTR; /* It's what Solaris does..... */
    311 		lwp_unlock(t);
    312 		break;
    313 	}
    314 
    315 	/*
    316 	 * XXXLWP Wait for:
    317 	 *
    318 	 * o process exiting
    319 	 * o target LWP suspended
    320 	 * o target LWP not suspended and L_WSUSPEND clear
    321 	 * o target LWP exited
    322 	 */
    323 
    324 	 return (error);
    325 }
    326 
    327 /*
    328  * Restart a suspended LWP.
    329  *
    330  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    331  * LWP before return.
    332  */
    333 void
    334 lwp_continue(struct lwp *l)
    335 {
    336 
    337 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
    338 	KASSERT(lwp_locked(l, NULL));
    339 
    340 	DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
    341 	    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
    342 	    l->l_wchan));
    343 
    344 	/* If rebooting or not suspended, then just bail out. */
    345 	if ((l->l_flag & LW_WREBOOT) != 0) {
    346 		lwp_unlock(l);
    347 		return;
    348 	}
    349 
    350 	l->l_flag &= ~LW_WSUSPEND;
    351 
    352 	if (l->l_stat != LSSUSPENDED) {
    353 		lwp_unlock(l);
    354 		return;
    355 	}
    356 
    357 	/* setrunnable() will release the lock. */
    358 	setrunnable(l);
    359 }
    360 
    361 /*
    362  * Wait for an LWP within the current process to exit.  If 'lid' is
    363  * non-zero, we are waiting for a specific LWP.
    364  *
    365  * Must be called with p->p_smutex held.
    366  */
    367 int
    368 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    369 {
    370 	struct proc *p = l->l_proc;
    371 	struct lwp *l2;
    372 	int nfound, error;
    373 
    374 	DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
    375 	    p->p_pid, l->l_lid, lid));
    376 
    377 	KASSERT(mutex_owned(&p->p_smutex));
    378 
    379 	/*
    380 	 * We try to check for deadlock:
    381 	 *
    382 	 * 1) If all other LWPs are waiting for exits or suspended.
    383 	 * 2) If we are trying to wait on ourself.
    384 	 *
    385 	 * XXX we'd like to check for a cycle of waiting LWPs (specific LID
    386 	 * waits, not any-LWP waits) and detect that sort of deadlock, but
    387 	 * we don't have a good place to store the lwp that is being waited
    388 	 * for. wchan is already filled with &p->p_nlwps, and putting the
    389 	 * lwp address in there for deadlock tracing would require exiting
    390 	 * LWPs to call wakeup on both their own address and &p->p_nlwps, to
    391 	 * get threads sleeping on any LWP exiting.
    392 	 */
    393 	if (lid == l->l_lid)
    394 		return EDEADLK;
    395 
    396 	p->p_nlwpwait++;
    397 
    398 	for (;;) {
    399 		/*
    400 		 * Avoid a race between exit1() and sigexit(): if the
    401 		 * process is dumping core, then we need to bail out: call
    402 		 * into lwp_userret() where we will be suspended until the
    403 		 * deed is done.
    404 		 */
    405 		if ((p->p_sflag & PS_WCORE) != 0) {
    406 			mutex_exit(&p->p_smutex);
    407 			lwp_userret(l);
    408 #ifdef DIAGNOSTIC
    409 			panic("lwp_wait1");
    410 #endif
    411 			/* NOTREACHED */
    412 		}
    413 
    414 		/*
    415 		 * First off, drain any detached LWP that is waiting to be
    416 		 * reaped.
    417 		 */
    418 		while ((l2 = p->p_zomblwp) != NULL) {
    419 			p->p_zomblwp = NULL;
    420 			lwp_free(l2, 0, 0);	/* releases proc mutex */
    421 			mutex_enter(&p->p_smutex);
    422 		}
    423 
    424 		/*
    425 		 * Now look for an LWP to collect.  If the whole process is
    426 		 * exiting, count detached LWPs as eligible to be collected,
    427 		 * but don't drain them here.
    428 		 */
    429 		nfound = 0;
    430 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    431 			if (l2 == l || (lid != 0 && l2->l_lid != lid))
    432 				continue;
    433 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    434 				nfound += ((flags & LWPWAIT_EXITCONTROL) != 0);
    435 				continue;
    436 			}
    437 			nfound++;
    438 
    439 			/* No need to lock the LWP in order to see LSZOMB. */
    440 			if (l2->l_stat != LSZOMB)
    441 				continue;
    442 
    443 			if (departed)
    444 				*departed = l2->l_lid;
    445 			lwp_free(l2, 0, 0);
    446 			mutex_enter(&p->p_smutex);
    447 			p->p_nlwpwait--;
    448 			return 0;
    449 		}
    450 
    451 		if (nfound == 0) {
    452 			error = ESRCH;
    453 			break;
    454 		}
    455 		if ((flags & LWPWAIT_EXITCONTROL) != 0) {
    456 			KASSERT(p->p_nlwps > 1);
    457 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    458 			continue;
    459 		}
    460 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    461 		    p->p_nrlwps <= p->p_nlwpwait + p->p_ndlwps) {
    462 			error = EDEADLK;
    463 			break;
    464 		}
    465 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    466 			break;
    467 	}
    468 
    469 	p->p_nlwpwait--;
    470 	return error;
    471 }
    472 
    473 /*
    474  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    475  * The new LWP is created in state LSIDL and must be set running,
    476  * suspended, or stopped by the caller.
    477  */
    478 int
    479 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
    480     int flags, void *stack, size_t stacksize,
    481     void (*func)(void *), void *arg, struct lwp **rnewlwpp)
    482 {
    483 	struct lwp *l2, *isfree;
    484 	turnstile_t *ts;
    485 
    486 	/*
    487 	 * First off, reap any detached LWP waiting to be collected.
    488 	 * We can re-use its LWP structure and turnstile.
    489 	 */
    490 	isfree = NULL;
    491 	if (p2->p_zomblwp != NULL) {
    492 		mutex_enter(&p2->p_smutex);
    493 		if ((isfree = p2->p_zomblwp) != NULL) {
    494 			p2->p_zomblwp = NULL;
    495 			lwp_free(isfree, 1, 0);	/* releases proc mutex */
    496 		} else
    497 			mutex_exit(&p2->p_smutex);
    498 	}
    499 	if (isfree == NULL) {
    500 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    501 		memset(l2, 0, sizeof(*l2));
    502 		l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
    503 		SLIST_INIT(&l2->l_pi_lenders);
    504 	} else {
    505 		l2 = isfree;
    506 		ts = l2->l_ts;
    507 		KASSERT(l2->l_inheritedprio == MAXPRI);
    508 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    509 		memset(l2, 0, sizeof(*l2));
    510 		l2->l_ts = ts;
    511 	}
    512 
    513 	l2->l_stat = LSIDL;
    514 	l2->l_proc = p2;
    515 	l2->l_refcnt = 1;
    516 	l2->l_priority = l1->l_priority;
    517 	l2->l_usrpri = l1->l_usrpri;
    518 	l2->l_inheritedprio = MAXPRI;
    519 	l2->l_mutex = &sched_mutex;
    520 	l2->l_cpu = l1->l_cpu;
    521 	l2->l_flag = inmem ? LW_INMEM : 0;
    522 	lwp_initspecific(l2);
    523 
    524 	if (p2->p_flag & PK_SYSTEM) {
    525 		/*
    526 		 * Mark it as a system process and not a candidate for
    527 		 * swapping.
    528 		 */
    529 		l2->l_flag |= LW_SYSTEM;
    530 	}
    531 
    532 	lwp_update_creds(l2);
    533 	callout_init(&l2->l_tsleep_ch);
    534 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    535 	cv_init(&l2->l_sigcv, "sigwait");
    536 	l2->l_syncobj = &sched_syncobj;
    537 
    538 	if (rnewlwpp != NULL)
    539 		*rnewlwpp = l2;
    540 
    541 	l2->l_addr = UAREA_TO_USER(uaddr);
    542 	KERNEL_LOCK(1, curlwp);
    543 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    544 	    (arg != NULL) ? arg : l2);
    545 	KERNEL_UNLOCK_ONE(curlwp);
    546 
    547 	mutex_enter(&p2->p_smutex);
    548 
    549 	if ((flags & LWP_DETACHED) != 0) {
    550 		l2->l_prflag = LPR_DETACHED;
    551 		p2->p_ndlwps++;
    552 	} else
    553 		l2->l_prflag = 0;
    554 
    555 	l2->l_sigmask = l1->l_sigmask;
    556 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    557 	sigemptyset(&l2->l_sigpend.sp_set);
    558 
    559 	p2->p_nlwpid++;
    560 	if (p2->p_nlwpid == 0)
    561 		p2->p_nlwpid++;
    562 	l2->l_lid = p2->p_nlwpid;
    563 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    564 	p2->p_nlwps++;
    565 
    566 	mutex_exit(&p2->p_smutex);
    567 
    568 	mutex_enter(&proclist_lock);
    569 	mutex_enter(&proclist_mutex);
    570 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    571 	mutex_exit(&proclist_mutex);
    572 	mutex_exit(&proclist_lock);
    573 
    574 	SYSCALL_TIME_LWP_INIT(l2);
    575 
    576 	if (p2->p_emul->e_lwp_fork)
    577 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    578 
    579 	return (0);
    580 }
    581 
    582 /*
    583  * Quit the process.  This will call cpu_exit, which will call cpu_switch,
    584  * so this can only be used meaningfully if you're willing to switch away.
    585  * Calling with l!=curlwp would be weird.
    586  */
    587 void
    588 lwp_exit(struct lwp *l)
    589 {
    590 	struct proc *p = l->l_proc;
    591 	struct lwp *l2;
    592 
    593 	DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
    594 	DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
    595 
    596 	/*
    597 	 * Verify that we hold no locks other than the kernel lock.
    598 	 */
    599 #ifdef MULTIPROCESSOR
    600 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    601 #else
    602 	LOCKDEBUG_BARRIER(NULL, 0);
    603 #endif
    604 
    605 	/*
    606 	 * If we are the last live LWP in a process, we need to exit the
    607 	 * entire process.  We do so with an exit status of zero, because
    608 	 * it's a "controlled" exit, and because that's what Solaris does.
    609 	 *
    610 	 * We are not quite a zombie yet, but for accounting purposes we
    611 	 * must increment the count of zombies here.
    612 	 *
    613 	 * Note: the last LWP's specificdata will be deleted here.
    614 	 */
    615 	mutex_enter(&p->p_smutex);
    616 	if (p->p_nlwps - p->p_nzlwps == 1) {
    617 		DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
    618 		    p->p_pid, l->l_lid));
    619 		exit1(l, 0);
    620 		/* NOTREACHED */
    621 	}
    622 	p->p_nzlwps++;
    623 	mutex_exit(&p->p_smutex);
    624 
    625 	if (p->p_emul->e_lwp_exit)
    626 		(*p->p_emul->e_lwp_exit)(l);
    627 
    628 	/* Delete the specificdata while it's still safe to sleep. */
    629 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    630 
    631 	/*
    632 	 * Release our cached credentials.
    633 	 */
    634 	kauth_cred_free(l->l_cred);
    635 
    636 	/*
    637 	 * While we can still block, mark the LWP as unswappable to
    638 	 * prevent conflicts with the with the swapper.
    639 	 */
    640 	uvm_lwp_hold(l);
    641 
    642 	/*
    643 	 * Remove the LWP from the global list.
    644 	 */
    645 	mutex_enter(&proclist_lock);
    646 	mutex_enter(&proclist_mutex);
    647 	LIST_REMOVE(l, l_list);
    648 	mutex_exit(&proclist_mutex);
    649 	mutex_exit(&proclist_lock);
    650 
    651 	/*
    652 	 * Get rid of all references to the LWP that others (e.g. procfs)
    653 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    654 	 * mark it waiting for collection in the proc structure.  Note that
    655 	 * before we can do that, we need to free any other dead, deatched
    656 	 * LWP waiting to meet its maker.
    657 	 *
    658 	 * XXXSMP disable preemption.
    659 	 */
    660 	mutex_enter(&p->p_smutex);
    661 	lwp_drainrefs(l);
    662 
    663 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    664 		while ((l2 = p->p_zomblwp) != NULL) {
    665 			p->p_zomblwp = NULL;
    666 			lwp_free(l2, 0, 0);	/* releases proc mutex */
    667 			mutex_enter(&p->p_smutex);
    668 		}
    669 		p->p_zomblwp = l;
    670 	}
    671 
    672 	/*
    673 	 * If we find a pending signal for the process and we have been
    674 	 * asked to check for signals, then we loose: arrange to have
    675 	 * all other LWPs in the process check for signals.
    676 	 */
    677 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    678 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    679 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    680 			lwp_lock(l2);
    681 			l2->l_flag |= LW_PENDSIG;
    682 			lwp_unlock(l2);
    683 		}
    684 	}
    685 
    686 	lwp_lock(l);
    687 	l->l_stat = LSZOMB;
    688 	lwp_unlock(l);
    689 	p->p_nrlwps--;
    690 	cv_broadcast(&p->p_lwpcv);
    691 	mutex_exit(&p->p_smutex);
    692 
    693 	/*
    694 	 * We can no longer block.  At this point, lwp_free() may already
    695 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    696 	 *
    697 	 * Free MD LWP resources.
    698 	 */
    699 #ifndef __NO_CPU_LWP_FREE
    700 	cpu_lwp_free(l, 0);
    701 #endif
    702 	pmap_deactivate(l);
    703 
    704 	/*
    705 	 * Release the kernel lock, signal another LWP to collect us,
    706 	 * and switch away into oblivion.
    707 	 */
    708 #ifdef notyet
    709 	/* XXXSMP hold in lwp_userret() */
    710 	KERNEL_UNLOCK_LAST(l);
    711 #else
    712 	KERNEL_UNLOCK_ALL(l, NULL);
    713 #endif
    714 
    715 	cpu_exit(l);
    716 }
    717 
    718 /*
    719  * We are called from cpu_exit() once it is safe to schedule the dead LWP's
    720  * resources to be freed (i.e., once we've switched to the idle PCB for the
    721  * current CPU).
    722  */
    723 void
    724 lwp_exit2(struct lwp *l)
    725 {
    726 	/* XXXSMP re-enable preemption */
    727 }
    728 
    729 /*
    730  * Free a dead LWP's remaining resources.
    731  *
    732  * XXXLWP limits.
    733  */
    734 void
    735 lwp_free(struct lwp *l, int recycle, int last)
    736 {
    737 	struct proc *p = l->l_proc;
    738 	ksiginfoq_t kq;
    739 
    740 	/*
    741 	 * If this was not the last LWP in the process, then adjust
    742 	 * counters and unlock.
    743 	 */
    744 	if (!last) {
    745 		/*
    746 		 * Add the LWP's run time to the process' base value.
    747 		 * This needs to co-incide with coming off p_lwps.
    748 		 */
    749 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    750 		LIST_REMOVE(l, l_sibling);
    751 		p->p_nlwps--;
    752 		p->p_nzlwps--;
    753 		if ((l->l_prflag & LPR_DETACHED) != 0)
    754 			p->p_ndlwps--;
    755 		mutex_exit(&p->p_smutex);
    756 
    757 #ifdef MULTIPROCESSOR
    758 		/*
    759 		 * In the unlikely event that the LWP is still on the CPU,
    760 		 * then spin until it has switched away.  We need to release
    761 		 * all locks to avoid deadlock against interrupt handlers on
    762 		 * the target CPU.
    763 		 */
    764 		if (l->l_cpu->ci_curlwp == l) {
    765 			int count;
    766 			KERNEL_UNLOCK_ALL(curlwp, &count);
    767 			while (l->l_cpu->ci_curlwp == l)
    768 				SPINLOCK_BACKOFF_HOOK;
    769 			KERNEL_LOCK(count, curlwp);
    770 		}
    771 #endif
    772 	}
    773 
    774 	/*
    775 	 * Destroy the LWP's remaining signal information.
    776 	 */
    777 	ksiginfo_queue_init(&kq);
    778 	sigclear(&l->l_sigpend, NULL, &kq);
    779 	ksiginfo_queue_drain(&kq);
    780 	cv_destroy(&l->l_sigcv);
    781 	mutex_destroy(&l->l_swaplock);
    782 
    783 	/*
    784 	 * Free the LWP's turnstile and the LWP structure itself unless the
    785 	 * caller wants to recycle them.
    786 	 *
    787 	 * We can't return turnstile0 to the pool (it didn't come from it),
    788 	 * so if it comes up just drop it quietly and move on.
    789 	 *
    790 	 * We don't recycle the VM resources at this time.
    791 	 */
    792 	if (!recycle && l->l_ts != &turnstile0)
    793 		pool_cache_put(&turnstile_cache, l->l_ts);
    794 #ifndef __NO_CPU_LWP_FREE
    795 	cpu_lwp_free2(l);
    796 #endif
    797 	uvm_lwp_exit(l);
    798 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    799 	KASSERT(l->l_inheritedprio == MAXPRI);
    800 	if (!recycle)
    801 		pool_put(&lwp_pool, l);
    802 }
    803 
    804 /*
    805  * Pick a LWP to represent the process for those operations which
    806  * want information about a "process" that is actually associated
    807  * with a LWP.
    808  *
    809  * If 'locking' is false, no locking or lock checks are performed.
    810  * This is intended for use by DDB.
    811  *
    812  * We don't bother locking the LWP here, since code that uses this
    813  * interface is broken by design and an exact match is not required.
    814  */
    815 struct lwp *
    816 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    817 {
    818 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    819 	struct lwp *signalled;
    820 	int cnt;
    821 
    822 	if (locking) {
    823 		KASSERT(mutex_owned(&p->p_smutex));
    824 	}
    825 
    826 	/* Trivial case: only one LWP */
    827 	if (p->p_nlwps == 1) {
    828 		l = LIST_FIRST(&p->p_lwps);
    829 		if (nrlwps)
    830 			*nrlwps = (l->l_stat == LSONPROC || LSRUN);
    831 		return l;
    832 	}
    833 
    834 	cnt = 0;
    835 	switch (p->p_stat) {
    836 	case SSTOP:
    837 	case SACTIVE:
    838 		/* Pick the most live LWP */
    839 		onproc = running = sleeping = stopped = suspended = NULL;
    840 		signalled = NULL;
    841 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    842 			if (l->l_lid == p->p_sigctx.ps_lwp)
    843 				signalled = l;
    844 			switch (l->l_stat) {
    845 			case LSONPROC:
    846 				onproc = l;
    847 				cnt++;
    848 				break;
    849 			case LSRUN:
    850 				running = l;
    851 				cnt++;
    852 				break;
    853 			case LSSLEEP:
    854 				sleeping = l;
    855 				break;
    856 			case LSSTOP:
    857 				stopped = l;
    858 				break;
    859 			case LSSUSPENDED:
    860 				suspended = l;
    861 				break;
    862 			}
    863 		}
    864 		if (nrlwps)
    865 			*nrlwps = cnt;
    866 		if (signalled)
    867 			l = signalled;
    868 		else if (onproc)
    869 			l = onproc;
    870 		else if (running)
    871 			l = running;
    872 		else if (sleeping)
    873 			l = sleeping;
    874 		else if (stopped)
    875 			l = stopped;
    876 		else if (suspended)
    877 			l = suspended;
    878 		else
    879 			break;
    880 		return l;
    881 		if (nrlwps)
    882 			*nrlwps = 0;
    883 		l = LIST_FIRST(&p->p_lwps);
    884 		return l;
    885 #ifdef DIAGNOSTIC
    886 	case SIDL:
    887 	case SZOMB:
    888 	case SDYING:
    889 	case SDEAD:
    890 		if (locking)
    891 			mutex_exit(&p->p_smutex);
    892 		/* We have more than one LWP and we're in SIDL?
    893 		 * How'd that happen?
    894 		 */
    895 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
    896 		    p->p_pid, p->p_comm, p->p_stat);
    897 		break;
    898 	default:
    899 		if (locking)
    900 			mutex_exit(&p->p_smutex);
    901 		panic("Process %d (%s) in unknown state %d",
    902 		    p->p_pid, p->p_comm, p->p_stat);
    903 #endif
    904 	}
    905 
    906 	if (locking)
    907 		mutex_exit(&p->p_smutex);
    908 	panic("proc_representative_lwp: couldn't find a lwp for process"
    909 		" %d (%s)", p->p_pid, p->p_comm);
    910 	/* NOTREACHED */
    911 	return NULL;
    912 }
    913 
    914 /*
    915  * Look up a live LWP within the speicifed process, and return it locked.
    916  *
    917  * Must be called with p->p_smutex held.
    918  */
    919 struct lwp *
    920 lwp_find(struct proc *p, int id)
    921 {
    922 	struct lwp *l;
    923 
    924 	KASSERT(mutex_owned(&p->p_smutex));
    925 
    926 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    927 		if (l->l_lid == id)
    928 			break;
    929 	}
    930 
    931 	/*
    932 	 * No need to lock - all of these conditions will
    933 	 * be visible with the process level mutex held.
    934 	 */
    935 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
    936 		l = NULL;
    937 
    938 	return l;
    939 }
    940 
    941 /*
    942  * Update an LWP's cached credentials to mirror the process' master copy.
    943  *
    944  * This happens early in the syscall path, on user trap, and on LWP
    945  * creation.  A long-running LWP can also voluntarily choose to update
    946  * it's credentials by calling this routine.  This may be called from
    947  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
    948  */
    949 void
    950 lwp_update_creds(struct lwp *l)
    951 {
    952 	kauth_cred_t oc;
    953 	struct proc *p;
    954 
    955 	p = l->l_proc;
    956 	oc = l->l_cred;
    957 
    958 	mutex_enter(&p->p_mutex);
    959 	kauth_cred_hold(p->p_cred);
    960 	l->l_cred = p->p_cred;
    961 	mutex_exit(&p->p_mutex);
    962 	if (oc != NULL)
    963 		kauth_cred_free(oc);
    964 }
    965 
    966 /*
    967  * Verify that an LWP is locked, and optionally verify that the lock matches
    968  * one we specify.
    969  */
    970 int
    971 lwp_locked(struct lwp *l, kmutex_t *mtx)
    972 {
    973 	kmutex_t *cur = l->l_mutex;
    974 
    975 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    976 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
    977 #else
    978 	return mutex_owned(cur);
    979 #endif
    980 }
    981 
    982 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    983 /*
    984  * Lock an LWP.
    985  */
    986 void
    987 lwp_lock_retry(struct lwp *l, kmutex_t *old)
    988 {
    989 
    990 	/*
    991 	 * XXXgcc ignoring kmutex_t * volatile on i386
    992 	 *
    993 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
    994 	 */
    995 #if 1
    996 	while (l->l_mutex != old) {
    997 #else
    998 	for (;;) {
    999 #endif
   1000 		mutex_spin_exit(old);
   1001 		old = l->l_mutex;
   1002 		mutex_spin_enter(old);
   1003 
   1004 		/*
   1005 		 * mutex_enter() will have posted a read barrier.  Re-test
   1006 		 * l->l_mutex.  If it has changed, we need to try again.
   1007 		 */
   1008 #if 1
   1009 	}
   1010 #else
   1011 	} while (__predict_false(l->l_mutex != old));
   1012 #endif
   1013 }
   1014 #endif
   1015 
   1016 /*
   1017  * Lend a new mutex to an LWP.  The old mutex must be held.
   1018  */
   1019 void
   1020 lwp_setlock(struct lwp *l, kmutex_t *new)
   1021 {
   1022 
   1023 	KASSERT(mutex_owned(l->l_mutex));
   1024 
   1025 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1026 	mb_write();
   1027 	l->l_mutex = new;
   1028 #else
   1029 	(void)new;
   1030 #endif
   1031 }
   1032 
   1033 /*
   1034  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1035  * must be held.
   1036  */
   1037 void
   1038 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1039 {
   1040 	kmutex_t *old;
   1041 
   1042 	KASSERT(mutex_owned(l->l_mutex));
   1043 
   1044 	old = l->l_mutex;
   1045 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1046 	mb_write();
   1047 	l->l_mutex = new;
   1048 #else
   1049 	(void)new;
   1050 #endif
   1051 	mutex_spin_exit(old);
   1052 }
   1053 
   1054 /*
   1055  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1056  * locked.
   1057  */
   1058 void
   1059 lwp_relock(struct lwp *l, kmutex_t *new)
   1060 {
   1061 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1062 	kmutex_t *old;
   1063 #endif
   1064 
   1065 	KASSERT(mutex_owned(l->l_mutex));
   1066 
   1067 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1068 	old = l->l_mutex;
   1069 	if (old != new) {
   1070 		mutex_spin_enter(new);
   1071 		l->l_mutex = new;
   1072 		mutex_spin_exit(old);
   1073 	}
   1074 #else
   1075 	(void)new;
   1076 #endif
   1077 }
   1078 
   1079 int
   1080 lwp_trylock(struct lwp *l)
   1081 {
   1082 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1083 	kmutex_t *old;
   1084 
   1085 	for (;;) {
   1086 		if (!mutex_tryenter(old = l->l_mutex))
   1087 			return 0;
   1088 		if (__predict_true(l->l_mutex == old))
   1089 			return 1;
   1090 		mutex_spin_exit(old);
   1091 	}
   1092 #else
   1093 	return mutex_tryenter(l->l_mutex);
   1094 #endif
   1095 }
   1096 
   1097 /*
   1098  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1099  * set.
   1100  */
   1101 void
   1102 lwp_userret(struct lwp *l)
   1103 {
   1104 	struct proc *p;
   1105 	void (*hook)(void);
   1106 	int sig;
   1107 
   1108 	p = l->l_proc;
   1109 
   1110 	/*
   1111 	 * It should be safe to do this read unlocked on a multiprocessor
   1112 	 * system..
   1113 	 */
   1114 	while ((l->l_flag & LW_USERRET) != 0) {
   1115 		/*
   1116 		 * Process pending signals first, unless the process
   1117 		 * is dumping core or exiting, where we will instead
   1118 		 * enter the L_WSUSPEND case below.
   1119 		 */
   1120 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1121 		    LW_PENDSIG) {
   1122 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1123 			mutex_enter(&p->p_smutex);
   1124 			while ((sig = issignal(l)) != 0)
   1125 				postsig(sig);
   1126 			mutex_exit(&p->p_smutex);
   1127 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1128 		}
   1129 
   1130 		/*
   1131 		 * Core-dump or suspend pending.
   1132 		 *
   1133 		 * In case of core dump, suspend ourselves, so that the
   1134 		 * kernel stack and therefore the userland registers saved
   1135 		 * in the trapframe are around for coredump() to write them
   1136 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1137 		 * will write the core file out once all other LWPs are
   1138 		 * suspended.
   1139 		 */
   1140 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1141 			mutex_enter(&p->p_smutex);
   1142 			p->p_nrlwps--;
   1143 			cv_broadcast(&p->p_lwpcv);
   1144 			lwp_lock(l);
   1145 			l->l_stat = LSSUSPENDED;
   1146 			mutex_exit(&p->p_smutex);
   1147 			mi_switch(l, NULL);
   1148 		}
   1149 
   1150 		/* Process is exiting. */
   1151 		if ((l->l_flag & LW_WEXIT) != 0) {
   1152 			KERNEL_LOCK(1, l);
   1153 			lwp_exit(l);
   1154 			KASSERT(0);
   1155 			/* NOTREACHED */
   1156 		}
   1157 
   1158 		/* Call userret hook; used by Linux emulation. */
   1159 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1160 			lwp_lock(l);
   1161 			l->l_flag &= ~LW_WUSERRET;
   1162 			lwp_unlock(l);
   1163 			hook = p->p_userret;
   1164 			p->p_userret = NULL;
   1165 			(*hook)();
   1166 		}
   1167 	}
   1168 }
   1169 
   1170 /*
   1171  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1172  */
   1173 void
   1174 lwp_need_userret(struct lwp *l)
   1175 {
   1176 	KASSERT(lwp_locked(l, NULL));
   1177 
   1178 	/*
   1179 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1180 	 * that the condition will be seen before forcing the LWP to enter
   1181 	 * kernel mode.
   1182 	 */
   1183 	mb_write();
   1184 	cpu_signotify(l);
   1185 }
   1186 
   1187 /*
   1188  * Add one reference to an LWP.  This will prevent the LWP from
   1189  * exiting, thus keep the lwp structure and PCB around to inspect.
   1190  */
   1191 void
   1192 lwp_addref(struct lwp *l)
   1193 {
   1194 
   1195 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1196 	KASSERT(l->l_stat != LSZOMB);
   1197 	KASSERT(l->l_refcnt != 0);
   1198 
   1199 	l->l_refcnt++;
   1200 }
   1201 
   1202 /*
   1203  * Remove one reference to an LWP.  If this is the last reference,
   1204  * then we must finalize the LWP's death.
   1205  */
   1206 void
   1207 lwp_delref(struct lwp *l)
   1208 {
   1209 	struct proc *p = l->l_proc;
   1210 
   1211 	mutex_enter(&p->p_smutex);
   1212 	if (--l->l_refcnt == 0)
   1213 		cv_broadcast(&p->p_refcv);
   1214 	mutex_exit(&p->p_smutex);
   1215 }
   1216 
   1217 /*
   1218  * Drain all references to the current LWP.
   1219  */
   1220 void
   1221 lwp_drainrefs(struct lwp *l)
   1222 {
   1223 	struct proc *p = l->l_proc;
   1224 
   1225 	KASSERT(mutex_owned(&p->p_smutex));
   1226 	KASSERT(l->l_refcnt != 0);
   1227 
   1228 	l->l_refcnt--;
   1229 	while (l->l_refcnt != 0)
   1230 		cv_wait(&p->p_refcv, &p->p_smutex);
   1231 }
   1232 
   1233 /*
   1234  * lwp_specific_key_create --
   1235  *	Create a key for subsystem lwp-specific data.
   1236  */
   1237 int
   1238 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1239 {
   1240 
   1241 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1242 }
   1243 
   1244 /*
   1245  * lwp_specific_key_delete --
   1246  *	Delete a key for subsystem lwp-specific data.
   1247  */
   1248 void
   1249 lwp_specific_key_delete(specificdata_key_t key)
   1250 {
   1251 
   1252 	specificdata_key_delete(lwp_specificdata_domain, key);
   1253 }
   1254 
   1255 /*
   1256  * lwp_initspecific --
   1257  *	Initialize an LWP's specificdata container.
   1258  */
   1259 void
   1260 lwp_initspecific(struct lwp *l)
   1261 {
   1262 	int error;
   1263 
   1264 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1265 	KASSERT(error == 0);
   1266 }
   1267 
   1268 /*
   1269  * lwp_finispecific --
   1270  *	Finalize an LWP's specificdata container.
   1271  */
   1272 void
   1273 lwp_finispecific(struct lwp *l)
   1274 {
   1275 
   1276 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1277 }
   1278 
   1279 /*
   1280  * lwp_getspecific --
   1281  *	Return lwp-specific data corresponding to the specified key.
   1282  *
   1283  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1284  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1285  *	LWP's specifc data, care must be taken to ensure that doing so
   1286  *	would not cause internal data structure inconsistency (i.e. caller
   1287  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1288  *	or lwp_setspecific() call).
   1289  */
   1290 void *
   1291 lwp_getspecific(specificdata_key_t key)
   1292 {
   1293 
   1294 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1295 						  &curlwp->l_specdataref, key));
   1296 }
   1297 
   1298 void *
   1299 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1300 {
   1301 
   1302 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1303 						  &l->l_specdataref, key));
   1304 }
   1305 
   1306 /*
   1307  * lwp_setspecific --
   1308  *	Set lwp-specific data corresponding to the specified key.
   1309  */
   1310 void
   1311 lwp_setspecific(specificdata_key_t key, void *data)
   1312 {
   1313 
   1314 	specificdata_setspecific(lwp_specificdata_domain,
   1315 				 &curlwp->l_specdataref, key, data);
   1316 }
   1317