kern_lwp.c revision 1.69.2.5 1 /* $NetBSD: kern_lwp.c,v 1.69.2.5 2007/11/14 19:04:41 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit or thread of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp", also known as lwp_t.
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing concurrently in the kernel.
52 *
53 * Execution states
54 *
55 * At any given time, an LWP has overall state that is described by
56 * lwp::l_stat. The states are broken into two sets below. The first
57 * set is guaranteed to represent the absolute, current state of the
58 * LWP:
59 *
60 * LSONPROC
61 *
62 * On processor: the LWP is executing on a CPU, either in the
63 * kernel or in user space.
64 *
65 * LSRUN
66 *
67 * Runnable: the LWP is parked on a run queue, and may soon be
68 * chosen to run by a idle processor, or by a processor that
69 * has been asked to preempt a currently runnning but lower
70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 * then the LWP is not on a run queue, but may be soon.
72 *
73 * LSIDL
74 *
75 * Idle: the LWP has been created but has not yet executed,
76 * or it has ceased executing a unit of work and is waiting
77 * to be started again.
78 *
79 * LSSUSPENDED:
80 *
81 * Suspended: the LWP has had its execution suspended by
82 * another LWP in the same process using the _lwp_suspend()
83 * system call. User-level LWPs also enter the suspended
84 * state when the system is shutting down.
85 *
86 * The second set represent a "statement of intent" on behalf of the
87 * LWP. The LWP may in fact be executing on a processor, may be
88 * sleeping or idle. It is expected to take the necessary action to
89 * stop executing or become "running" again within a short timeframe.
90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91 * Importantly, in indicates that its state is tied to a CPU.
92 *
93 * LSZOMB:
94 *
95 * Dead or dying: the LWP has released most of its resources
96 * and is a) about to switch away into oblivion b) has already
97 * switched away. When it switches away, its few remaining
98 * resources can be collected.
99 *
100 * LSSLEEP:
101 *
102 * Sleeping: the LWP has entered itself onto a sleep queue, and
103 * has switched away or will switch away shortly to allow other
104 * LWPs to run on the CPU.
105 *
106 * LSSTOP:
107 *
108 * Stopped: the LWP has been stopped as a result of a job
109 * control signal, or as a result of the ptrace() interface.
110 *
111 * Stopped LWPs may run briefly within the kernel to handle
112 * signals that they receive, but will not return to user space
113 * until their process' state is changed away from stopped.
114 *
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP state may only be set when returning to
122 * user space in userret(), or when sleeping interruptably. The
123 * LSSUSPENDED state may only be set in userret(). Before setting
124 * those states, we try to ensure that the LWPs will release all
125 * locks that they hold, and at a minimum try to ensure that the
126 * LWP can be set runnable again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Other state transitions are possible with kernel threads (eg
145 * ONPROC -> IDL), but only happen under tightly controlled
146 * circumstances the side effects are understood.
147 *
148 * Locking
149 *
150 * The majority of fields in 'struct lwp' are covered by a single,
151 * general spin lock pointed to by lwp::l_mutex. The locks covering
152 * each field are documented in sys/lwp.h.
153 *
154 * State transitions must be made with the LWP's general lock held,
155 * and may cause the LWP's lock pointer to change. Manipulation of
156 * the general lock is not performed directly, but through calls to
157 * lwp_lock(), lwp_relock() and similar.
158 *
159 * States and their associated locks:
160 *
161 * LSONPROC, LSZOMB:
162 *
163 * Always covered by spc_lwplock, which protects running LWPs.
164 * This is a per-CPU lock.
165 *
166 * LSIDL, LSRUN:
167 *
168 * Always covered by spc_mutex, which protects the run queues.
169 * This may be a per-CPU lock, depending on the scheduler.
170 *
171 * LSSLEEP:
172 *
173 * Covered by a lock associated with the sleep queue that the
174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175 *
176 * LSSTOP, LSSUSPENDED:
177 *
178 * If the LWP was previously sleeping (l_wchan != NULL), then
179 * l_mutex references the sleep queue lock. If the LWP was
180 * runnable or on the CPU when halted, or has been removed from
181 * the sleep queue since halted, then the lock is spc_lwplock.
182 *
183 * The lock order is as follows:
184 *
185 * spc::spc_lwplock ->
186 * sleepq_t::sq_mutex ->
187 * tschain_t::tc_mutex ->
188 * spc::spc_mutex
189 *
190 * Each process has an scheduler state lock (proc::p_smutex), and a
191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192 * so on. When an LWP is to be entered into or removed from one of the
193 * following states, p_mutex must be held and the process wide counters
194 * adjusted:
195 *
196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197 *
198 * Note that an LWP is considered running or likely to run soon if in
199 * one of the following states. This affects the value of p_nrlwps:
200 *
201 * LSRUN, LSONPROC, LSSLEEP
202 *
203 * p_smutex does not need to be held when transitioning among these
204 * three states.
205 */
206
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.69.2.5 2007/11/14 19:04:41 joerg Exp $");
209
210 #include "opt_multiprocessor.h"
211 #include "opt_lockdebug.h"
212
213 #define _LWP_API_PRIVATE
214
215 #include <sys/param.h>
216 #include <sys/systm.h>
217 #include <sys/cpu.h>
218 #include <sys/pool.h>
219 #include <sys/proc.h>
220 #include <sys/syscallargs.h>
221 #include <sys/syscall_stats.h>
222 #include <sys/kauth.h>
223 #include <sys/sleepq.h>
224 #include <sys/lockdebug.h>
225 #include <sys/kmem.h>
226 #include <sys/intr.h>
227 #include <sys/lwpctl.h>
228
229 #include <uvm/uvm_extern.h>
230 #include <uvm/uvm_object.h>
231
232 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
233
234 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
235 &pool_allocator_nointr, IPL_NONE);
236 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
237 &pool_allocator_nointr, IPL_NONE);
238
239 static specificdata_domain_t lwp_specificdata_domain;
240
241 void
242 lwpinit(void)
243 {
244
245 lwp_specificdata_domain = specificdata_domain_create();
246 KASSERT(lwp_specificdata_domain != NULL);
247 lwp_sys_init();
248 }
249
250 /*
251 * Set an suspended.
252 *
253 * Must be called with p_smutex held, and the LWP locked. Will unlock the
254 * LWP before return.
255 */
256 int
257 lwp_suspend(struct lwp *curl, struct lwp *t)
258 {
259 int error;
260
261 KASSERT(mutex_owned(&t->l_proc->p_smutex));
262 KASSERT(lwp_locked(t, NULL));
263
264 KASSERT(curl != t || curl->l_stat == LSONPROC);
265
266 /*
267 * If the current LWP has been told to exit, we must not suspend anyone
268 * else or deadlock could occur. We won't return to userspace.
269 */
270 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
271 lwp_unlock(t);
272 return (EDEADLK);
273 }
274
275 error = 0;
276
277 switch (t->l_stat) {
278 case LSRUN:
279 case LSONPROC:
280 t->l_flag |= LW_WSUSPEND;
281 lwp_need_userret(t);
282 lwp_unlock(t);
283 break;
284
285 case LSSLEEP:
286 t->l_flag |= LW_WSUSPEND;
287
288 /*
289 * Kick the LWP and try to get it to the kernel boundary
290 * so that it will release any locks that it holds.
291 * setrunnable() will release the lock.
292 */
293 if ((t->l_flag & LW_SINTR) != 0)
294 setrunnable(t);
295 else
296 lwp_unlock(t);
297 break;
298
299 case LSSUSPENDED:
300 lwp_unlock(t);
301 break;
302
303 case LSSTOP:
304 t->l_flag |= LW_WSUSPEND;
305 setrunnable(t);
306 break;
307
308 case LSIDL:
309 case LSZOMB:
310 error = EINTR; /* It's what Solaris does..... */
311 lwp_unlock(t);
312 break;
313 }
314
315 return (error);
316 }
317
318 /*
319 * Restart a suspended LWP.
320 *
321 * Must be called with p_smutex held, and the LWP locked. Will unlock the
322 * LWP before return.
323 */
324 void
325 lwp_continue(struct lwp *l)
326 {
327
328 KASSERT(mutex_owned(&l->l_proc->p_smutex));
329 KASSERT(lwp_locked(l, NULL));
330
331 /* If rebooting or not suspended, then just bail out. */
332 if ((l->l_flag & LW_WREBOOT) != 0) {
333 lwp_unlock(l);
334 return;
335 }
336
337 l->l_flag &= ~LW_WSUSPEND;
338
339 if (l->l_stat != LSSUSPENDED) {
340 lwp_unlock(l);
341 return;
342 }
343
344 /* setrunnable() will release the lock. */
345 setrunnable(l);
346 }
347
348 /*
349 * Wait for an LWP within the current process to exit. If 'lid' is
350 * non-zero, we are waiting for a specific LWP.
351 *
352 * Must be called with p->p_smutex held.
353 */
354 int
355 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
356 {
357 struct proc *p = l->l_proc;
358 struct lwp *l2;
359 int nfound, error;
360 lwpid_t curlid;
361 bool exiting;
362
363 KASSERT(mutex_owned(&p->p_smutex));
364
365 p->p_nlwpwait++;
366 l->l_waitingfor = lid;
367 curlid = l->l_lid;
368 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
369
370 for (;;) {
371 /*
372 * Avoid a race between exit1() and sigexit(): if the
373 * process is dumping core, then we need to bail out: call
374 * into lwp_userret() where we will be suspended until the
375 * deed is done.
376 */
377 if ((p->p_sflag & PS_WCORE) != 0) {
378 mutex_exit(&p->p_smutex);
379 lwp_userret(l);
380 #ifdef DIAGNOSTIC
381 panic("lwp_wait1");
382 #endif
383 /* NOTREACHED */
384 }
385
386 /*
387 * First off, drain any detached LWP that is waiting to be
388 * reaped.
389 */
390 while ((l2 = p->p_zomblwp) != NULL) {
391 p->p_zomblwp = NULL;
392 lwp_free(l2, false, false);/* releases proc mutex */
393 mutex_enter(&p->p_smutex);
394 }
395
396 /*
397 * Now look for an LWP to collect. If the whole process is
398 * exiting, count detached LWPs as eligible to be collected,
399 * but don't drain them here.
400 */
401 nfound = 0;
402 error = 0;
403 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
404 /*
405 * If a specific wait and the target is waiting on
406 * us, then avoid deadlock. This also traps LWPs
407 * that try to wait on themselves.
408 *
409 * Note that this does not handle more complicated
410 * cycles, like: t1 -> t2 -> t3 -> t1. The process
411 * can still be killed so it is not a major problem.
412 */
413 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
414 error = EDEADLK;
415 break;
416 }
417 if (l2 == l)
418 continue;
419 if ((l2->l_prflag & LPR_DETACHED) != 0) {
420 nfound += exiting;
421 continue;
422 }
423 if (lid != 0) {
424 if (l2->l_lid != lid)
425 continue;
426 /*
427 * Mark this LWP as the first waiter, if there
428 * is no other.
429 */
430 if (l2->l_waiter == 0)
431 l2->l_waiter = curlid;
432 } else if (l2->l_waiter != 0) {
433 /*
434 * It already has a waiter - so don't
435 * collect it. If the waiter doesn't
436 * grab it we'll get another chance
437 * later.
438 */
439 nfound++;
440 continue;
441 }
442 nfound++;
443
444 /* No need to lock the LWP in order to see LSZOMB. */
445 if (l2->l_stat != LSZOMB)
446 continue;
447
448 /*
449 * We're no longer waiting. Reset the "first waiter"
450 * pointer on the target, in case it was us.
451 */
452 l->l_waitingfor = 0;
453 l2->l_waiter = 0;
454 p->p_nlwpwait--;
455 if (departed)
456 *departed = l2->l_lid;
457 sched_lwp_collect(l2);
458
459 /* lwp_free() releases the proc lock. */
460 lwp_free(l2, false, false);
461 mutex_enter(&p->p_smutex);
462 return 0;
463 }
464
465 if (error != 0)
466 break;
467 if (nfound == 0) {
468 error = ESRCH;
469 break;
470 }
471
472 /*
473 * The kernel is careful to ensure that it can not deadlock
474 * when exiting - just keep waiting.
475 */
476 if (exiting) {
477 KASSERT(p->p_nlwps > 1);
478 cv_wait(&p->p_lwpcv, &p->p_smutex);
479 continue;
480 }
481
482 /*
483 * If all other LWPs are waiting for exits or suspends
484 * and the supply of zombies and potential zombies is
485 * exhausted, then we are about to deadlock.
486 *
487 * If the process is exiting (and this LWP is not the one
488 * that is coordinating the exit) then bail out now.
489 */
490 if ((p->p_sflag & PS_WEXIT) != 0 ||
491 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
492 error = EDEADLK;
493 break;
494 }
495
496 /*
497 * Sit around and wait for something to happen. We'll be
498 * awoken if any of the conditions examined change: if an
499 * LWP exits, is collected, or is detached.
500 */
501 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
502 break;
503 }
504
505 /*
506 * We didn't find any LWPs to collect, we may have received a
507 * signal, or some other condition has caused us to bail out.
508 *
509 * If waiting on a specific LWP, clear the waiters marker: some
510 * other LWP may want it. Then, kick all the remaining waiters
511 * so that they can re-check for zombies and for deadlock.
512 */
513 if (lid != 0) {
514 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
515 if (l2->l_lid == lid) {
516 if (l2->l_waiter == curlid)
517 l2->l_waiter = 0;
518 break;
519 }
520 }
521 }
522 p->p_nlwpwait--;
523 l->l_waitingfor = 0;
524 cv_broadcast(&p->p_lwpcv);
525
526 return error;
527 }
528
529 /*
530 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
531 * The new LWP is created in state LSIDL and must be set running,
532 * suspended, or stopped by the caller.
533 */
534 int
535 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
536 void *stack, size_t stacksize, void (*func)(void *), void *arg,
537 lwp_t **rnewlwpp, int sclass)
538 {
539 struct lwp *l2, *isfree;
540 turnstile_t *ts;
541
542 /*
543 * First off, reap any detached LWP waiting to be collected.
544 * We can re-use its LWP structure and turnstile.
545 */
546 isfree = NULL;
547 if (p2->p_zomblwp != NULL) {
548 mutex_enter(&p2->p_smutex);
549 if ((isfree = p2->p_zomblwp) != NULL) {
550 p2->p_zomblwp = NULL;
551 lwp_free(isfree, true, false);/* releases proc mutex */
552 } else
553 mutex_exit(&p2->p_smutex);
554 }
555 if (isfree == NULL) {
556 l2 = pool_get(&lwp_pool, PR_WAITOK);
557 memset(l2, 0, sizeof(*l2));
558 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
559 SLIST_INIT(&l2->l_pi_lenders);
560 } else {
561 l2 = isfree;
562 ts = l2->l_ts;
563 KASSERT(l2->l_inheritedprio == -1);
564 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
565 memset(l2, 0, sizeof(*l2));
566 l2->l_ts = ts;
567 }
568
569 l2->l_stat = LSIDL;
570 l2->l_proc = p2;
571 l2->l_refcnt = 1;
572 l2->l_class = sclass;
573 l2->l_kpriority = l1->l_kpriority;
574 l2->l_priority = l1->l_priority;
575 l2->l_inheritedprio = -1;
576 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
577 l2->l_cpu = l1->l_cpu;
578 l2->l_flag = inmem ? LW_INMEM : 0;
579
580 if (p2->p_flag & PK_SYSTEM) {
581 /*
582 * Mark it as a system process and not a candidate for
583 * swapping.
584 */
585 l2->l_flag |= LW_SYSTEM;
586 } else {
587 /* Look for a CPU to start */
588 l2->l_cpu = sched_takecpu(l2);
589 l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
590 }
591
592 lwp_initspecific(l2);
593 sched_lwp_fork(l1, l2);
594 lwp_update_creds(l2);
595 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
596 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
597 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
598 cv_init(&l2->l_sigcv, "sigwait");
599 l2->l_syncobj = &sched_syncobj;
600
601 if (rnewlwpp != NULL)
602 *rnewlwpp = l2;
603
604 l2->l_addr = UAREA_TO_USER(uaddr);
605 uvm_lwp_fork(l1, l2, stack, stacksize, func,
606 (arg != NULL) ? arg : l2);
607
608 mutex_enter(&p2->p_smutex);
609
610 if ((flags & LWP_DETACHED) != 0) {
611 l2->l_prflag = LPR_DETACHED;
612 p2->p_ndlwps++;
613 } else
614 l2->l_prflag = 0;
615
616 l2->l_sigmask = l1->l_sigmask;
617 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
618 sigemptyset(&l2->l_sigpend.sp_set);
619
620 p2->p_nlwpid++;
621 if (p2->p_nlwpid == 0)
622 p2->p_nlwpid++;
623 l2->l_lid = p2->p_nlwpid;
624 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
625 p2->p_nlwps++;
626
627 mutex_exit(&p2->p_smutex);
628
629 mutex_enter(&proclist_lock);
630 mutex_enter(&proclist_mutex);
631 LIST_INSERT_HEAD(&alllwp, l2, l_list);
632 mutex_exit(&proclist_mutex);
633 mutex_exit(&proclist_lock);
634
635 SYSCALL_TIME_LWP_INIT(l2);
636
637 if (p2->p_emul->e_lwp_fork)
638 (*p2->p_emul->e_lwp_fork)(l1, l2);
639
640 return (0);
641 }
642
643 /*
644 * Called by MD code when a new LWP begins execution. Must be called
645 * with the previous LWP locked (so at splsched), or if there is no
646 * previous LWP, at splsched.
647 */
648 void
649 lwp_startup(struct lwp *prev, struct lwp *new)
650 {
651
652 if (prev != NULL) {
653 lwp_unlock(prev);
654 }
655 spl0();
656 pmap_activate(new);
657 LOCKDEBUG_BARRIER(NULL, 0);
658 if ((new->l_pflag & LP_MPSAFE) == 0) {
659 KERNEL_LOCK(1, new);
660 }
661 }
662
663 /*
664 * Exit an LWP.
665 */
666 void
667 lwp_exit(struct lwp *l)
668 {
669 struct proc *p = l->l_proc;
670 struct lwp *l2;
671 bool current;
672
673 current = (l == curlwp);
674
675 KASSERT(current || l->l_stat == LSIDL);
676
677 /*
678 * Verify that we hold no locks other than the kernel lock.
679 */
680 #ifdef MULTIPROCESSOR
681 LOCKDEBUG_BARRIER(&kernel_lock, 0);
682 #else
683 LOCKDEBUG_BARRIER(NULL, 0);
684 #endif
685
686 /*
687 * If we are the last live LWP in a process, we need to exit the
688 * entire process. We do so with an exit status of zero, because
689 * it's a "controlled" exit, and because that's what Solaris does.
690 *
691 * We are not quite a zombie yet, but for accounting purposes we
692 * must increment the count of zombies here.
693 *
694 * Note: the last LWP's specificdata will be deleted here.
695 */
696 mutex_enter(&p->p_smutex);
697 if (p->p_nlwps - p->p_nzlwps == 1) {
698 KASSERT(current == true);
699 exit1(l, 0);
700 /* NOTREACHED */
701 }
702 p->p_nzlwps++;
703 mutex_exit(&p->p_smutex);
704
705 if (p->p_emul->e_lwp_exit)
706 (*p->p_emul->e_lwp_exit)(l);
707
708 /* Delete the specificdata while it's still safe to sleep. */
709 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
710
711 /*
712 * Release our cached credentials.
713 */
714 kauth_cred_free(l->l_cred);
715 callout_destroy(&l->l_timeout_ch);
716
717 /*
718 * While we can still block, mark the LWP as unswappable to
719 * prevent conflicts with the with the swapper.
720 */
721 if (current)
722 uvm_lwp_hold(l);
723
724 /*
725 * Remove the LWP from the global list.
726 */
727 mutex_enter(&proclist_lock);
728 mutex_enter(&proclist_mutex);
729 LIST_REMOVE(l, l_list);
730 mutex_exit(&proclist_mutex);
731 mutex_exit(&proclist_lock);
732
733 /*
734 * Get rid of all references to the LWP that others (e.g. procfs)
735 * may have, and mark the LWP as a zombie. If the LWP is detached,
736 * mark it waiting for collection in the proc structure. Note that
737 * before we can do that, we need to free any other dead, deatched
738 * LWP waiting to meet its maker.
739 *
740 * XXXSMP disable preemption.
741 */
742 mutex_enter(&p->p_smutex);
743 lwp_drainrefs(l);
744
745 if ((l->l_prflag & LPR_DETACHED) != 0) {
746 while ((l2 = p->p_zomblwp) != NULL) {
747 p->p_zomblwp = NULL;
748 lwp_free(l2, false, false);/* releases proc mutex */
749 mutex_enter(&p->p_smutex);
750 l->l_refcnt++;
751 lwp_drainrefs(l);
752 }
753 p->p_zomblwp = l;
754 }
755
756 /*
757 * If we find a pending signal for the process and we have been
758 * asked to check for signals, then we loose: arrange to have
759 * all other LWPs in the process check for signals.
760 */
761 if ((l->l_flag & LW_PENDSIG) != 0 &&
762 firstsig(&p->p_sigpend.sp_set) != 0) {
763 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
764 lwp_lock(l2);
765 l2->l_flag |= LW_PENDSIG;
766 lwp_unlock(l2);
767 }
768 }
769
770 lwp_lock(l);
771 l->l_stat = LSZOMB;
772 lwp_unlock(l);
773 p->p_nrlwps--;
774 cv_broadcast(&p->p_lwpcv);
775 if (l->l_lwpctl != NULL)
776 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
777 mutex_exit(&p->p_smutex);
778
779 /*
780 * We can no longer block. At this point, lwp_free() may already
781 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
782 *
783 * Free MD LWP resources.
784 */
785 #ifndef __NO_CPU_LWP_FREE
786 cpu_lwp_free(l, 0);
787 #endif
788
789 if (current) {
790 pmap_deactivate(l);
791
792 /*
793 * Release the kernel lock, and switch away into
794 * oblivion.
795 */
796 #ifdef notyet
797 /* XXXSMP hold in lwp_userret() */
798 KERNEL_UNLOCK_LAST(l);
799 #else
800 KERNEL_UNLOCK_ALL(l, NULL);
801 #endif
802 lwp_exit_switchaway(l);
803 }
804 }
805
806 void
807 lwp_exit_switchaway(struct lwp *l)
808 {
809 struct cpu_info *ci;
810 struct lwp *idlelwp;
811
812 /* Unlocked, but is for statistics only. */
813 uvmexp.swtch++;
814
815 (void)splsched();
816 l->l_flag &= ~LW_RUNNING;
817 ci = curcpu();
818 idlelwp = ci->ci_data.cpu_idlelwp;
819 idlelwp->l_stat = LSONPROC;
820
821 /*
822 * cpu_onproc must be updated with the CPU locked, as
823 * aston() may try to set a AST pending on the LWP (and
824 * it does so with the CPU locked). Otherwise, the LWP
825 * may be destroyed before the AST can be set, leading
826 * to a user-after-free.
827 */
828 spc_lock(ci);
829 ci->ci_data.cpu_onproc = idlelwp;
830 spc_unlock(ci);
831 cpu_switchto(NULL, idlelwp, false);
832 }
833
834 /*
835 * Free a dead LWP's remaining resources.
836 *
837 * XXXLWP limits.
838 */
839 void
840 lwp_free(struct lwp *l, bool recycle, bool last)
841 {
842 struct proc *p = l->l_proc;
843 ksiginfoq_t kq;
844
845 /*
846 * If this was not the last LWP in the process, then adjust
847 * counters and unlock.
848 */
849 if (!last) {
850 /*
851 * Add the LWP's run time to the process' base value.
852 * This needs to co-incide with coming off p_lwps.
853 */
854 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
855 p->p_pctcpu += l->l_pctcpu;
856 LIST_REMOVE(l, l_sibling);
857 p->p_nlwps--;
858 p->p_nzlwps--;
859 if ((l->l_prflag & LPR_DETACHED) != 0)
860 p->p_ndlwps--;
861
862 /*
863 * Have any LWPs sleeping in lwp_wait() recheck for
864 * deadlock.
865 */
866 cv_broadcast(&p->p_lwpcv);
867 mutex_exit(&p->p_smutex);
868 }
869
870 #ifdef MULTIPROCESSOR
871 /*
872 * In the unlikely event that the LWP is still on the CPU,
873 * then spin until it has switched away. We need to release
874 * all locks to avoid deadlock against interrupt handlers on
875 * the target CPU.
876 */
877 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
878 int count;
879 (void)count; /* XXXgcc */
880 KERNEL_UNLOCK_ALL(curlwp, &count);
881 while ((l->l_flag & LW_RUNNING) != 0 ||
882 l->l_cpu->ci_curlwp == l)
883 SPINLOCK_BACKOFF_HOOK;
884 KERNEL_LOCK(count, curlwp);
885 }
886 #endif
887
888 /*
889 * Destroy the LWP's remaining signal information.
890 */
891 ksiginfo_queue_init(&kq);
892 sigclear(&l->l_sigpend, NULL, &kq);
893 ksiginfo_queue_drain(&kq);
894 cv_destroy(&l->l_sigcv);
895 mutex_destroy(&l->l_swaplock);
896
897 /*
898 * Free the LWP's turnstile and the LWP structure itself unless the
899 * caller wants to recycle them. Also, free the scheduler specific data.
900 *
901 * We can't return turnstile0 to the pool (it didn't come from it),
902 * so if it comes up just drop it quietly and move on.
903 *
904 * We don't recycle the VM resources at this time.
905 */
906 KERNEL_LOCK(1, curlwp); /* XXXSMP */
907
908 if (l->l_lwpctl != NULL)
909 lwp_ctl_free(l);
910 sched_lwp_exit(l);
911
912 if (!recycle && l->l_ts != &turnstile0)
913 pool_cache_put(turnstile_cache, l->l_ts);
914 #ifndef __NO_CPU_LWP_FREE
915 cpu_lwp_free2(l);
916 #endif
917 uvm_lwp_exit(l);
918 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
919 KASSERT(l->l_inheritedprio == -1);
920 if (!recycle)
921 pool_put(&lwp_pool, l);
922 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
923 }
924
925 /*
926 * Pick a LWP to represent the process for those operations which
927 * want information about a "process" that is actually associated
928 * with a LWP.
929 *
930 * If 'locking' is false, no locking or lock checks are performed.
931 * This is intended for use by DDB.
932 *
933 * We don't bother locking the LWP here, since code that uses this
934 * interface is broken by design and an exact match is not required.
935 */
936 struct lwp *
937 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
938 {
939 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
940 struct lwp *signalled;
941 int cnt;
942
943 if (locking) {
944 KASSERT(mutex_owned(&p->p_smutex));
945 }
946
947 /* Trivial case: only one LWP */
948 if (p->p_nlwps == 1) {
949 l = LIST_FIRST(&p->p_lwps);
950 if (nrlwps)
951 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
952 return l;
953 }
954
955 cnt = 0;
956 switch (p->p_stat) {
957 case SSTOP:
958 case SACTIVE:
959 /* Pick the most live LWP */
960 onproc = running = sleeping = stopped = suspended = NULL;
961 signalled = NULL;
962 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
963 if ((l->l_flag & LW_IDLE) != 0) {
964 continue;
965 }
966 if (l->l_lid == p->p_sigctx.ps_lwp)
967 signalled = l;
968 switch (l->l_stat) {
969 case LSONPROC:
970 onproc = l;
971 cnt++;
972 break;
973 case LSRUN:
974 running = l;
975 cnt++;
976 break;
977 case LSSLEEP:
978 sleeping = l;
979 break;
980 case LSSTOP:
981 stopped = l;
982 break;
983 case LSSUSPENDED:
984 suspended = l;
985 break;
986 }
987 }
988 if (nrlwps)
989 *nrlwps = cnt;
990 if (signalled)
991 l = signalled;
992 else if (onproc)
993 l = onproc;
994 else if (running)
995 l = running;
996 else if (sleeping)
997 l = sleeping;
998 else if (stopped)
999 l = stopped;
1000 else if (suspended)
1001 l = suspended;
1002 else
1003 break;
1004 return l;
1005 #ifdef DIAGNOSTIC
1006 case SIDL:
1007 case SZOMB:
1008 case SDYING:
1009 case SDEAD:
1010 if (locking)
1011 mutex_exit(&p->p_smutex);
1012 /* We have more than one LWP and we're in SIDL?
1013 * How'd that happen?
1014 */
1015 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1016 p->p_pid, p->p_comm, p->p_stat);
1017 break;
1018 default:
1019 if (locking)
1020 mutex_exit(&p->p_smutex);
1021 panic("Process %d (%s) in unknown state %d",
1022 p->p_pid, p->p_comm, p->p_stat);
1023 #endif
1024 }
1025
1026 if (locking)
1027 mutex_exit(&p->p_smutex);
1028 panic("proc_representative_lwp: couldn't find a lwp for process"
1029 " %d (%s)", p->p_pid, p->p_comm);
1030 /* NOTREACHED */
1031 return NULL;
1032 }
1033
1034 /*
1035 * Look up a live LWP within the speicifed process, and return it locked.
1036 *
1037 * Must be called with p->p_smutex held.
1038 */
1039 struct lwp *
1040 lwp_find(struct proc *p, int id)
1041 {
1042 struct lwp *l;
1043
1044 KASSERT(mutex_owned(&p->p_smutex));
1045
1046 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1047 if (l->l_lid == id)
1048 break;
1049 }
1050
1051 /*
1052 * No need to lock - all of these conditions will
1053 * be visible with the process level mutex held.
1054 */
1055 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1056 l = NULL;
1057
1058 return l;
1059 }
1060
1061 /*
1062 * Update an LWP's cached credentials to mirror the process' master copy.
1063 *
1064 * This happens early in the syscall path, on user trap, and on LWP
1065 * creation. A long-running LWP can also voluntarily choose to update
1066 * it's credentials by calling this routine. This may be called from
1067 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1068 */
1069 void
1070 lwp_update_creds(struct lwp *l)
1071 {
1072 kauth_cred_t oc;
1073 struct proc *p;
1074
1075 p = l->l_proc;
1076 oc = l->l_cred;
1077
1078 mutex_enter(&p->p_mutex);
1079 kauth_cred_hold(p->p_cred);
1080 l->l_cred = p->p_cred;
1081 mutex_exit(&p->p_mutex);
1082 if (oc != NULL) {
1083 KERNEL_LOCK(1, l); /* XXXSMP */
1084 kauth_cred_free(oc);
1085 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
1086 }
1087 }
1088
1089 /*
1090 * Verify that an LWP is locked, and optionally verify that the lock matches
1091 * one we specify.
1092 */
1093 int
1094 lwp_locked(struct lwp *l, kmutex_t *mtx)
1095 {
1096 kmutex_t *cur = l->l_mutex;
1097
1098 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1099 }
1100
1101 /*
1102 * Lock an LWP.
1103 */
1104 void
1105 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1106 {
1107
1108 /*
1109 * XXXgcc ignoring kmutex_t * volatile on i386
1110 *
1111 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1112 */
1113 #if 1
1114 while (l->l_mutex != old) {
1115 #else
1116 for (;;) {
1117 #endif
1118 mutex_spin_exit(old);
1119 old = l->l_mutex;
1120 mutex_spin_enter(old);
1121
1122 /*
1123 * mutex_enter() will have posted a read barrier. Re-test
1124 * l->l_mutex. If it has changed, we need to try again.
1125 */
1126 #if 1
1127 }
1128 #else
1129 } while (__predict_false(l->l_mutex != old));
1130 #endif
1131 }
1132
1133 /*
1134 * Lend a new mutex to an LWP. The old mutex must be held.
1135 */
1136 void
1137 lwp_setlock(struct lwp *l, kmutex_t *new)
1138 {
1139
1140 KASSERT(mutex_owned(l->l_mutex));
1141
1142 mb_write();
1143 l->l_mutex = new;
1144 }
1145
1146 /*
1147 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1148 * must be held.
1149 */
1150 void
1151 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1152 {
1153 kmutex_t *old;
1154
1155 KASSERT(mutex_owned(l->l_mutex));
1156
1157 old = l->l_mutex;
1158 mb_write();
1159 l->l_mutex = new;
1160 mutex_spin_exit(old);
1161 }
1162
1163 /*
1164 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1165 * locked.
1166 */
1167 void
1168 lwp_relock(struct lwp *l, kmutex_t *new)
1169 {
1170 kmutex_t *old;
1171
1172 KASSERT(mutex_owned(l->l_mutex));
1173
1174 old = l->l_mutex;
1175 if (old != new) {
1176 mutex_spin_enter(new);
1177 l->l_mutex = new;
1178 mutex_spin_exit(old);
1179 }
1180 }
1181
1182 int
1183 lwp_trylock(struct lwp *l)
1184 {
1185 kmutex_t *old;
1186
1187 for (;;) {
1188 if (!mutex_tryenter(old = l->l_mutex))
1189 return 0;
1190 if (__predict_true(l->l_mutex == old))
1191 return 1;
1192 mutex_spin_exit(old);
1193 }
1194 }
1195
1196 /*
1197 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1198 * set.
1199 */
1200 void
1201 lwp_userret(struct lwp *l)
1202 {
1203 struct proc *p;
1204 void (*hook)(void);
1205 int sig;
1206
1207 p = l->l_proc;
1208
1209 #ifndef __HAVE_FAST_SOFTINTS
1210 /* Run pending soft interrupts. */
1211 if (l->l_cpu->ci_data.cpu_softints != 0)
1212 softint_overlay();
1213 #endif
1214
1215 /*
1216 * It should be safe to do this read unlocked on a multiprocessor
1217 * system..
1218 */
1219 while ((l->l_flag & LW_USERRET) != 0) {
1220 /*
1221 * Process pending signals first, unless the process
1222 * is dumping core or exiting, where we will instead
1223 * enter the L_WSUSPEND case below.
1224 */
1225 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1226 LW_PENDSIG) {
1227 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1228 mutex_enter(&p->p_smutex);
1229 while ((sig = issignal(l)) != 0)
1230 postsig(sig);
1231 mutex_exit(&p->p_smutex);
1232 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1233 }
1234
1235 /*
1236 * Core-dump or suspend pending.
1237 *
1238 * In case of core dump, suspend ourselves, so that the
1239 * kernel stack and therefore the userland registers saved
1240 * in the trapframe are around for coredump() to write them
1241 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1242 * will write the core file out once all other LWPs are
1243 * suspended.
1244 */
1245 if ((l->l_flag & LW_WSUSPEND) != 0) {
1246 mutex_enter(&p->p_smutex);
1247 p->p_nrlwps--;
1248 cv_broadcast(&p->p_lwpcv);
1249 lwp_lock(l);
1250 l->l_stat = LSSUSPENDED;
1251 mutex_exit(&p->p_smutex);
1252 mi_switch(l);
1253 }
1254
1255 /* Process is exiting. */
1256 if ((l->l_flag & LW_WEXIT) != 0) {
1257 KERNEL_LOCK(1, l);
1258 lwp_exit(l);
1259 KASSERT(0);
1260 /* NOTREACHED */
1261 }
1262
1263 /* Call userret hook; used by Linux emulation. */
1264 if ((l->l_flag & LW_WUSERRET) != 0) {
1265 lwp_lock(l);
1266 l->l_flag &= ~LW_WUSERRET;
1267 lwp_unlock(l);
1268 hook = p->p_userret;
1269 p->p_userret = NULL;
1270 (*hook)();
1271 }
1272 }
1273 }
1274
1275 /*
1276 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1277 */
1278 void
1279 lwp_need_userret(struct lwp *l)
1280 {
1281 KASSERT(lwp_locked(l, NULL));
1282
1283 /*
1284 * Since the tests in lwp_userret() are done unlocked, make sure
1285 * that the condition will be seen before forcing the LWP to enter
1286 * kernel mode.
1287 */
1288 mb_write();
1289 cpu_signotify(l);
1290 }
1291
1292 /*
1293 * Add one reference to an LWP. This will prevent the LWP from
1294 * exiting, thus keep the lwp structure and PCB around to inspect.
1295 */
1296 void
1297 lwp_addref(struct lwp *l)
1298 {
1299
1300 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1301 KASSERT(l->l_stat != LSZOMB);
1302 KASSERT(l->l_refcnt != 0);
1303
1304 l->l_refcnt++;
1305 }
1306
1307 /*
1308 * Remove one reference to an LWP. If this is the last reference,
1309 * then we must finalize the LWP's death.
1310 */
1311 void
1312 lwp_delref(struct lwp *l)
1313 {
1314 struct proc *p = l->l_proc;
1315
1316 mutex_enter(&p->p_smutex);
1317 KASSERT(l->l_stat != LSZOMB);
1318 KASSERT(l->l_refcnt > 0);
1319 if (--l->l_refcnt == 0)
1320 cv_broadcast(&p->p_lwpcv);
1321 mutex_exit(&p->p_smutex);
1322 }
1323
1324 /*
1325 * Drain all references to the current LWP.
1326 */
1327 void
1328 lwp_drainrefs(struct lwp *l)
1329 {
1330 struct proc *p = l->l_proc;
1331
1332 KASSERT(mutex_owned(&p->p_smutex));
1333 KASSERT(l->l_refcnt != 0);
1334
1335 l->l_refcnt--;
1336 while (l->l_refcnt != 0)
1337 cv_wait(&p->p_lwpcv, &p->p_smutex);
1338 }
1339
1340 /*
1341 * lwp_specific_key_create --
1342 * Create a key for subsystem lwp-specific data.
1343 */
1344 int
1345 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1346 {
1347
1348 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1349 }
1350
1351 /*
1352 * lwp_specific_key_delete --
1353 * Delete a key for subsystem lwp-specific data.
1354 */
1355 void
1356 lwp_specific_key_delete(specificdata_key_t key)
1357 {
1358
1359 specificdata_key_delete(lwp_specificdata_domain, key);
1360 }
1361
1362 /*
1363 * lwp_initspecific --
1364 * Initialize an LWP's specificdata container.
1365 */
1366 void
1367 lwp_initspecific(struct lwp *l)
1368 {
1369 int error;
1370
1371 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1372 KASSERT(error == 0);
1373 }
1374
1375 /*
1376 * lwp_finispecific --
1377 * Finalize an LWP's specificdata container.
1378 */
1379 void
1380 lwp_finispecific(struct lwp *l)
1381 {
1382
1383 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1384 }
1385
1386 /*
1387 * lwp_getspecific --
1388 * Return lwp-specific data corresponding to the specified key.
1389 *
1390 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1391 * only its OWN SPECIFIC DATA. If it is necessary to access another
1392 * LWP's specifc data, care must be taken to ensure that doing so
1393 * would not cause internal data structure inconsistency (i.e. caller
1394 * can guarantee that the target LWP is not inside an lwp_getspecific()
1395 * or lwp_setspecific() call).
1396 */
1397 void *
1398 lwp_getspecific(specificdata_key_t key)
1399 {
1400
1401 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1402 &curlwp->l_specdataref, key));
1403 }
1404
1405 void *
1406 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1407 {
1408
1409 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1410 &l->l_specdataref, key));
1411 }
1412
1413 /*
1414 * lwp_setspecific --
1415 * Set lwp-specific data corresponding to the specified key.
1416 */
1417 void
1418 lwp_setspecific(specificdata_key_t key, void *data)
1419 {
1420
1421 specificdata_setspecific(lwp_specificdata_domain,
1422 &curlwp->l_specdataref, key, data);
1423 }
1424
1425 /*
1426 * Allocate a new lwpctl structure for a user LWP.
1427 */
1428 int
1429 lwp_ctl_alloc(vaddr_t *uaddr)
1430 {
1431 lcproc_t *lp;
1432 u_int bit, i, offset;
1433 struct uvm_object *uao;
1434 int error;
1435 lcpage_t *lcp;
1436 proc_t *p;
1437 lwp_t *l;
1438
1439 l = curlwp;
1440 p = l->l_proc;
1441
1442 if (l->l_lcpage != NULL)
1443 return (EINVAL);
1444
1445 /* First time around, allocate header structure for the process. */
1446 if ((lp = p->p_lwpctl) == NULL) {
1447 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1448 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1449 lp->lp_uao = NULL;
1450 TAILQ_INIT(&lp->lp_pages);
1451 mutex_enter(&p->p_mutex);
1452 if (p->p_lwpctl == NULL) {
1453 p->p_lwpctl = lp;
1454 mutex_exit(&p->p_mutex);
1455 } else {
1456 mutex_exit(&p->p_mutex);
1457 mutex_destroy(&lp->lp_lock);
1458 kmem_free(lp, sizeof(*lp));
1459 lp = p->p_lwpctl;
1460 }
1461 }
1462
1463 /*
1464 * Set up an anonymous memory region to hold the shared pages.
1465 * Map them into the process' address space. The user vmspace
1466 * gets the first reference on the UAO.
1467 */
1468 mutex_enter(&lp->lp_lock);
1469 if (lp->lp_uao == NULL) {
1470 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1471 lp->lp_cur = 0;
1472 lp->lp_max = LWPCTL_UAREA_SZ;
1473 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1474 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1475 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1476 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1477 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1478 if (error != 0) {
1479 uao_detach(lp->lp_uao);
1480 lp->lp_uao = NULL;
1481 mutex_exit(&lp->lp_lock);
1482 return error;
1483 }
1484 }
1485
1486 /* Get a free block and allocate for this LWP. */
1487 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1488 if (lcp->lcp_nfree != 0)
1489 break;
1490 }
1491 if (lcp == NULL) {
1492 /* Nothing available - try to set up a free page. */
1493 if (lp->lp_cur == lp->lp_max) {
1494 mutex_exit(&lp->lp_lock);
1495 return ENOMEM;
1496 }
1497 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1498 if (lcp == NULL) {
1499 mutex_exit(&lp->lp_lock);
1500 return ENOMEM;
1501 }
1502 /*
1503 * Wire the next page down in kernel space. Since this
1504 * is a new mapping, we must add a reference.
1505 */
1506 uao = lp->lp_uao;
1507 (*uao->pgops->pgo_reference)(uao);
1508 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1509 uao, lp->lp_cur, PAGE_SIZE,
1510 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1511 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1512 if (error == 0)
1513 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1514 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1515 if (error != 0) {
1516 mutex_exit(&lp->lp_lock);
1517 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1518 (*uao->pgops->pgo_detach)(uao);
1519 return error;
1520 }
1521 /* Prepare the page descriptor and link into the list. */
1522 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1523 lp->lp_cur += PAGE_SIZE;
1524 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1525 lcp->lcp_rotor = 0;
1526 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1527 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1528 }
1529 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1530 if (++i >= LWPCTL_BITMAP_ENTRIES)
1531 i = 0;
1532 }
1533 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1534 lcp->lcp_bitmap[i] ^= (1 << bit);
1535 lcp->lcp_rotor = i;
1536 lcp->lcp_nfree--;
1537 l->l_lcpage = lcp;
1538 offset = (i << 5) + bit;
1539 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1540 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1541 mutex_exit(&lp->lp_lock);
1542
1543 l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
1544
1545 return 0;
1546 }
1547
1548 /*
1549 * Free an lwpctl structure back to the per-process list.
1550 */
1551 void
1552 lwp_ctl_free(lwp_t *l)
1553 {
1554 lcproc_t *lp;
1555 lcpage_t *lcp;
1556 u_int map, offset;
1557
1558 lp = l->l_proc->p_lwpctl;
1559 KASSERT(lp != NULL);
1560
1561 lcp = l->l_lcpage;
1562 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1563 KASSERT(offset < LWPCTL_PER_PAGE);
1564
1565 mutex_enter(&lp->lp_lock);
1566 lcp->lcp_nfree++;
1567 map = offset >> 5;
1568 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1569 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1570 lcp->lcp_rotor = map;
1571 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1572 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1573 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1574 }
1575 mutex_exit(&lp->lp_lock);
1576 }
1577
1578 /*
1579 * Process is exiting; tear down lwpctl state. This can only be safely
1580 * called by the last LWP in the process.
1581 */
1582 void
1583 lwp_ctl_exit(void)
1584 {
1585 lcpage_t *lcp, *next;
1586 lcproc_t *lp;
1587 proc_t *p;
1588 lwp_t *l;
1589
1590 l = curlwp;
1591 l->l_lwpctl = NULL;
1592 p = l->l_proc;
1593 lp = p->p_lwpctl;
1594
1595 KASSERT(lp != NULL);
1596 KASSERT(p->p_nlwps == 1);
1597
1598 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1599 next = TAILQ_NEXT(lcp, lcp_chain);
1600 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1601 lcp->lcp_kaddr + PAGE_SIZE);
1602 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1603 }
1604
1605 if (lp->lp_uao != NULL) {
1606 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1607 lp->lp_uva + LWPCTL_UAREA_SZ);
1608 }
1609
1610 mutex_destroy(&lp->lp_lock);
1611 kmem_free(lp, sizeof(*lp));
1612 p->p_lwpctl = NULL;
1613 }
1614