kern_lwp.c revision 1.67 1 /* $NetBSD: kern_lwp.c,v 1.67 2007/07/31 00:52:04 tnn Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit or thread of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp", also known as lwp_t.
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing concurrently in the kernel.
52 *
53 * Execution states
54 *
55 * At any given time, an LWP has overall state that is described by
56 * lwp::l_stat. The states are broken into two sets below. The first
57 * set is guaranteed to represent the absolute, current state of the
58 * LWP:
59 *
60 * LSONPROC
61 *
62 * On processor: the LWP is executing on a CPU, either in the
63 * kernel or in user space.
64 *
65 * LSRUN
66 *
67 * Runnable: the LWP is parked on a run queue, and may soon be
68 * chosen to run by a idle processor, or by a processor that
69 * has been asked to preempt a currently runnning but lower
70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 * then the LWP is not on a run queue, but may be soon.
72 *
73 * LSIDL
74 *
75 * Idle: the LWP has been created but has not yet executed,
76 * or it has ceased executing a unit of work and is waiting
77 * to be started again.
78 *
79 * LSSUSPENDED:
80 *
81 * Suspended: the LWP has had its execution suspended by
82 * another LWP in the same process using the _lwp_suspend()
83 * system call. User-level LWPs also enter the suspended
84 * state when the system is shutting down.
85 *
86 * The second set represent a "statement of intent" on behalf of the
87 * LWP. The LWP may in fact be executing on a processor, may be
88 * sleeping or idle. It is expected to take the necessary action to
89 * stop executing or become "running" again within a short timeframe.
90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91 * Importantly, in indicates that its state is tied to a CPU.
92 *
93 * LSZOMB:
94 *
95 * Dead or dying: the LWP has released most of its resources
96 * and is a) about to switch away into oblivion b) has already
97 * switched away. When it switches away, its few remaining
98 * resources can be collected.
99 *
100 * LSSLEEP:
101 *
102 * Sleeping: the LWP has entered itself onto a sleep queue, and
103 * has switched away or will switch away shortly to allow other
104 * LWPs to run on the CPU.
105 *
106 * LSSTOP:
107 *
108 * Stopped: the LWP has been stopped as a result of a job
109 * control signal, or as a result of the ptrace() interface.
110 *
111 * Stopped LWPs may run briefly within the kernel to handle
112 * signals that they receive, but will not return to user space
113 * until their process' state is changed away from stopped.
114 *
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP state may only be set when returning to
122 * user space in userret(), or when sleeping interruptably. The
123 * LSSUSPENDED state may only be set in userret(). Before setting
124 * those states, we try to ensure that the LWPs will release all
125 * locks that they hold, and at a minimum try to ensure that the
126 * LWP can be set runnable again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Other state transitions are possible with kernel threads (eg
145 * ONPROC -> IDL), but only happen under tightly controlled
146 * circumstances the side effects are understood.
147 *
148 * Locking
149 *
150 * The majority of fields in 'struct lwp' are covered by a single,
151 * general spin lock pointed to by lwp::l_mutex. The locks covering
152 * each field are documented in sys/lwp.h.
153 *
154 * State transitions must be made with the LWP's general lock held,
155 * and may cause the LWP's lock pointer to change. Manipulation of
156 * the general lock is not performed directly, but through calls to
157 * lwp_lock(), lwp_relock() and similar.
158 *
159 * States and their associated locks:
160 *
161 * LSIDL, LSZOMB, LSONPROC:
162 *
163 * Always covered by spc_lwplock, which protects running LWPs.
164 * This is a per-CPU lock.
165 *
166 * LSRUN:
167 *
168 * Always covered by spc_mutex, which protects the run queues.
169 * This may be a per-CPU lock, depending on the scheduler.
170 *
171 * LSSLEEP:
172 *
173 * Covered by a lock associated with the sleep queue that the
174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175 *
176 * LSSTOP, LSSUSPENDED:
177 *
178 * If the LWP was previously sleeping (l_wchan != NULL), then
179 * l_mutex references the sleep queue lock. If the LWP was
180 * runnable or on the CPU when halted, or has been removed from
181 * the sleep queue since halted, then the lock is spc_lwplock.
182 *
183 * The lock order is as follows:
184 *
185 * spc::spc_lwplock ->
186 * sleepq_t::sq_mutex ->
187 * tschain_t::tc_mutex ->
188 * spc::spc_mutex
189 *
190 * Each process has an scheduler state lock (proc::p_smutex), and a
191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192 * so on. When an LWP is to be entered into or removed from one of the
193 * following states, p_mutex must be held and the process wide counters
194 * adjusted:
195 *
196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197 *
198 * Note that an LWP is considered running or likely to run soon if in
199 * one of the following states. This affects the value of p_nrlwps:
200 *
201 * LSRUN, LSONPROC, LSSLEEP
202 *
203 * p_smutex does not need to be held when transitioning among these
204 * three states.
205 */
206
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.67 2007/07/31 00:52:04 tnn Exp $");
209
210 #include "opt_multiprocessor.h"
211 #include "opt_lockdebug.h"
212
213 #define _LWP_API_PRIVATE
214
215 #include <sys/param.h>
216 #include <sys/systm.h>
217 #include <sys/cpu.h>
218 #include <sys/pool.h>
219 #include <sys/proc.h>
220 #include <sys/syscallargs.h>
221 #include <sys/syscall_stats.h>
222 #include <sys/kauth.h>
223 #include <sys/sleepq.h>
224 #include <sys/lockdebug.h>
225 #include <sys/kmem.h>
226
227 #include <uvm/uvm_extern.h>
228
229 struct lwplist alllwp;
230
231 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
232 &pool_allocator_nointr, IPL_NONE);
233 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
234 &pool_allocator_nointr, IPL_NONE);
235
236 static specificdata_domain_t lwp_specificdata_domain;
237
238 #define LWP_DEBUG
239
240 #ifdef LWP_DEBUG
241 int lwp_debug = 0;
242 #define DPRINTF(x) if (lwp_debug) printf x
243 #else
244 #define DPRINTF(x)
245 #endif
246
247 void
248 lwpinit(void)
249 {
250
251 lwp_specificdata_domain = specificdata_domain_create();
252 KASSERT(lwp_specificdata_domain != NULL);
253 lwp_sys_init();
254 }
255
256 /*
257 * Set an suspended.
258 *
259 * Must be called with p_smutex held, and the LWP locked. Will unlock the
260 * LWP before return.
261 */
262 int
263 lwp_suspend(struct lwp *curl, struct lwp *t)
264 {
265 int error;
266
267 KASSERT(mutex_owned(&t->l_proc->p_smutex));
268 KASSERT(lwp_locked(t, NULL));
269
270 KASSERT(curl != t || curl->l_stat == LSONPROC);
271
272 /*
273 * If the current LWP has been told to exit, we must not suspend anyone
274 * else or deadlock could occur. We won't return to userspace.
275 */
276 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
277 lwp_unlock(t);
278 return (EDEADLK);
279 }
280
281 error = 0;
282
283 switch (t->l_stat) {
284 case LSRUN:
285 case LSONPROC:
286 t->l_flag |= LW_WSUSPEND;
287 lwp_need_userret(t);
288 lwp_unlock(t);
289 break;
290
291 case LSSLEEP:
292 t->l_flag |= LW_WSUSPEND;
293
294 /*
295 * Kick the LWP and try to get it to the kernel boundary
296 * so that it will release any locks that it holds.
297 * setrunnable() will release the lock.
298 */
299 if ((t->l_flag & LW_SINTR) != 0)
300 setrunnable(t);
301 else
302 lwp_unlock(t);
303 break;
304
305 case LSSUSPENDED:
306 lwp_unlock(t);
307 break;
308
309 case LSSTOP:
310 t->l_flag |= LW_WSUSPEND;
311 setrunnable(t);
312 break;
313
314 case LSIDL:
315 case LSZOMB:
316 error = EINTR; /* It's what Solaris does..... */
317 lwp_unlock(t);
318 break;
319 }
320
321 /*
322 * XXXLWP Wait for:
323 *
324 * o process exiting
325 * o target LWP suspended
326 * o target LWP not suspended and L_WSUSPEND clear
327 * o target LWP exited
328 */
329
330 return (error);
331 }
332
333 /*
334 * Restart a suspended LWP.
335 *
336 * Must be called with p_smutex held, and the LWP locked. Will unlock the
337 * LWP before return.
338 */
339 void
340 lwp_continue(struct lwp *l)
341 {
342
343 KASSERT(mutex_owned(&l->l_proc->p_smutex));
344 KASSERT(lwp_locked(l, NULL));
345
346 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
347 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
348 l->l_wchan));
349
350 /* If rebooting or not suspended, then just bail out. */
351 if ((l->l_flag & LW_WREBOOT) != 0) {
352 lwp_unlock(l);
353 return;
354 }
355
356 l->l_flag &= ~LW_WSUSPEND;
357
358 if (l->l_stat != LSSUSPENDED) {
359 lwp_unlock(l);
360 return;
361 }
362
363 /* setrunnable() will release the lock. */
364 setrunnable(l);
365 }
366
367 /*
368 * Wait for an LWP within the current process to exit. If 'lid' is
369 * non-zero, we are waiting for a specific LWP.
370 *
371 * Must be called with p->p_smutex held.
372 */
373 int
374 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
375 {
376 struct proc *p = l->l_proc;
377 struct lwp *l2;
378 int nfound, error;
379 lwpid_t curlid;
380 bool exiting;
381
382 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
383 p->p_pid, l->l_lid, lid));
384
385 KASSERT(mutex_owned(&p->p_smutex));
386
387 p->p_nlwpwait++;
388 l->l_waitingfor = lid;
389 curlid = l->l_lid;
390 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
391
392 for (;;) {
393 /*
394 * Avoid a race between exit1() and sigexit(): if the
395 * process is dumping core, then we need to bail out: call
396 * into lwp_userret() where we will be suspended until the
397 * deed is done.
398 */
399 if ((p->p_sflag & PS_WCORE) != 0) {
400 mutex_exit(&p->p_smutex);
401 lwp_userret(l);
402 #ifdef DIAGNOSTIC
403 panic("lwp_wait1");
404 #endif
405 /* NOTREACHED */
406 }
407
408 /*
409 * First off, drain any detached LWP that is waiting to be
410 * reaped.
411 */
412 while ((l2 = p->p_zomblwp) != NULL) {
413 p->p_zomblwp = NULL;
414 lwp_free(l2, false, false);/* releases proc mutex */
415 mutex_enter(&p->p_smutex);
416 }
417
418 /*
419 * Now look for an LWP to collect. If the whole process is
420 * exiting, count detached LWPs as eligible to be collected,
421 * but don't drain them here.
422 */
423 nfound = 0;
424 error = 0;
425 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
426 /*
427 * If a specific wait and the target is waiting on
428 * us, then avoid deadlock. This also traps LWPs
429 * that try to wait on themselves.
430 *
431 * Note that this does not handle more complicated
432 * cycles, like: t1 -> t2 -> t3 -> t1. The process
433 * can still be killed so it is not a major problem.
434 */
435 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
436 error = EDEADLK;
437 break;
438 }
439 if (l2 == l)
440 continue;
441 if ((l2->l_prflag & LPR_DETACHED) != 0) {
442 nfound += exiting;
443 continue;
444 }
445 if (lid != 0) {
446 if (l2->l_lid != lid)
447 continue;
448 /*
449 * Mark this LWP as the first waiter, if there
450 * is no other.
451 */
452 if (l2->l_waiter == 0)
453 l2->l_waiter = curlid;
454 } else if (l2->l_waiter != 0) {
455 /*
456 * It already has a waiter - so don't
457 * collect it. If the waiter doesn't
458 * grab it we'll get another chance
459 * later.
460 */
461 nfound++;
462 continue;
463 }
464 nfound++;
465
466 /* No need to lock the LWP in order to see LSZOMB. */
467 if (l2->l_stat != LSZOMB)
468 continue;
469
470 /*
471 * We're no longer waiting. Reset the "first waiter"
472 * pointer on the target, in case it was us.
473 */
474 l->l_waitingfor = 0;
475 l2->l_waiter = 0;
476 p->p_nlwpwait--;
477 if (departed)
478 *departed = l2->l_lid;
479
480 /* lwp_free() releases the proc lock. */
481 lwp_free(l2, false, false);
482 mutex_enter(&p->p_smutex);
483 return 0;
484 }
485
486 if (error != 0)
487 break;
488 if (nfound == 0) {
489 error = ESRCH;
490 break;
491 }
492
493 /*
494 * The kernel is careful to ensure that it can not deadlock
495 * when exiting - just keep waiting.
496 */
497 if (exiting) {
498 KASSERT(p->p_nlwps > 1);
499 cv_wait(&p->p_lwpcv, &p->p_smutex);
500 continue;
501 }
502
503 /*
504 * If all other LWPs are waiting for exits or suspends
505 * and the supply of zombies and potential zombies is
506 * exhausted, then we are about to deadlock.
507 *
508 * If the process is exiting (and this LWP is not the one
509 * that is coordinating the exit) then bail out now.
510 */
511 if ((p->p_sflag & PS_WEXIT) != 0 ||
512 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
513 error = EDEADLK;
514 break;
515 }
516
517 /*
518 * Sit around and wait for something to happen. We'll be
519 * awoken if any of the conditions examined change: if an
520 * LWP exits, is collected, or is detached.
521 */
522 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
523 break;
524 }
525
526 /*
527 * We didn't find any LWPs to collect, we may have received a
528 * signal, or some other condition has caused us to bail out.
529 *
530 * If waiting on a specific LWP, clear the waiters marker: some
531 * other LWP may want it. Then, kick all the remaining waiters
532 * so that they can re-check for zombies and for deadlock.
533 */
534 if (lid != 0) {
535 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
536 if (l2->l_lid == lid) {
537 if (l2->l_waiter == curlid)
538 l2->l_waiter = 0;
539 break;
540 }
541 }
542 }
543 p->p_nlwpwait--;
544 l->l_waitingfor = 0;
545 cv_broadcast(&p->p_lwpcv);
546
547 return error;
548 }
549
550 /*
551 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
552 * The new LWP is created in state LSIDL and must be set running,
553 * suspended, or stopped by the caller.
554 */
555 int
556 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
557 int flags, void *stack, size_t stacksize,
558 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
559 {
560 struct lwp *l2, *isfree;
561 turnstile_t *ts;
562
563 /*
564 * First off, reap any detached LWP waiting to be collected.
565 * We can re-use its LWP structure and turnstile.
566 */
567 isfree = NULL;
568 if (p2->p_zomblwp != NULL) {
569 mutex_enter(&p2->p_smutex);
570 if ((isfree = p2->p_zomblwp) != NULL) {
571 p2->p_zomblwp = NULL;
572 lwp_free(isfree, true, false);/* releases proc mutex */
573 } else
574 mutex_exit(&p2->p_smutex);
575 }
576 if (isfree == NULL) {
577 l2 = pool_get(&lwp_pool, PR_WAITOK);
578 memset(l2, 0, sizeof(*l2));
579 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
580 SLIST_INIT(&l2->l_pi_lenders);
581 } else {
582 l2 = isfree;
583 ts = l2->l_ts;
584 KASSERT(l2->l_inheritedprio == MAXPRI);
585 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
586 memset(l2, 0, sizeof(*l2));
587 l2->l_ts = ts;
588 }
589
590 l2->l_stat = LSIDL;
591 l2->l_proc = p2;
592 l2->l_refcnt = 1;
593 l2->l_priority = l1->l_priority;
594 l2->l_usrpri = l1->l_usrpri;
595 l2->l_inheritedprio = MAXPRI;
596 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
597 l2->l_cpu = l1->l_cpu;
598 l2->l_flag = inmem ? LW_INMEM : 0;
599 lwp_initspecific(l2);
600 sched_lwp_fork(l2);
601
602 if (p2->p_flag & PK_SYSTEM) {
603 /*
604 * Mark it as a system process and not a candidate for
605 * swapping.
606 */
607 l2->l_flag |= LW_SYSTEM;
608 }
609
610 lwp_update_creds(l2);
611 callout_init(&l2->l_tsleep_ch, CALLOUT_MPSAFE);
612 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
613 cv_init(&l2->l_sigcv, "sigwait");
614 l2->l_syncobj = &sched_syncobj;
615
616 if (rnewlwpp != NULL)
617 *rnewlwpp = l2;
618
619 l2->l_addr = UAREA_TO_USER(uaddr);
620 uvm_lwp_fork(l1, l2, stack, stacksize, func,
621 (arg != NULL) ? arg : l2);
622
623 mutex_enter(&p2->p_smutex);
624
625 if ((flags & LWP_DETACHED) != 0) {
626 l2->l_prflag = LPR_DETACHED;
627 p2->p_ndlwps++;
628 } else
629 l2->l_prflag = 0;
630
631 l2->l_sigmask = l1->l_sigmask;
632 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
633 sigemptyset(&l2->l_sigpend.sp_set);
634
635 p2->p_nlwpid++;
636 if (p2->p_nlwpid == 0)
637 p2->p_nlwpid++;
638 l2->l_lid = p2->p_nlwpid;
639 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
640 p2->p_nlwps++;
641
642 mutex_exit(&p2->p_smutex);
643
644 mutex_enter(&proclist_lock);
645 mutex_enter(&proclist_mutex);
646 LIST_INSERT_HEAD(&alllwp, l2, l_list);
647 mutex_exit(&proclist_mutex);
648 mutex_exit(&proclist_lock);
649
650 SYSCALL_TIME_LWP_INIT(l2);
651
652 if (p2->p_emul->e_lwp_fork)
653 (*p2->p_emul->e_lwp_fork)(l1, l2);
654
655 return (0);
656 }
657
658 /*
659 * Called by MD code when a new LWP begins execution. Must be called
660 * with the previous LWP locked (so at splsched), or if there is no
661 * previous LWP, at splsched.
662 */
663 void
664 lwp_startup(struct lwp *prev, struct lwp *new)
665 {
666
667 curlwp = new;
668 if (prev != NULL) {
669 lwp_unlock(prev);
670 }
671 spl0();
672 pmap_activate(new);
673 LOCKDEBUG_BARRIER(NULL, 0);
674 if ((new->l_pflag & LP_MPSAFE) == 0) {
675 KERNEL_LOCK(1, new);
676 }
677 }
678
679 /*
680 * Exit an LWP.
681 */
682 void
683 lwp_exit(struct lwp *l)
684 {
685 struct proc *p = l->l_proc;
686 struct lwp *l2;
687 bool current;
688
689 current = (l == curlwp);
690
691 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
692 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
693 KASSERT(current || l->l_stat == LSIDL);
694
695 /*
696 * Verify that we hold no locks other than the kernel lock.
697 */
698 #ifdef MULTIPROCESSOR
699 LOCKDEBUG_BARRIER(&kernel_lock, 0);
700 #else
701 LOCKDEBUG_BARRIER(NULL, 0);
702 #endif
703
704 /*
705 * If we are the last live LWP in a process, we need to exit the
706 * entire process. We do so with an exit status of zero, because
707 * it's a "controlled" exit, and because that's what Solaris does.
708 *
709 * We are not quite a zombie yet, but for accounting purposes we
710 * must increment the count of zombies here.
711 *
712 * Note: the last LWP's specificdata will be deleted here.
713 */
714 mutex_enter(&p->p_smutex);
715 if (p->p_nlwps - p->p_nzlwps == 1) {
716 KASSERT(current == true);
717 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
718 p->p_pid, l->l_lid));
719 exit1(l, 0);
720 /* NOTREACHED */
721 }
722 p->p_nzlwps++;
723 mutex_exit(&p->p_smutex);
724
725 if (p->p_emul->e_lwp_exit)
726 (*p->p_emul->e_lwp_exit)(l);
727
728 /* Delete the specificdata while it's still safe to sleep. */
729 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
730
731 /*
732 * Release our cached credentials.
733 */
734 kauth_cred_free(l->l_cred);
735 callout_destroy(&l->l_tsleep_ch);
736
737 /*
738 * While we can still block, mark the LWP as unswappable to
739 * prevent conflicts with the with the swapper.
740 */
741 if (current)
742 uvm_lwp_hold(l);
743
744 /*
745 * Remove the LWP from the global list.
746 */
747 mutex_enter(&proclist_lock);
748 mutex_enter(&proclist_mutex);
749 LIST_REMOVE(l, l_list);
750 mutex_exit(&proclist_mutex);
751 mutex_exit(&proclist_lock);
752
753 /*
754 * Get rid of all references to the LWP that others (e.g. procfs)
755 * may have, and mark the LWP as a zombie. If the LWP is detached,
756 * mark it waiting for collection in the proc structure. Note that
757 * before we can do that, we need to free any other dead, deatched
758 * LWP waiting to meet its maker.
759 *
760 * XXXSMP disable preemption.
761 */
762 mutex_enter(&p->p_smutex);
763 lwp_drainrefs(l);
764
765 if ((l->l_prflag & LPR_DETACHED) != 0) {
766 while ((l2 = p->p_zomblwp) != NULL) {
767 p->p_zomblwp = NULL;
768 lwp_free(l2, false, false);/* releases proc mutex */
769 mutex_enter(&p->p_smutex);
770 }
771 p->p_zomblwp = l;
772 }
773
774 /*
775 * If we find a pending signal for the process and we have been
776 * asked to check for signals, then we loose: arrange to have
777 * all other LWPs in the process check for signals.
778 */
779 if ((l->l_flag & LW_PENDSIG) != 0 &&
780 firstsig(&p->p_sigpend.sp_set) != 0) {
781 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
782 lwp_lock(l2);
783 l2->l_flag |= LW_PENDSIG;
784 lwp_unlock(l2);
785 }
786 }
787
788 lwp_lock(l);
789 l->l_stat = LSZOMB;
790 lwp_unlock(l);
791 p->p_nrlwps--;
792 cv_broadcast(&p->p_lwpcv);
793 mutex_exit(&p->p_smutex);
794
795 /*
796 * We can no longer block. At this point, lwp_free() may already
797 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
798 *
799 * Free MD LWP resources.
800 */
801 #ifndef __NO_CPU_LWP_FREE
802 cpu_lwp_free(l, 0);
803 #endif
804
805 if (current) {
806 pmap_deactivate(l);
807
808 /*
809 * Release the kernel lock, and switch away into
810 * oblivion.
811 */
812 #ifdef notyet
813 /* XXXSMP hold in lwp_userret() */
814 KERNEL_UNLOCK_LAST(l);
815 #else
816 KERNEL_UNLOCK_ALL(l, NULL);
817 #endif
818 lwp_exit_switchaway(l);
819 }
820 }
821
822 void
823 lwp_exit_switchaway(struct lwp *l)
824 {
825 struct cpu_info *ci;
826 struct lwp *idlelwp;
827
828 /* Unlocked, but is for statistics only. */
829 uvmexp.swtch++;
830
831 (void)splsched();
832 l->l_flag &= ~LW_RUNNING;
833 ci = curcpu();
834 idlelwp = ci->ci_data.cpu_idlelwp;
835 idlelwp->l_stat = LSONPROC;
836 cpu_switchto(NULL, idlelwp);
837 }
838
839 /*
840 * Free a dead LWP's remaining resources.
841 *
842 * XXXLWP limits.
843 */
844 void
845 lwp_free(struct lwp *l, bool recycle, bool last)
846 {
847 struct proc *p = l->l_proc;
848 ksiginfoq_t kq;
849
850 /*
851 * If this was not the last LWP in the process, then adjust
852 * counters and unlock.
853 */
854 if (!last) {
855 /*
856 * Add the LWP's run time to the process' base value.
857 * This needs to co-incide with coming off p_lwps.
858 */
859 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
860 p->p_pctcpu += l->l_pctcpu;
861 LIST_REMOVE(l, l_sibling);
862 p->p_nlwps--;
863 p->p_nzlwps--;
864 if ((l->l_prflag & LPR_DETACHED) != 0)
865 p->p_ndlwps--;
866
867 /*
868 * Have any LWPs sleeping in lwp_wait() recheck for
869 * deadlock.
870 */
871 cv_broadcast(&p->p_lwpcv);
872 mutex_exit(&p->p_smutex);
873 }
874
875 #ifdef MULTIPROCESSOR
876 /*
877 * In the unlikely event that the LWP is still on the CPU,
878 * then spin until it has switched away. We need to release
879 * all locks to avoid deadlock against interrupt handlers on
880 * the target CPU.
881 */
882 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
883 int count;
884 (void)count; /* XXXgcc */
885 KERNEL_UNLOCK_ALL(curlwp, &count);
886 while ((l->l_flag & LW_RUNNING) != 0 ||
887 l->l_cpu->ci_curlwp == l)
888 SPINLOCK_BACKOFF_HOOK;
889 KERNEL_LOCK(count, curlwp);
890 }
891 #endif
892
893 /*
894 * Destroy the LWP's remaining signal information.
895 */
896 ksiginfo_queue_init(&kq);
897 sigclear(&l->l_sigpend, NULL, &kq);
898 ksiginfo_queue_drain(&kq);
899 cv_destroy(&l->l_sigcv);
900 mutex_destroy(&l->l_swaplock);
901
902 /*
903 * Free the LWP's turnstile and the LWP structure itself unless the
904 * caller wants to recycle them. Also, free the scheduler specific data.
905 *
906 * We can't return turnstile0 to the pool (it didn't come from it),
907 * so if it comes up just drop it quietly and move on.
908 *
909 * We don't recycle the VM resources at this time.
910 */
911 KERNEL_LOCK(1, curlwp); /* XXXSMP */
912
913 sched_lwp_exit(l);
914
915 if (!recycle && l->l_ts != &turnstile0)
916 pool_cache_put(&turnstile_cache, l->l_ts);
917 #ifndef __NO_CPU_LWP_FREE
918 cpu_lwp_free2(l);
919 #endif
920 uvm_lwp_exit(l);
921 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
922 KASSERT(l->l_inheritedprio == MAXPRI);
923 if (!recycle)
924 pool_put(&lwp_pool, l);
925 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
926 }
927
928 /*
929 * Pick a LWP to represent the process for those operations which
930 * want information about a "process" that is actually associated
931 * with a LWP.
932 *
933 * If 'locking' is false, no locking or lock checks are performed.
934 * This is intended for use by DDB.
935 *
936 * We don't bother locking the LWP here, since code that uses this
937 * interface is broken by design and an exact match is not required.
938 */
939 struct lwp *
940 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
941 {
942 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
943 struct lwp *signalled;
944 int cnt;
945
946 if (locking) {
947 KASSERT(mutex_owned(&p->p_smutex));
948 }
949
950 /* Trivial case: only one LWP */
951 if (p->p_nlwps == 1) {
952 l = LIST_FIRST(&p->p_lwps);
953 if (nrlwps)
954 *nrlwps = (l->l_stat & (LSONPROC | LSRUN)) ? 1 : 0;
955 return l;
956 }
957
958 cnt = 0;
959 switch (p->p_stat) {
960 case SSTOP:
961 case SACTIVE:
962 /* Pick the most live LWP */
963 onproc = running = sleeping = stopped = suspended = NULL;
964 signalled = NULL;
965 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
966 if ((l->l_flag & LW_IDLE) != 0) {
967 continue;
968 }
969 if (l->l_lid == p->p_sigctx.ps_lwp)
970 signalled = l;
971 switch (l->l_stat) {
972 case LSONPROC:
973 onproc = l;
974 cnt++;
975 break;
976 case LSRUN:
977 running = l;
978 cnt++;
979 break;
980 case LSSLEEP:
981 sleeping = l;
982 break;
983 case LSSTOP:
984 stopped = l;
985 break;
986 case LSSUSPENDED:
987 suspended = l;
988 break;
989 }
990 }
991 if (nrlwps)
992 *nrlwps = cnt;
993 if (signalled)
994 l = signalled;
995 else if (onproc)
996 l = onproc;
997 else if (running)
998 l = running;
999 else if (sleeping)
1000 l = sleeping;
1001 else if (stopped)
1002 l = stopped;
1003 else if (suspended)
1004 l = suspended;
1005 else
1006 break;
1007 return l;
1008 #ifdef DIAGNOSTIC
1009 case SIDL:
1010 case SZOMB:
1011 case SDYING:
1012 case SDEAD:
1013 if (locking)
1014 mutex_exit(&p->p_smutex);
1015 /* We have more than one LWP and we're in SIDL?
1016 * How'd that happen?
1017 */
1018 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1019 p->p_pid, p->p_comm, p->p_stat);
1020 break;
1021 default:
1022 if (locking)
1023 mutex_exit(&p->p_smutex);
1024 panic("Process %d (%s) in unknown state %d",
1025 p->p_pid, p->p_comm, p->p_stat);
1026 #endif
1027 }
1028
1029 if (locking)
1030 mutex_exit(&p->p_smutex);
1031 panic("proc_representative_lwp: couldn't find a lwp for process"
1032 " %d (%s)", p->p_pid, p->p_comm);
1033 /* NOTREACHED */
1034 return NULL;
1035 }
1036
1037 /*
1038 * Look up a live LWP within the speicifed process, and return it locked.
1039 *
1040 * Must be called with p->p_smutex held.
1041 */
1042 struct lwp *
1043 lwp_find(struct proc *p, int id)
1044 {
1045 struct lwp *l;
1046
1047 KASSERT(mutex_owned(&p->p_smutex));
1048
1049 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1050 if (l->l_lid == id)
1051 break;
1052 }
1053
1054 /*
1055 * No need to lock - all of these conditions will
1056 * be visible with the process level mutex held.
1057 */
1058 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1059 l = NULL;
1060
1061 return l;
1062 }
1063
1064 /*
1065 * Update an LWP's cached credentials to mirror the process' master copy.
1066 *
1067 * This happens early in the syscall path, on user trap, and on LWP
1068 * creation. A long-running LWP can also voluntarily choose to update
1069 * it's credentials by calling this routine. This may be called from
1070 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1071 */
1072 void
1073 lwp_update_creds(struct lwp *l)
1074 {
1075 kauth_cred_t oc;
1076 struct proc *p;
1077
1078 p = l->l_proc;
1079 oc = l->l_cred;
1080
1081 mutex_enter(&p->p_mutex);
1082 kauth_cred_hold(p->p_cred);
1083 l->l_cred = p->p_cred;
1084 mutex_exit(&p->p_mutex);
1085 if (oc != NULL) {
1086 KERNEL_LOCK(1, l); /* XXXSMP */
1087 kauth_cred_free(oc);
1088 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
1089 }
1090 }
1091
1092 /*
1093 * Verify that an LWP is locked, and optionally verify that the lock matches
1094 * one we specify.
1095 */
1096 int
1097 lwp_locked(struct lwp *l, kmutex_t *mtx)
1098 {
1099 kmutex_t *cur = l->l_mutex;
1100
1101 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1102 }
1103
1104 /*
1105 * Lock an LWP.
1106 */
1107 void
1108 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1109 {
1110
1111 /*
1112 * XXXgcc ignoring kmutex_t * volatile on i386
1113 *
1114 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1115 */
1116 #if 1
1117 while (l->l_mutex != old) {
1118 #else
1119 for (;;) {
1120 #endif
1121 mutex_spin_exit(old);
1122 old = l->l_mutex;
1123 mutex_spin_enter(old);
1124
1125 /*
1126 * mutex_enter() will have posted a read barrier. Re-test
1127 * l->l_mutex. If it has changed, we need to try again.
1128 */
1129 #if 1
1130 }
1131 #else
1132 } while (__predict_false(l->l_mutex != old));
1133 #endif
1134 }
1135
1136 /*
1137 * Lend a new mutex to an LWP. The old mutex must be held.
1138 */
1139 void
1140 lwp_setlock(struct lwp *l, kmutex_t *new)
1141 {
1142
1143 KASSERT(mutex_owned(l->l_mutex));
1144
1145 mb_write();
1146 l->l_mutex = new;
1147 }
1148
1149 /*
1150 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1151 * must be held.
1152 */
1153 void
1154 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1155 {
1156 kmutex_t *old;
1157
1158 KASSERT(mutex_owned(l->l_mutex));
1159
1160 old = l->l_mutex;
1161 mb_write();
1162 l->l_mutex = new;
1163 mutex_spin_exit(old);
1164 }
1165
1166 /*
1167 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1168 * locked.
1169 */
1170 void
1171 lwp_relock(struct lwp *l, kmutex_t *new)
1172 {
1173 kmutex_t *old;
1174
1175 KASSERT(mutex_owned(l->l_mutex));
1176
1177 old = l->l_mutex;
1178 if (old != new) {
1179 mutex_spin_enter(new);
1180 l->l_mutex = new;
1181 mutex_spin_exit(old);
1182 }
1183 }
1184
1185 int
1186 lwp_trylock(struct lwp *l)
1187 {
1188 kmutex_t *old;
1189
1190 for (;;) {
1191 if (!mutex_tryenter(old = l->l_mutex))
1192 return 0;
1193 if (__predict_true(l->l_mutex == old))
1194 return 1;
1195 mutex_spin_exit(old);
1196 }
1197 }
1198
1199 /*
1200 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1201 * set.
1202 */
1203 void
1204 lwp_userret(struct lwp *l)
1205 {
1206 struct proc *p;
1207 void (*hook)(void);
1208 int sig;
1209
1210 p = l->l_proc;
1211
1212 /*
1213 * It should be safe to do this read unlocked on a multiprocessor
1214 * system..
1215 */
1216 while ((l->l_flag & LW_USERRET) != 0) {
1217 /*
1218 * Process pending signals first, unless the process
1219 * is dumping core or exiting, where we will instead
1220 * enter the L_WSUSPEND case below.
1221 */
1222 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1223 LW_PENDSIG) {
1224 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1225 mutex_enter(&p->p_smutex);
1226 while ((sig = issignal(l)) != 0)
1227 postsig(sig);
1228 mutex_exit(&p->p_smutex);
1229 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1230 }
1231
1232 /*
1233 * Core-dump or suspend pending.
1234 *
1235 * In case of core dump, suspend ourselves, so that the
1236 * kernel stack and therefore the userland registers saved
1237 * in the trapframe are around for coredump() to write them
1238 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1239 * will write the core file out once all other LWPs are
1240 * suspended.
1241 */
1242 if ((l->l_flag & LW_WSUSPEND) != 0) {
1243 mutex_enter(&p->p_smutex);
1244 p->p_nrlwps--;
1245 cv_broadcast(&p->p_lwpcv);
1246 lwp_lock(l);
1247 l->l_stat = LSSUSPENDED;
1248 mutex_exit(&p->p_smutex);
1249 mi_switch(l);
1250 }
1251
1252 /* Process is exiting. */
1253 if ((l->l_flag & LW_WEXIT) != 0) {
1254 KERNEL_LOCK(1, l);
1255 lwp_exit(l);
1256 KASSERT(0);
1257 /* NOTREACHED */
1258 }
1259
1260 /* Call userret hook; used by Linux emulation. */
1261 if ((l->l_flag & LW_WUSERRET) != 0) {
1262 lwp_lock(l);
1263 l->l_flag &= ~LW_WUSERRET;
1264 lwp_unlock(l);
1265 hook = p->p_userret;
1266 p->p_userret = NULL;
1267 (*hook)();
1268 }
1269 }
1270 }
1271
1272 /*
1273 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1274 */
1275 void
1276 lwp_need_userret(struct lwp *l)
1277 {
1278 KASSERT(lwp_locked(l, NULL));
1279
1280 /*
1281 * Since the tests in lwp_userret() are done unlocked, make sure
1282 * that the condition will be seen before forcing the LWP to enter
1283 * kernel mode.
1284 */
1285 mb_write();
1286 cpu_signotify(l);
1287 }
1288
1289 /*
1290 * Add one reference to an LWP. This will prevent the LWP from
1291 * exiting, thus keep the lwp structure and PCB around to inspect.
1292 */
1293 void
1294 lwp_addref(struct lwp *l)
1295 {
1296
1297 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1298 KASSERT(l->l_stat != LSZOMB);
1299 KASSERT(l->l_refcnt != 0);
1300
1301 l->l_refcnt++;
1302 }
1303
1304 /*
1305 * Remove one reference to an LWP. If this is the last reference,
1306 * then we must finalize the LWP's death.
1307 */
1308 void
1309 lwp_delref(struct lwp *l)
1310 {
1311 struct proc *p = l->l_proc;
1312
1313 mutex_enter(&p->p_smutex);
1314 if (--l->l_refcnt == 0)
1315 cv_broadcast(&p->p_refcv);
1316 mutex_exit(&p->p_smutex);
1317 }
1318
1319 /*
1320 * Drain all references to the current LWP.
1321 */
1322 void
1323 lwp_drainrefs(struct lwp *l)
1324 {
1325 struct proc *p = l->l_proc;
1326
1327 KASSERT(mutex_owned(&p->p_smutex));
1328 KASSERT(l->l_refcnt != 0);
1329
1330 l->l_refcnt--;
1331 while (l->l_refcnt != 0)
1332 cv_wait(&p->p_refcv, &p->p_smutex);
1333 }
1334
1335 /*
1336 * lwp_specific_key_create --
1337 * Create a key for subsystem lwp-specific data.
1338 */
1339 int
1340 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1341 {
1342
1343 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1344 }
1345
1346 /*
1347 * lwp_specific_key_delete --
1348 * Delete a key for subsystem lwp-specific data.
1349 */
1350 void
1351 lwp_specific_key_delete(specificdata_key_t key)
1352 {
1353
1354 specificdata_key_delete(lwp_specificdata_domain, key);
1355 }
1356
1357 /*
1358 * lwp_initspecific --
1359 * Initialize an LWP's specificdata container.
1360 */
1361 void
1362 lwp_initspecific(struct lwp *l)
1363 {
1364 int error;
1365
1366 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1367 KASSERT(error == 0);
1368 }
1369
1370 /*
1371 * lwp_finispecific --
1372 * Finalize an LWP's specificdata container.
1373 */
1374 void
1375 lwp_finispecific(struct lwp *l)
1376 {
1377
1378 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1379 }
1380
1381 /*
1382 * lwp_getspecific --
1383 * Return lwp-specific data corresponding to the specified key.
1384 *
1385 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1386 * only its OWN SPECIFIC DATA. If it is necessary to access another
1387 * LWP's specifc data, care must be taken to ensure that doing so
1388 * would not cause internal data structure inconsistency (i.e. caller
1389 * can guarantee that the target LWP is not inside an lwp_getspecific()
1390 * or lwp_setspecific() call).
1391 */
1392 void *
1393 lwp_getspecific(specificdata_key_t key)
1394 {
1395
1396 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1397 &curlwp->l_specdataref, key));
1398 }
1399
1400 void *
1401 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1402 {
1403
1404 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1405 &l->l_specdataref, key));
1406 }
1407
1408 /*
1409 * lwp_setspecific --
1410 * Set lwp-specific data corresponding to the specified key.
1411 */
1412 void
1413 lwp_setspecific(specificdata_key_t key, void *data)
1414 {
1415
1416 specificdata_setspecific(lwp_specificdata_domain,
1417 &curlwp->l_specdataref, key, data);
1418 }
1419