Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.62.4.1
      1 /*	$NetBSD: kern_lwp.c,v 1.62.4.1 2007/03/29 19:27:57 reinoud Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit (or thread) of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp".
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing in kernel simultaneously.
     52  *
     53  *	Note that LWPs differ from kernel threads (kthreads) in that kernel
     54  *	threads are distinct processes (system processes) with no user space
     55  *	component, which themselves may contain one or more LWPs.
     56  *
     57  * Execution states
     58  *
     59  *	At any given time, an LWP has overall state that is described by
     60  *	lwp::l_stat.  The states are broken into two sets below.  The first
     61  *	set is guaranteed to represent the absolute, current state of the
     62  *	LWP:
     63  *
     64  * 	LSONPROC
     65  *
     66  * 		On processor: the LWP is executing on a CPU, either in the
     67  * 		kernel or in user space.
     68  *
     69  * 	LSRUN
     70  *
     71  * 		Runnable: the LWP is parked on a run queue, and may soon be
     72  * 		chosen to run by a idle processor, or by a processor that
     73  * 		has been asked to preempt a currently runnning but lower
     74  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     75  *		then the LWP is not on a run queue, but may be soon.
     76  *
     77  * 	LSIDL
     78  *
     79  * 		Idle: the LWP has been created but has not yet executed.
     80  * 		Whoever created the new LWP can be expected to set it to
     81  * 		another state shortly.
     82  *
     83  * 	LSSUSPENDED:
     84  *
     85  * 		Suspended: the LWP has had its execution suspended by
     86  *		another LWP in the same process using the _lwp_suspend()
     87  *		system call.  User-level LWPs also enter the suspended
     88  *		state when the system is shutting down.
     89  *
     90  *	The second set represent a "statement of intent" on behalf of the
     91  *	LWP.  The LWP may in fact be executing on a processor, may be
     92  *	sleeping, idle, or on a run queue. It is expected to take the
     93  *	necessary action to stop executing or become "running" again within
     94  *	a short timeframe.
     95  *
     96  * 	LSZOMB:
     97  *
     98  * 		Dead: the LWP has released most of its resources and is
     99  * 		about to switch away into oblivion.  When it switches away,
    100  * 		its few remaining resources will be collected.
    101  *
    102  * 	LSSLEEP:
    103  *
    104  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    105  * 		will switch away shortly to allow other LWPs to run on the
    106  * 		CPU.
    107  *
    108  * 	LSSTOP:
    109  *
    110  * 		Stopped: the LWP has been stopped as a result of a job
    111  * 		control signal, or as a result of the ptrace() interface.
    112  * 		Stopped LWPs may run briefly within the kernel to handle
    113  * 		signals that they receive, but will not return to user space
    114  * 		until their process' state is changed away from stopped.
    115  * 		Single LWPs within a process can not be set stopped
    116  * 		selectively: all actions that can stop or continue LWPs
    117  * 		occur at the process level.
    118  *
    119  * State transitions
    120  *
    121  *	Note that the LSSTOP and LSSUSPENDED states may only be set
    122  *	when returning to user space in userret(), or when sleeping
    123  *	interruptably.  Before setting those states, we try to ensure
    124  *	that the LWPs will release all kernel locks that they hold,
    125  *	and at a minimum try to ensure that the LWP can be set runnable
    126  *	again by a signal.
    127  *
    128  *	LWPs may transition states in the following ways:
    129  *
    130  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131  *	            > STOPPED			    > SLEEP
    132  *	            > SUSPENDED			    > STOPPED
    133  *						    > SUSPENDED
    134  *						    > ZOMB
    135  *
    136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  *	            > SLEEP			    > SLEEP
    138  *
    139  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  *		    > RUN		            > SUSPENDED
    141  *		    > STOPPED                       > STOPPED
    142  *		    > SUSPENDED
    143  *
    144  * Locking
    145  *
    146  *	The majority of fields in 'struct lwp' are covered by a single,
    147  *	general spin mutex pointed to by lwp::l_mutex.  The locks covering
    148  *	each field are documented in sys/lwp.h.
    149  *
    150  *	State transitions must be made with the LWP's general lock held.  In
    151  *	a multiprocessor kernel, state transitions may cause the LWP's lock
    152  *	pointer to change.  On uniprocessor kernels, most scheduler and
    153  *	synchronisation objects such as sleep queues and LWPs are protected
    154  *	by only one mutex (sched_mutex).  In this case, LWPs' lock pointers
    155  *	will never change and will always reference sched_mutex.
    156  *
    157  *	Manipulation of the general lock is not performed directly, but
    158  *	through calls to lwp_lock(), lwp_relock() and similar.
    159  *
    160  *	States and their associated locks:
    161  *
    162  *	LSIDL, LSZOMB
    163  *
    164  *		Always covered by sched_mutex.
    165  *
    166  *	LSONPROC, LSRUN:
    167  *
    168  *		Always covered by sched_mutex, which protects the run queues
    169  *		and other miscellaneous items.  If the scheduler is changed
    170  *		to use per-CPU run queues, this may become a per-CPU mutex.
    171  *
    172  *	LSSLEEP:
    173  *
    174  *		Covered by a mutex associated with the sleep queue that the
    175  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    176  *
    177  *	LSSTOP, LSSUSPENDED:
    178  *
    179  *		If the LWP was previously sleeping (l_wchan != NULL), then
    180  *		l_mutex references the sleep queue mutex.  If the LWP was
    181  *		runnable or on the CPU when halted, or has been removed from
    182  *		the sleep queue since halted, then the mutex is sched_mutex.
    183  *
    184  *	The lock order is as follows:
    185  *
    186  *		sleepq_t::sq_mutex  |---> sched_mutex
    187  *		tschain_t::tc_mutex |
    188  *
    189  *	Each process has an scheduler state mutex (proc::p_smutex), and a
    190  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    191  *	so on.  When an LWP is to be entered into or removed from one of the
    192  *	following states, p_mutex must be held and the process wide counters
    193  *	adjusted:
    194  *
    195  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    196  *
    197  *	Note that an LWP is considered running or likely to run soon if in
    198  *	one of the following states.  This affects the value of p_nrlwps:
    199  *
    200  *		LSRUN, LSONPROC, LSSLEEP
    201  *
    202  *	p_smutex does not need to be held when transitioning among these
    203  *	three states.
    204  */
    205 
    206 #include <sys/cdefs.h>
    207 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.62.4.1 2007/03/29 19:27:57 reinoud Exp $");
    208 
    209 #include "opt_multiprocessor.h"
    210 #include "opt_lockdebug.h"
    211 
    212 #define _LWP_API_PRIVATE
    213 
    214 #include <sys/param.h>
    215 #include <sys/systm.h>
    216 #include <sys/pool.h>
    217 #include <sys/proc.h>
    218 #include <sys/syscallargs.h>
    219 #include <sys/syscall_stats.h>
    220 #include <sys/kauth.h>
    221 #include <sys/sleepq.h>
    222 #include <sys/lockdebug.h>
    223 #include <sys/kmem.h>
    224 
    225 #include <uvm/uvm_extern.h>
    226 
    227 struct lwplist	alllwp;
    228 
    229 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    230     &pool_allocator_nointr, IPL_NONE);
    231 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    232     &pool_allocator_nointr, IPL_NONE);
    233 
    234 static specificdata_domain_t lwp_specificdata_domain;
    235 
    236 #define LWP_DEBUG
    237 
    238 #ifdef LWP_DEBUG
    239 int lwp_debug = 0;
    240 #define DPRINTF(x) if (lwp_debug) printf x
    241 #else
    242 #define DPRINTF(x)
    243 #endif
    244 
    245 void
    246 lwpinit(void)
    247 {
    248 
    249 	lwp_specificdata_domain = specificdata_domain_create();
    250 	KASSERT(lwp_specificdata_domain != NULL);
    251 	lwp_sys_init();
    252 }
    253 
    254 /*
    255  * Set an suspended.
    256  *
    257  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    258  * LWP before return.
    259  */
    260 int
    261 lwp_suspend(struct lwp *curl, struct lwp *t)
    262 {
    263 	int error;
    264 
    265 	KASSERT(mutex_owned(&t->l_proc->p_smutex));
    266 	KASSERT(lwp_locked(t, NULL));
    267 
    268 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    269 
    270 	/*
    271 	 * If the current LWP has been told to exit, we must not suspend anyone
    272 	 * else or deadlock could occur.  We won't return to userspace.
    273 	 */
    274 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    275 		lwp_unlock(t);
    276 		return (EDEADLK);
    277 	}
    278 
    279 	error = 0;
    280 
    281 	switch (t->l_stat) {
    282 	case LSRUN:
    283 	case LSONPROC:
    284 		t->l_flag |= LW_WSUSPEND;
    285 		lwp_need_userret(t);
    286 		lwp_unlock(t);
    287 		break;
    288 
    289 	case LSSLEEP:
    290 		t->l_flag |= LW_WSUSPEND;
    291 
    292 		/*
    293 		 * Kick the LWP and try to get it to the kernel boundary
    294 		 * so that it will release any locks that it holds.
    295 		 * setrunnable() will release the lock.
    296 		 */
    297 		if ((t->l_flag & LW_SINTR) != 0)
    298 			setrunnable(t);
    299 		else
    300 			lwp_unlock(t);
    301 		break;
    302 
    303 	case LSSUSPENDED:
    304 		lwp_unlock(t);
    305 		break;
    306 
    307 	case LSSTOP:
    308 		t->l_flag |= LW_WSUSPEND;
    309 		setrunnable(t);
    310 		break;
    311 
    312 	case LSIDL:
    313 	case LSZOMB:
    314 		error = EINTR; /* It's what Solaris does..... */
    315 		lwp_unlock(t);
    316 		break;
    317 	}
    318 
    319 	/*
    320 	 * XXXLWP Wait for:
    321 	 *
    322 	 * o process exiting
    323 	 * o target LWP suspended
    324 	 * o target LWP not suspended and L_WSUSPEND clear
    325 	 * o target LWP exited
    326 	 */
    327 
    328 	 return (error);
    329 }
    330 
    331 /*
    332  * Restart a suspended LWP.
    333  *
    334  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    335  * LWP before return.
    336  */
    337 void
    338 lwp_continue(struct lwp *l)
    339 {
    340 
    341 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
    342 	KASSERT(lwp_locked(l, NULL));
    343 
    344 	DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
    345 	    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
    346 	    l->l_wchan));
    347 
    348 	/* If rebooting or not suspended, then just bail out. */
    349 	if ((l->l_flag & LW_WREBOOT) != 0) {
    350 		lwp_unlock(l);
    351 		return;
    352 	}
    353 
    354 	l->l_flag &= ~LW_WSUSPEND;
    355 
    356 	if (l->l_stat != LSSUSPENDED) {
    357 		lwp_unlock(l);
    358 		return;
    359 	}
    360 
    361 	/* setrunnable() will release the lock. */
    362 	setrunnable(l);
    363 }
    364 
    365 /*
    366  * Wait for an LWP within the current process to exit.  If 'lid' is
    367  * non-zero, we are waiting for a specific LWP.
    368  *
    369  * Must be called with p->p_smutex held.
    370  */
    371 int
    372 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    373 {
    374 	struct proc *p = l->l_proc;
    375 	struct lwp *l2;
    376 	int nfound, error;
    377 	lwpid_t curlid;
    378 	bool exiting;
    379 
    380 	DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
    381 	    p->p_pid, l->l_lid, lid));
    382 
    383 	KASSERT(mutex_owned(&p->p_smutex));
    384 
    385 	p->p_nlwpwait++;
    386 	l->l_waitingfor = lid;
    387 	curlid = l->l_lid;
    388 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    389 
    390 	for (;;) {
    391 		/*
    392 		 * Avoid a race between exit1() and sigexit(): if the
    393 		 * process is dumping core, then we need to bail out: call
    394 		 * into lwp_userret() where we will be suspended until the
    395 		 * deed is done.
    396 		 */
    397 		if ((p->p_sflag & PS_WCORE) != 0) {
    398 			mutex_exit(&p->p_smutex);
    399 			lwp_userret(l);
    400 #ifdef DIAGNOSTIC
    401 			panic("lwp_wait1");
    402 #endif
    403 			/* NOTREACHED */
    404 		}
    405 
    406 		/*
    407 		 * First off, drain any detached LWP that is waiting to be
    408 		 * reaped.
    409 		 */
    410 		while ((l2 = p->p_zomblwp) != NULL) {
    411 			p->p_zomblwp = NULL;
    412 			lwp_free(l2, false, false);/* releases proc mutex */
    413 			mutex_enter(&p->p_smutex);
    414 		}
    415 
    416 		/*
    417 		 * Now look for an LWP to collect.  If the whole process is
    418 		 * exiting, count detached LWPs as eligible to be collected,
    419 		 * but don't drain them here.
    420 		 */
    421 		nfound = 0;
    422 		error = 0;
    423 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    424 			/*
    425 			 * If a specific wait and the target is waiting on
    426 			 * us, then avoid deadlock.  This also traps LWPs
    427 			 * that try to wait on themselves.
    428 			 *
    429 			 * Note that this does not handle more complicated
    430 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    431 			 * can still be killed so it is not a major problem.
    432 			 */
    433 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    434 				error = EDEADLK;
    435 				break;
    436 			}
    437 			if (l2 == l)
    438 				continue;
    439 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    440 				nfound += exiting;
    441 				continue;
    442 			}
    443 			if (lid != 0) {
    444 				if (l2->l_lid != lid)
    445 					continue;
    446 				/*
    447 				 * Mark this LWP as the first waiter, if there
    448 				 * is no other.
    449 				 */
    450 				if (l2->l_waiter == 0)
    451 					l2->l_waiter = curlid;
    452 			} else if (l2->l_waiter != 0) {
    453 				/*
    454 				 * It already has a waiter - so don't
    455 				 * collect it.  If the waiter doesn't
    456 				 * grab it we'll get another chance
    457 				 * later.
    458 				 */
    459 				nfound++;
    460 				continue;
    461 			}
    462 			nfound++;
    463 
    464 			/* No need to lock the LWP in order to see LSZOMB. */
    465 			if (l2->l_stat != LSZOMB)
    466 				continue;
    467 
    468 			/*
    469 			 * We're no longer waiting.  Reset the "first waiter"
    470 			 * pointer on the target, in case it was us.
    471 			 */
    472 			l->l_waitingfor = 0;
    473 			l2->l_waiter = 0;
    474 			p->p_nlwpwait--;
    475 			if (departed)
    476 				*departed = l2->l_lid;
    477 
    478 			/* lwp_free() releases the proc lock. */
    479 			lwp_free(l2, false, false);
    480 			mutex_enter(&p->p_smutex);
    481 			return 0;
    482 		}
    483 
    484 		if (error != 0)
    485 			break;
    486 		if (nfound == 0) {
    487 			error = ESRCH;
    488 			break;
    489 		}
    490 
    491 		/*
    492 		 * The kernel is careful to ensure that it can not deadlock
    493 		 * when exiting - just keep waiting.
    494 		 */
    495 		if (exiting) {
    496 			KASSERT(p->p_nlwps > 1);
    497 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    498 			continue;
    499 		}
    500 
    501 		/*
    502 		 * If all other LWPs are waiting for exits or suspends
    503 		 * and the supply of zombies and potential zombies is
    504 		 * exhausted, then we are about to deadlock.
    505 		 *
    506 		 * If the process is exiting (and this LWP is not the one
    507 		 * that is coordinating the exit) then bail out now.
    508 		 */
    509 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    510 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    511 			error = EDEADLK;
    512 			break;
    513 		}
    514 
    515 		/*
    516 		 * Sit around and wait for something to happen.  We'll be
    517 		 * awoken if any of the conditions examined change: if an
    518 		 * LWP exits, is collected, or is detached.
    519 		 */
    520 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    521 			break;
    522 	}
    523 
    524 	/*
    525 	 * We didn't find any LWPs to collect, we may have received a
    526 	 * signal, or some other condition has caused us to bail out.
    527 	 *
    528 	 * If waiting on a specific LWP, clear the waiters marker: some
    529 	 * other LWP may want it.  Then, kick all the remaining waiters
    530 	 * so that they can re-check for zombies and for deadlock.
    531 	 */
    532 	if (lid != 0) {
    533 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    534 			if (l2->l_lid == lid) {
    535 				if (l2->l_waiter == curlid)
    536 					l2->l_waiter = 0;
    537 				break;
    538 			}
    539 		}
    540 	}
    541 	p->p_nlwpwait--;
    542 	l->l_waitingfor = 0;
    543 	cv_broadcast(&p->p_lwpcv);
    544 
    545 	return error;
    546 }
    547 
    548 /*
    549  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    550  * The new LWP is created in state LSIDL and must be set running,
    551  * suspended, or stopped by the caller.
    552  */
    553 int
    554 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
    555     int flags, void *stack, size_t stacksize,
    556     void (*func)(void *), void *arg, struct lwp **rnewlwpp)
    557 {
    558 	struct lwp *l2, *isfree;
    559 	turnstile_t *ts;
    560 
    561 	/*
    562 	 * First off, reap any detached LWP waiting to be collected.
    563 	 * We can re-use its LWP structure and turnstile.
    564 	 */
    565 	isfree = NULL;
    566 	if (p2->p_zomblwp != NULL) {
    567 		mutex_enter(&p2->p_smutex);
    568 		if ((isfree = p2->p_zomblwp) != NULL) {
    569 			p2->p_zomblwp = NULL;
    570 			lwp_free(isfree, true, false);/* releases proc mutex */
    571 		} else
    572 			mutex_exit(&p2->p_smutex);
    573 	}
    574 	if (isfree == NULL) {
    575 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    576 		memset(l2, 0, sizeof(*l2));
    577 		l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
    578 		SLIST_INIT(&l2->l_pi_lenders);
    579 	} else {
    580 		l2 = isfree;
    581 		ts = l2->l_ts;
    582 		KASSERT(l2->l_inheritedprio == MAXPRI);
    583 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    584 		memset(l2, 0, sizeof(*l2));
    585 		l2->l_ts = ts;
    586 	}
    587 
    588 	l2->l_stat = LSIDL;
    589 	l2->l_proc = p2;
    590 	l2->l_refcnt = 1;
    591 	l2->l_priority = l1->l_priority;
    592 	l2->l_usrpri = l1->l_usrpri;
    593 	l2->l_inheritedprio = MAXPRI;
    594 	l2->l_mutex = &sched_mutex;
    595 	l2->l_cpu = l1->l_cpu;
    596 	l2->l_flag = inmem ? LW_INMEM : 0;
    597 	lwp_initspecific(l2);
    598 
    599 	if (p2->p_flag & PK_SYSTEM) {
    600 		/*
    601 		 * Mark it as a system process and not a candidate for
    602 		 * swapping.
    603 		 */
    604 		l2->l_flag |= LW_SYSTEM;
    605 	}
    606 
    607 	lwp_update_creds(l2);
    608 	callout_init(&l2->l_tsleep_ch);
    609 	cv_init(&l2->l_sigcv, "sigwait");
    610 	l2->l_syncobj = &sched_syncobj;
    611 
    612 	if (rnewlwpp != NULL)
    613 		*rnewlwpp = l2;
    614 
    615 	l2->l_addr = UAREA_TO_USER(uaddr);
    616 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    617 	    (arg != NULL) ? arg : l2);
    618 
    619 	mutex_enter(&p2->p_smutex);
    620 
    621 	if ((flags & LWP_DETACHED) != 0) {
    622 		l2->l_prflag = LPR_DETACHED;
    623 		p2->p_ndlwps++;
    624 	} else
    625 		l2->l_prflag = 0;
    626 
    627 	l2->l_sigmask = l1->l_sigmask;
    628 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    629 	sigemptyset(&l2->l_sigpend.sp_set);
    630 
    631 	p2->p_nlwpid++;
    632 	if (p2->p_nlwpid == 0)
    633 		p2->p_nlwpid++;
    634 	l2->l_lid = p2->p_nlwpid;
    635 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    636 	p2->p_nlwps++;
    637 
    638 	mutex_exit(&p2->p_smutex);
    639 
    640 	mutex_enter(&proclist_mutex);
    641 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    642 	mutex_exit(&proclist_mutex);
    643 
    644 	SYSCALL_TIME_LWP_INIT(l2);
    645 
    646 	if (p2->p_emul->e_lwp_fork)
    647 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    648 
    649 	return (0);
    650 }
    651 
    652 /*
    653  * Quit the process.  This will call cpu_exit, which will call cpu_switch,
    654  * so this can only be used meaningfully if you're willing to switch away.
    655  * Calling with l!=curlwp would be weird.
    656  */
    657 void
    658 lwp_exit(struct lwp *l)
    659 {
    660 	struct proc *p = l->l_proc;
    661 	struct lwp *l2;
    662 
    663 	DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
    664 	DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
    665 
    666 	/*
    667 	 * Verify that we hold no locks other than the kernel lock.
    668 	 */
    669 #ifdef MULTIPROCESSOR
    670 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    671 #else
    672 	LOCKDEBUG_BARRIER(NULL, 0);
    673 #endif
    674 
    675 	/*
    676 	 * If we are the last live LWP in a process, we need to exit the
    677 	 * entire process.  We do so with an exit status of zero, because
    678 	 * it's a "controlled" exit, and because that's what Solaris does.
    679 	 *
    680 	 * We are not quite a zombie yet, but for accounting purposes we
    681 	 * must increment the count of zombies here.
    682 	 *
    683 	 * Note: the last LWP's specificdata will be deleted here.
    684 	 */
    685 	mutex_enter(&p->p_smutex);
    686 	if (p->p_nlwps - p->p_nzlwps == 1) {
    687 		DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
    688 		    p->p_pid, l->l_lid));
    689 		exit1(l, 0);
    690 		/* NOTREACHED */
    691 	}
    692 	p->p_nzlwps++;
    693 	mutex_exit(&p->p_smutex);
    694 
    695 	if (p->p_emul->e_lwp_exit)
    696 		(*p->p_emul->e_lwp_exit)(l);
    697 
    698 	/* Delete the specificdata while it's still safe to sleep. */
    699 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    700 
    701 	/*
    702 	 * Release our cached credentials.
    703 	 */
    704 	kauth_cred_free(l->l_cred);
    705 
    706 	/*
    707 	 * Remove the LWP from the global list.
    708 	 */
    709 	mutex_enter(&proclist_mutex);
    710 	LIST_REMOVE(l, l_list);
    711 	mutex_exit(&proclist_mutex);
    712 
    713 	/*
    714 	 * Get rid of all references to the LWP that others (e.g. procfs)
    715 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    716 	 * mark it waiting for collection in the proc structure.  Note that
    717 	 * before we can do that, we need to free any other dead, deatched
    718 	 * LWP waiting to meet its maker.
    719 	 *
    720 	 * XXXSMP disable preemption.
    721 	 */
    722 	mutex_enter(&p->p_smutex);
    723 	lwp_drainrefs(l);
    724 
    725 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    726 		while ((l2 = p->p_zomblwp) != NULL) {
    727 			p->p_zomblwp = NULL;
    728 			lwp_free(l2, false, false);/* releases proc mutex */
    729 			mutex_enter(&p->p_smutex);
    730 		}
    731 		p->p_zomblwp = l;
    732 	}
    733 
    734 	/*
    735 	 * If we find a pending signal for the process and we have been
    736 	 * asked to check for signals, then we loose: arrange to have
    737 	 * all other LWPs in the process check for signals.
    738 	 */
    739 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    740 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    741 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    742 			lwp_lock(l2);
    743 			l2->l_flag |= LW_PENDSIG;
    744 			lwp_unlock(l2);
    745 		}
    746 	}
    747 
    748 	lwp_lock(l);
    749 	l->l_stat = LSZOMB;
    750 	lwp_unlock(l);
    751 	p->p_nrlwps--;
    752 	cv_broadcast(&p->p_lwpcv);
    753 	mutex_exit(&p->p_smutex);
    754 
    755 	/*
    756 	 * We can no longer block.  At this point, lwp_free() may already
    757 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    758 	 *
    759 	 * Free MD LWP resources.
    760 	 */
    761 #ifndef __NO_CPU_LWP_FREE
    762 	cpu_lwp_free(l, 0);
    763 #endif
    764 	pmap_deactivate(l);
    765 
    766 	/*
    767 	 * Release the kernel lock, signal another LWP to collect us,
    768 	 * and switch away into oblivion.
    769 	 */
    770 #ifdef notyet
    771 	/* XXXSMP hold in lwp_userret() */
    772 	KERNEL_UNLOCK_LAST(l);
    773 #else
    774 	KERNEL_UNLOCK_ALL(l, NULL);
    775 #endif
    776 
    777 	cpu_exit(l);
    778 }
    779 
    780 /*
    781  * We are called from cpu_exit() once it is safe to schedule the dead LWP's
    782  * resources to be freed (i.e., once we've switched to the idle PCB for the
    783  * current CPU).
    784  */
    785 void
    786 lwp_exit2(struct lwp *l)
    787 {
    788 	/* XXXSMP re-enable preemption */
    789 }
    790 
    791 /*
    792  * Free a dead LWP's remaining resources.
    793  *
    794  * XXXLWP limits.
    795  */
    796 void
    797 lwp_free(struct lwp *l, bool recycle, bool last)
    798 {
    799 	struct proc *p = l->l_proc;
    800 	ksiginfoq_t kq;
    801 
    802 	/*
    803 	 * If this was not the last LWP in the process, then adjust
    804 	 * counters and unlock.
    805 	 */
    806 	if (!last) {
    807 		/*
    808 		 * Add the LWP's run time to the process' base value.
    809 		 * This needs to co-incide with coming off p_lwps.
    810 		 */
    811 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    812 		LIST_REMOVE(l, l_sibling);
    813 		p->p_nlwps--;
    814 		p->p_nzlwps--;
    815 		if ((l->l_prflag & LPR_DETACHED) != 0)
    816 			p->p_ndlwps--;
    817 
    818 		/*
    819 		 * Have any LWPs sleeping in lwp_wait() recheck for
    820 		 * deadlock.
    821 		 */
    822 		cv_broadcast(&p->p_lwpcv);
    823 		mutex_exit(&p->p_smutex);
    824 	}
    825 
    826 #ifdef MULTIPROCESSOR
    827 	/*
    828 	 * In the unlikely event that the LWP is still on the CPU,
    829 	 * then spin until it has switched away.  We need to release
    830 	 * all locks to avoid deadlock against interrupt handlers on
    831 	 * the target CPU.
    832 	 */
    833 	if (l->l_cpu->ci_curlwp == l) {
    834 		int count;
    835 		KERNEL_UNLOCK_ALL(curlwp, &count);
    836 		while (l->l_cpu->ci_curlwp == l)
    837 			SPINLOCK_BACKOFF_HOOK;
    838 		KERNEL_LOCK(count, curlwp);
    839 	}
    840 #endif
    841 
    842 	/*
    843 	 * Destroy the LWP's remaining signal information.
    844 	 */
    845 	ksiginfo_queue_init(&kq);
    846 	sigclear(&l->l_sigpend, NULL, &kq);
    847 	ksiginfo_queue_drain(&kq);
    848 	cv_destroy(&l->l_sigcv);
    849 
    850 	/*
    851 	 * Free the LWP's turnstile and the LWP structure itself unless the
    852 	 * caller wants to recycle them.
    853 	 *
    854 	 * We can't return turnstile0 to the pool (it didn't come from it),
    855 	 * so if it comes up just drop it quietly and move on.
    856 	 *
    857 	 * We don't recycle the VM resources at this time.
    858 	 */
    859 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    860 	if (!recycle && l->l_ts != &turnstile0)
    861 		pool_cache_put(&turnstile_cache, l->l_ts);
    862 #ifndef __NO_CPU_LWP_FREE
    863 	cpu_lwp_free2(l);
    864 #endif
    865 	uvm_lwp_exit(l);
    866 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    867 	KASSERT(l->l_inheritedprio == MAXPRI);
    868 	if (!recycle)
    869 		pool_put(&lwp_pool, l);
    870 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    871 }
    872 
    873 /*
    874  * Pick a LWP to represent the process for those operations which
    875  * want information about a "process" that is actually associated
    876  * with a LWP.
    877  *
    878  * If 'locking' is false, no locking or lock checks are performed.
    879  * This is intended for use by DDB.
    880  *
    881  * We don't bother locking the LWP here, since code that uses this
    882  * interface is broken by design and an exact match is not required.
    883  */
    884 struct lwp *
    885 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    886 {
    887 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    888 	struct lwp *signalled;
    889 	int cnt;
    890 
    891 	if (locking) {
    892 		KASSERT(mutex_owned(&p->p_smutex));
    893 	}
    894 
    895 	/* Trivial case: only one LWP */
    896 	if (p->p_nlwps == 1) {
    897 		l = LIST_FIRST(&p->p_lwps);
    898 		if (nrlwps)
    899 			*nrlwps = (l->l_stat == LSONPROC || LSRUN);
    900 		return l;
    901 	}
    902 
    903 	cnt = 0;
    904 	switch (p->p_stat) {
    905 	case SSTOP:
    906 	case SACTIVE:
    907 		/* Pick the most live LWP */
    908 		onproc = running = sleeping = stopped = suspended = NULL;
    909 		signalled = NULL;
    910 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    911 			if (l->l_lid == p->p_sigctx.ps_lwp)
    912 				signalled = l;
    913 			switch (l->l_stat) {
    914 			case LSONPROC:
    915 				onproc = l;
    916 				cnt++;
    917 				break;
    918 			case LSRUN:
    919 				running = l;
    920 				cnt++;
    921 				break;
    922 			case LSSLEEP:
    923 				sleeping = l;
    924 				break;
    925 			case LSSTOP:
    926 				stopped = l;
    927 				break;
    928 			case LSSUSPENDED:
    929 				suspended = l;
    930 				break;
    931 			}
    932 		}
    933 		if (nrlwps)
    934 			*nrlwps = cnt;
    935 		if (signalled)
    936 			l = signalled;
    937 		else if (onproc)
    938 			l = onproc;
    939 		else if (running)
    940 			l = running;
    941 		else if (sleeping)
    942 			l = sleeping;
    943 		else if (stopped)
    944 			l = stopped;
    945 		else if (suspended)
    946 			l = suspended;
    947 		else
    948 			break;
    949 		return l;
    950 		if (nrlwps)
    951 			*nrlwps = 0;
    952 		l = LIST_FIRST(&p->p_lwps);
    953 		return l;
    954 #ifdef DIAGNOSTIC
    955 	case SIDL:
    956 	case SZOMB:
    957 	case SDYING:
    958 	case SDEAD:
    959 		if (locking)
    960 			mutex_exit(&p->p_smutex);
    961 		/* We have more than one LWP and we're in SIDL?
    962 		 * How'd that happen?
    963 		 */
    964 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
    965 		    p->p_pid, p->p_comm, p->p_stat);
    966 		break;
    967 	default:
    968 		if (locking)
    969 			mutex_exit(&p->p_smutex);
    970 		panic("Process %d (%s) in unknown state %d",
    971 		    p->p_pid, p->p_comm, p->p_stat);
    972 #endif
    973 	}
    974 
    975 	if (locking)
    976 		mutex_exit(&p->p_smutex);
    977 	panic("proc_representative_lwp: couldn't find a lwp for process"
    978 		" %d (%s)", p->p_pid, p->p_comm);
    979 	/* NOTREACHED */
    980 	return NULL;
    981 }
    982 
    983 /*
    984  * Look up a live LWP within the speicifed process, and return it locked.
    985  *
    986  * Must be called with p->p_smutex held.
    987  */
    988 struct lwp *
    989 lwp_find(struct proc *p, int id)
    990 {
    991 	struct lwp *l;
    992 
    993 	KASSERT(mutex_owned(&p->p_smutex));
    994 
    995 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    996 		if (l->l_lid == id)
    997 			break;
    998 	}
    999 
   1000 	/*
   1001 	 * No need to lock - all of these conditions will
   1002 	 * be visible with the process level mutex held.
   1003 	 */
   1004 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1005 		l = NULL;
   1006 
   1007 	return l;
   1008 }
   1009 
   1010 /*
   1011  * Update an LWP's cached credentials to mirror the process' master copy.
   1012  *
   1013  * This happens early in the syscall path, on user trap, and on LWP
   1014  * creation.  A long-running LWP can also voluntarily choose to update
   1015  * it's credentials by calling this routine.  This may be called from
   1016  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1017  */
   1018 void
   1019 lwp_update_creds(struct lwp *l)
   1020 {
   1021 	kauth_cred_t oc;
   1022 	struct proc *p;
   1023 
   1024 	p = l->l_proc;
   1025 	oc = l->l_cred;
   1026 
   1027 	mutex_enter(&p->p_mutex);
   1028 	kauth_cred_hold(p->p_cred);
   1029 	l->l_cred = p->p_cred;
   1030 	mutex_exit(&p->p_mutex);
   1031 	if (oc != NULL) {
   1032 		KERNEL_LOCK(1, l);	/* XXXSMP */
   1033 		kauth_cred_free(oc);
   1034 		KERNEL_UNLOCK_ONE(l);	/* XXXSMP */
   1035 	}
   1036 }
   1037 
   1038 /*
   1039  * Verify that an LWP is locked, and optionally verify that the lock matches
   1040  * one we specify.
   1041  */
   1042 int
   1043 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1044 {
   1045 	kmutex_t *cur = l->l_mutex;
   1046 
   1047 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1048 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1049 #else
   1050 	return mutex_owned(cur);
   1051 #endif
   1052 }
   1053 
   1054 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1055 /*
   1056  * Lock an LWP.
   1057  */
   1058 void
   1059 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1060 {
   1061 
   1062 	/*
   1063 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1064 	 *
   1065 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1066 	 */
   1067 #if 1
   1068 	while (l->l_mutex != old) {
   1069 #else
   1070 	for (;;) {
   1071 #endif
   1072 		mutex_spin_exit(old);
   1073 		old = l->l_mutex;
   1074 		mutex_spin_enter(old);
   1075 
   1076 		/*
   1077 		 * mutex_enter() will have posted a read barrier.  Re-test
   1078 		 * l->l_mutex.  If it has changed, we need to try again.
   1079 		 */
   1080 #if 1
   1081 	}
   1082 #else
   1083 	} while (__predict_false(l->l_mutex != old));
   1084 #endif
   1085 }
   1086 #endif
   1087 
   1088 /*
   1089  * Lend a new mutex to an LWP.  The old mutex must be held.
   1090  */
   1091 void
   1092 lwp_setlock(struct lwp *l, kmutex_t *new)
   1093 {
   1094 
   1095 	KASSERT(mutex_owned(l->l_mutex));
   1096 
   1097 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1098 	mb_write();
   1099 	l->l_mutex = new;
   1100 #else
   1101 	(void)new;
   1102 #endif
   1103 }
   1104 
   1105 /*
   1106  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1107  * must be held.
   1108  */
   1109 void
   1110 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1111 {
   1112 	kmutex_t *old;
   1113 
   1114 	KASSERT(mutex_owned(l->l_mutex));
   1115 
   1116 	old = l->l_mutex;
   1117 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1118 	mb_write();
   1119 	l->l_mutex = new;
   1120 #else
   1121 	(void)new;
   1122 #endif
   1123 	mutex_spin_exit(old);
   1124 }
   1125 
   1126 /*
   1127  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1128  * locked.
   1129  */
   1130 void
   1131 lwp_relock(struct lwp *l, kmutex_t *new)
   1132 {
   1133 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1134 	kmutex_t *old;
   1135 #endif
   1136 
   1137 	KASSERT(mutex_owned(l->l_mutex));
   1138 
   1139 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1140 	old = l->l_mutex;
   1141 	if (old != new) {
   1142 		mutex_spin_enter(new);
   1143 		l->l_mutex = new;
   1144 		mutex_spin_exit(old);
   1145 	}
   1146 #else
   1147 	(void)new;
   1148 #endif
   1149 }
   1150 
   1151 int
   1152 lwp_trylock(struct lwp *l)
   1153 {
   1154 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
   1155 	kmutex_t *old;
   1156 
   1157 	for (;;) {
   1158 		if (!mutex_tryenter(old = l->l_mutex))
   1159 			return 0;
   1160 		if (__predict_true(l->l_mutex == old))
   1161 			return 1;
   1162 		mutex_spin_exit(old);
   1163 	}
   1164 #else
   1165 	return mutex_tryenter(l->l_mutex);
   1166 #endif
   1167 }
   1168 
   1169 /*
   1170  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1171  * set.
   1172  */
   1173 void
   1174 lwp_userret(struct lwp *l)
   1175 {
   1176 	struct proc *p;
   1177 	void (*hook)(void);
   1178 	int sig;
   1179 
   1180 	p = l->l_proc;
   1181 
   1182 	/*
   1183 	 * It should be safe to do this read unlocked on a multiprocessor
   1184 	 * system..
   1185 	 */
   1186 	while ((l->l_flag & LW_USERRET) != 0) {
   1187 		/*
   1188 		 * Process pending signals first, unless the process
   1189 		 * is dumping core or exiting, where we will instead
   1190 		 * enter the L_WSUSPEND case below.
   1191 		 */
   1192 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1193 		    LW_PENDSIG) {
   1194 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1195 			mutex_enter(&p->p_smutex);
   1196 			while ((sig = issignal(l)) != 0)
   1197 				postsig(sig);
   1198 			mutex_exit(&p->p_smutex);
   1199 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1200 		}
   1201 
   1202 		/*
   1203 		 * Core-dump or suspend pending.
   1204 		 *
   1205 		 * In case of core dump, suspend ourselves, so that the
   1206 		 * kernel stack and therefore the userland registers saved
   1207 		 * in the trapframe are around for coredump() to write them
   1208 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1209 		 * will write the core file out once all other LWPs are
   1210 		 * suspended.
   1211 		 */
   1212 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1213 			mutex_enter(&p->p_smutex);
   1214 			p->p_nrlwps--;
   1215 			cv_broadcast(&p->p_lwpcv);
   1216 			lwp_lock(l);
   1217 			l->l_stat = LSSUSPENDED;
   1218 			mutex_exit(&p->p_smutex);
   1219 			mi_switch(l, NULL);
   1220 		}
   1221 
   1222 		/* Process is exiting. */
   1223 		if ((l->l_flag & LW_WEXIT) != 0) {
   1224 			KERNEL_LOCK(1, l);
   1225 			lwp_exit(l);
   1226 			KASSERT(0);
   1227 			/* NOTREACHED */
   1228 		}
   1229 
   1230 		/* Call userret hook; used by Linux emulation. */
   1231 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1232 			lwp_lock(l);
   1233 			l->l_flag &= ~LW_WUSERRET;
   1234 			lwp_unlock(l);
   1235 			hook = p->p_userret;
   1236 			p->p_userret = NULL;
   1237 			(*hook)();
   1238 		}
   1239 	}
   1240 }
   1241 
   1242 /*
   1243  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1244  */
   1245 void
   1246 lwp_need_userret(struct lwp *l)
   1247 {
   1248 	KASSERT(lwp_locked(l, NULL));
   1249 
   1250 	/*
   1251 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1252 	 * that the condition will be seen before forcing the LWP to enter
   1253 	 * kernel mode.
   1254 	 */
   1255 	mb_write();
   1256 	cpu_signotify(l);
   1257 }
   1258 
   1259 /*
   1260  * Add one reference to an LWP.  This will prevent the LWP from
   1261  * exiting, thus keep the lwp structure and PCB around to inspect.
   1262  */
   1263 void
   1264 lwp_addref(struct lwp *l)
   1265 {
   1266 
   1267 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1268 	KASSERT(l->l_stat != LSZOMB);
   1269 	KASSERT(l->l_refcnt != 0);
   1270 
   1271 	l->l_refcnt++;
   1272 }
   1273 
   1274 /*
   1275  * Remove one reference to an LWP.  If this is the last reference,
   1276  * then we must finalize the LWP's death.
   1277  */
   1278 void
   1279 lwp_delref(struct lwp *l)
   1280 {
   1281 	struct proc *p = l->l_proc;
   1282 
   1283 	mutex_enter(&p->p_smutex);
   1284 	if (--l->l_refcnt == 0)
   1285 		cv_broadcast(&p->p_refcv);
   1286 	mutex_exit(&p->p_smutex);
   1287 }
   1288 
   1289 /*
   1290  * Drain all references to the current LWP.
   1291  */
   1292 void
   1293 lwp_drainrefs(struct lwp *l)
   1294 {
   1295 	struct proc *p = l->l_proc;
   1296 
   1297 	KASSERT(mutex_owned(&p->p_smutex));
   1298 	KASSERT(l->l_refcnt != 0);
   1299 
   1300 	l->l_refcnt--;
   1301 	while (l->l_refcnt != 0)
   1302 		cv_wait(&p->p_refcv, &p->p_smutex);
   1303 }
   1304 
   1305 /*
   1306  * lwp_specific_key_create --
   1307  *	Create a key for subsystem lwp-specific data.
   1308  */
   1309 int
   1310 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1311 {
   1312 
   1313 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1314 }
   1315 
   1316 /*
   1317  * lwp_specific_key_delete --
   1318  *	Delete a key for subsystem lwp-specific data.
   1319  */
   1320 void
   1321 lwp_specific_key_delete(specificdata_key_t key)
   1322 {
   1323 
   1324 	specificdata_key_delete(lwp_specificdata_domain, key);
   1325 }
   1326 
   1327 /*
   1328  * lwp_initspecific --
   1329  *	Initialize an LWP's specificdata container.
   1330  */
   1331 void
   1332 lwp_initspecific(struct lwp *l)
   1333 {
   1334 	int error;
   1335 
   1336 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1337 	KASSERT(error == 0);
   1338 }
   1339 
   1340 /*
   1341  * lwp_finispecific --
   1342  *	Finalize an LWP's specificdata container.
   1343  */
   1344 void
   1345 lwp_finispecific(struct lwp *l)
   1346 {
   1347 
   1348 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1349 }
   1350 
   1351 /*
   1352  * lwp_getspecific --
   1353  *	Return lwp-specific data corresponding to the specified key.
   1354  *
   1355  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1356  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1357  *	LWP's specifc data, care must be taken to ensure that doing so
   1358  *	would not cause internal data structure inconsistency (i.e. caller
   1359  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1360  *	or lwp_setspecific() call).
   1361  */
   1362 void *
   1363 lwp_getspecific(specificdata_key_t key)
   1364 {
   1365 
   1366 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1367 						  &curlwp->l_specdataref, key));
   1368 }
   1369 
   1370 void *
   1371 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1372 {
   1373 
   1374 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1375 						  &l->l_specdataref, key));
   1376 }
   1377 
   1378 /*
   1379  * lwp_setspecific --
   1380  *	Set lwp-specific data corresponding to the specified key.
   1381  */
   1382 void
   1383 lwp_setspecific(specificdata_key_t key, void *data)
   1384 {
   1385 
   1386 	specificdata_setspecific(lwp_specificdata_domain,
   1387 				 &curlwp->l_specdataref, key, data);
   1388 }
   1389