Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.69.2.5
      1 /*	$NetBSD: kern_lwp.c,v 1.69.2.5 2007/11/14 19:04:41 joerg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit or thread of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp", also known as lwp_t.
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing concurrently in the kernel.
     52  *
     53  * Execution states
     54  *
     55  *	At any given time, an LWP has overall state that is described by
     56  *	lwp::l_stat.  The states are broken into two sets below.  The first
     57  *	set is guaranteed to represent the absolute, current state of the
     58  *	LWP:
     59  *
     60  * 	LSONPROC
     61  *
     62  * 		On processor: the LWP is executing on a CPU, either in the
     63  * 		kernel or in user space.
     64  *
     65  * 	LSRUN
     66  *
     67  * 		Runnable: the LWP is parked on a run queue, and may soon be
     68  * 		chosen to run by a idle processor, or by a processor that
     69  * 		has been asked to preempt a currently runnning but lower
     70  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     71  *		then the LWP is not on a run queue, but may be soon.
     72  *
     73  * 	LSIDL
     74  *
     75  * 		Idle: the LWP has been created but has not yet executed,
     76  *		or it has ceased executing a unit of work and is waiting
     77  *		to be started again.
     78  *
     79  * 	LSSUSPENDED:
     80  *
     81  * 		Suspended: the LWP has had its execution suspended by
     82  *		another LWP in the same process using the _lwp_suspend()
     83  *		system call.  User-level LWPs also enter the suspended
     84  *		state when the system is shutting down.
     85  *
     86  *	The second set represent a "statement of intent" on behalf of the
     87  *	LWP.  The LWP may in fact be executing on a processor, may be
     88  *	sleeping or idle. It is expected to take the necessary action to
     89  *	stop executing or become "running" again within	a short timeframe.
     90  *	The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
     91  *	Importantly, in indicates that its state is tied to a CPU.
     92  *
     93  * 	LSZOMB:
     94  *
     95  * 		Dead or dying: the LWP has released most of its resources
     96  *		and is a) about to switch away into oblivion b) has already
     97  *		switched away.  When it switches away, its few remaining
     98  *		resources can be collected.
     99  *
    100  * 	LSSLEEP:
    101  *
    102  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    103  * 		has switched away or will switch away shortly to allow other
    104  *		LWPs to run on the CPU.
    105  *
    106  * 	LSSTOP:
    107  *
    108  * 		Stopped: the LWP has been stopped as a result of a job
    109  * 		control signal, or as a result of the ptrace() interface.
    110  *
    111  * 		Stopped LWPs may run briefly within the kernel to handle
    112  * 		signals that they receive, but will not return to user space
    113  * 		until their process' state is changed away from stopped.
    114  *
    115  * 		Single LWPs within a process can not be set stopped
    116  * 		selectively: all actions that can stop or continue LWPs
    117  * 		occur at the process level.
    118  *
    119  * State transitions
    120  *
    121  *	Note that the LSSTOP state may only be set when returning to
    122  *	user space in userret(), or when sleeping interruptably.  The
    123  *	LSSUSPENDED state may only be set in userret().  Before setting
    124  *	those states, we try to ensure that the LWPs will release all
    125  *	locks that they hold, and at a minimum try to ensure that the
    126  *	LWP can be set runnable again by a signal.
    127  *
    128  *	LWPs may transition states in the following ways:
    129  *
    130  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131  *	            > STOPPED			    > SLEEP
    132  *	            > SUSPENDED			    > STOPPED
    133  *						    > SUSPENDED
    134  *						    > ZOMB
    135  *
    136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  *	            > SLEEP			    > SLEEP
    138  *
    139  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  *		    > RUN		            > SUSPENDED
    141  *		    > STOPPED                       > STOPPED
    142  *		    > SUSPENDED
    143  *
    144  *	Other state transitions are possible with kernel threads (eg
    145  *	ONPROC -> IDL), but only happen under tightly controlled
    146  *	circumstances the side effects are understood.
    147  *
    148  * Locking
    149  *
    150  *	The majority of fields in 'struct lwp' are covered by a single,
    151  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    152  *	each field are documented in sys/lwp.h.
    153  *
    154  *	State transitions must be made with the LWP's general lock held,
    155  * 	and may cause the LWP's lock pointer to change. Manipulation of
    156  *	the general lock is not performed directly, but through calls to
    157  *	lwp_lock(), lwp_relock() and similar.
    158  *
    159  *	States and their associated locks:
    160  *
    161  *	LSONPROC, LSZOMB:
    162  *
    163  *		Always covered by spc_lwplock, which protects running LWPs.
    164  *		This is a per-CPU lock.
    165  *
    166  *	LSIDL, LSRUN:
    167  *
    168  *		Always covered by spc_mutex, which protects the run queues.
    169  *		This may be a per-CPU lock, depending on the scheduler.
    170  *
    171  *	LSSLEEP:
    172  *
    173  *		Covered by a lock associated with the sleep queue that the
    174  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    175  *
    176  *	LSSTOP, LSSUSPENDED:
    177  *
    178  *		If the LWP was previously sleeping (l_wchan != NULL), then
    179  *		l_mutex references the sleep queue lock.  If the LWP was
    180  *		runnable or on the CPU when halted, or has been removed from
    181  *		the sleep queue since halted, then the lock is spc_lwplock.
    182  *
    183  *	The lock order is as follows:
    184  *
    185  *		spc::spc_lwplock ->
    186  *		    sleepq_t::sq_mutex ->
    187  *			tschain_t::tc_mutex ->
    188  *			    spc::spc_mutex
    189  *
    190  *	Each process has an scheduler state lock (proc::p_smutex), and a
    191  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    192  *	so on.  When an LWP is to be entered into or removed from one of the
    193  *	following states, p_mutex must be held and the process wide counters
    194  *	adjusted:
    195  *
    196  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    197  *
    198  *	Note that an LWP is considered running or likely to run soon if in
    199  *	one of the following states.  This affects the value of p_nrlwps:
    200  *
    201  *		LSRUN, LSONPROC, LSSLEEP
    202  *
    203  *	p_smutex does not need to be held when transitioning among these
    204  *	three states.
    205  */
    206 
    207 #include <sys/cdefs.h>
    208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.69.2.5 2007/11/14 19:04:41 joerg Exp $");
    209 
    210 #include "opt_multiprocessor.h"
    211 #include "opt_lockdebug.h"
    212 
    213 #define _LWP_API_PRIVATE
    214 
    215 #include <sys/param.h>
    216 #include <sys/systm.h>
    217 #include <sys/cpu.h>
    218 #include <sys/pool.h>
    219 #include <sys/proc.h>
    220 #include <sys/syscallargs.h>
    221 #include <sys/syscall_stats.h>
    222 #include <sys/kauth.h>
    223 #include <sys/sleepq.h>
    224 #include <sys/lockdebug.h>
    225 #include <sys/kmem.h>
    226 #include <sys/intr.h>
    227 #include <sys/lwpctl.h>
    228 
    229 #include <uvm/uvm_extern.h>
    230 #include <uvm/uvm_object.h>
    231 
    232 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
    233 
    234 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    235     &pool_allocator_nointr, IPL_NONE);
    236 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    237     &pool_allocator_nointr, IPL_NONE);
    238 
    239 static specificdata_domain_t lwp_specificdata_domain;
    240 
    241 void
    242 lwpinit(void)
    243 {
    244 
    245 	lwp_specificdata_domain = specificdata_domain_create();
    246 	KASSERT(lwp_specificdata_domain != NULL);
    247 	lwp_sys_init();
    248 }
    249 
    250 /*
    251  * Set an suspended.
    252  *
    253  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    254  * LWP before return.
    255  */
    256 int
    257 lwp_suspend(struct lwp *curl, struct lwp *t)
    258 {
    259 	int error;
    260 
    261 	KASSERT(mutex_owned(&t->l_proc->p_smutex));
    262 	KASSERT(lwp_locked(t, NULL));
    263 
    264 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    265 
    266 	/*
    267 	 * If the current LWP has been told to exit, we must not suspend anyone
    268 	 * else or deadlock could occur.  We won't return to userspace.
    269 	 */
    270 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    271 		lwp_unlock(t);
    272 		return (EDEADLK);
    273 	}
    274 
    275 	error = 0;
    276 
    277 	switch (t->l_stat) {
    278 	case LSRUN:
    279 	case LSONPROC:
    280 		t->l_flag |= LW_WSUSPEND;
    281 		lwp_need_userret(t);
    282 		lwp_unlock(t);
    283 		break;
    284 
    285 	case LSSLEEP:
    286 		t->l_flag |= LW_WSUSPEND;
    287 
    288 		/*
    289 		 * Kick the LWP and try to get it to the kernel boundary
    290 		 * so that it will release any locks that it holds.
    291 		 * setrunnable() will release the lock.
    292 		 */
    293 		if ((t->l_flag & LW_SINTR) != 0)
    294 			setrunnable(t);
    295 		else
    296 			lwp_unlock(t);
    297 		break;
    298 
    299 	case LSSUSPENDED:
    300 		lwp_unlock(t);
    301 		break;
    302 
    303 	case LSSTOP:
    304 		t->l_flag |= LW_WSUSPEND;
    305 		setrunnable(t);
    306 		break;
    307 
    308 	case LSIDL:
    309 	case LSZOMB:
    310 		error = EINTR; /* It's what Solaris does..... */
    311 		lwp_unlock(t);
    312 		break;
    313 	}
    314 
    315 	return (error);
    316 }
    317 
    318 /*
    319  * Restart a suspended LWP.
    320  *
    321  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    322  * LWP before return.
    323  */
    324 void
    325 lwp_continue(struct lwp *l)
    326 {
    327 
    328 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
    329 	KASSERT(lwp_locked(l, NULL));
    330 
    331 	/* If rebooting or not suspended, then just bail out. */
    332 	if ((l->l_flag & LW_WREBOOT) != 0) {
    333 		lwp_unlock(l);
    334 		return;
    335 	}
    336 
    337 	l->l_flag &= ~LW_WSUSPEND;
    338 
    339 	if (l->l_stat != LSSUSPENDED) {
    340 		lwp_unlock(l);
    341 		return;
    342 	}
    343 
    344 	/* setrunnable() will release the lock. */
    345 	setrunnable(l);
    346 }
    347 
    348 /*
    349  * Wait for an LWP within the current process to exit.  If 'lid' is
    350  * non-zero, we are waiting for a specific LWP.
    351  *
    352  * Must be called with p->p_smutex held.
    353  */
    354 int
    355 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    356 {
    357 	struct proc *p = l->l_proc;
    358 	struct lwp *l2;
    359 	int nfound, error;
    360 	lwpid_t curlid;
    361 	bool exiting;
    362 
    363 	KASSERT(mutex_owned(&p->p_smutex));
    364 
    365 	p->p_nlwpwait++;
    366 	l->l_waitingfor = lid;
    367 	curlid = l->l_lid;
    368 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    369 
    370 	for (;;) {
    371 		/*
    372 		 * Avoid a race between exit1() and sigexit(): if the
    373 		 * process is dumping core, then we need to bail out: call
    374 		 * into lwp_userret() where we will be suspended until the
    375 		 * deed is done.
    376 		 */
    377 		if ((p->p_sflag & PS_WCORE) != 0) {
    378 			mutex_exit(&p->p_smutex);
    379 			lwp_userret(l);
    380 #ifdef DIAGNOSTIC
    381 			panic("lwp_wait1");
    382 #endif
    383 			/* NOTREACHED */
    384 		}
    385 
    386 		/*
    387 		 * First off, drain any detached LWP that is waiting to be
    388 		 * reaped.
    389 		 */
    390 		while ((l2 = p->p_zomblwp) != NULL) {
    391 			p->p_zomblwp = NULL;
    392 			lwp_free(l2, false, false);/* releases proc mutex */
    393 			mutex_enter(&p->p_smutex);
    394 		}
    395 
    396 		/*
    397 		 * Now look for an LWP to collect.  If the whole process is
    398 		 * exiting, count detached LWPs as eligible to be collected,
    399 		 * but don't drain them here.
    400 		 */
    401 		nfound = 0;
    402 		error = 0;
    403 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    404 			/*
    405 			 * If a specific wait and the target is waiting on
    406 			 * us, then avoid deadlock.  This also traps LWPs
    407 			 * that try to wait on themselves.
    408 			 *
    409 			 * Note that this does not handle more complicated
    410 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    411 			 * can still be killed so it is not a major problem.
    412 			 */
    413 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    414 				error = EDEADLK;
    415 				break;
    416 			}
    417 			if (l2 == l)
    418 				continue;
    419 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    420 				nfound += exiting;
    421 				continue;
    422 			}
    423 			if (lid != 0) {
    424 				if (l2->l_lid != lid)
    425 					continue;
    426 				/*
    427 				 * Mark this LWP as the first waiter, if there
    428 				 * is no other.
    429 				 */
    430 				if (l2->l_waiter == 0)
    431 					l2->l_waiter = curlid;
    432 			} else if (l2->l_waiter != 0) {
    433 				/*
    434 				 * It already has a waiter - so don't
    435 				 * collect it.  If the waiter doesn't
    436 				 * grab it we'll get another chance
    437 				 * later.
    438 				 */
    439 				nfound++;
    440 				continue;
    441 			}
    442 			nfound++;
    443 
    444 			/* No need to lock the LWP in order to see LSZOMB. */
    445 			if (l2->l_stat != LSZOMB)
    446 				continue;
    447 
    448 			/*
    449 			 * We're no longer waiting.  Reset the "first waiter"
    450 			 * pointer on the target, in case it was us.
    451 			 */
    452 			l->l_waitingfor = 0;
    453 			l2->l_waiter = 0;
    454 			p->p_nlwpwait--;
    455 			if (departed)
    456 				*departed = l2->l_lid;
    457 			sched_lwp_collect(l2);
    458 
    459 			/* lwp_free() releases the proc lock. */
    460 			lwp_free(l2, false, false);
    461 			mutex_enter(&p->p_smutex);
    462 			return 0;
    463 		}
    464 
    465 		if (error != 0)
    466 			break;
    467 		if (nfound == 0) {
    468 			error = ESRCH;
    469 			break;
    470 		}
    471 
    472 		/*
    473 		 * The kernel is careful to ensure that it can not deadlock
    474 		 * when exiting - just keep waiting.
    475 		 */
    476 		if (exiting) {
    477 			KASSERT(p->p_nlwps > 1);
    478 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    479 			continue;
    480 		}
    481 
    482 		/*
    483 		 * If all other LWPs are waiting for exits or suspends
    484 		 * and the supply of zombies and potential zombies is
    485 		 * exhausted, then we are about to deadlock.
    486 		 *
    487 		 * If the process is exiting (and this LWP is not the one
    488 		 * that is coordinating the exit) then bail out now.
    489 		 */
    490 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    491 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    492 			error = EDEADLK;
    493 			break;
    494 		}
    495 
    496 		/*
    497 		 * Sit around and wait for something to happen.  We'll be
    498 		 * awoken if any of the conditions examined change: if an
    499 		 * LWP exits, is collected, or is detached.
    500 		 */
    501 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    502 			break;
    503 	}
    504 
    505 	/*
    506 	 * We didn't find any LWPs to collect, we may have received a
    507 	 * signal, or some other condition has caused us to bail out.
    508 	 *
    509 	 * If waiting on a specific LWP, clear the waiters marker: some
    510 	 * other LWP may want it.  Then, kick all the remaining waiters
    511 	 * so that they can re-check for zombies and for deadlock.
    512 	 */
    513 	if (lid != 0) {
    514 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    515 			if (l2->l_lid == lid) {
    516 				if (l2->l_waiter == curlid)
    517 					l2->l_waiter = 0;
    518 				break;
    519 			}
    520 		}
    521 	}
    522 	p->p_nlwpwait--;
    523 	l->l_waitingfor = 0;
    524 	cv_broadcast(&p->p_lwpcv);
    525 
    526 	return error;
    527 }
    528 
    529 /*
    530  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    531  * The new LWP is created in state LSIDL and must be set running,
    532  * suspended, or stopped by the caller.
    533  */
    534 int
    535 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
    536 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    537 	   lwp_t **rnewlwpp, int sclass)
    538 {
    539 	struct lwp *l2, *isfree;
    540 	turnstile_t *ts;
    541 
    542 	/*
    543 	 * First off, reap any detached LWP waiting to be collected.
    544 	 * We can re-use its LWP structure and turnstile.
    545 	 */
    546 	isfree = NULL;
    547 	if (p2->p_zomblwp != NULL) {
    548 		mutex_enter(&p2->p_smutex);
    549 		if ((isfree = p2->p_zomblwp) != NULL) {
    550 			p2->p_zomblwp = NULL;
    551 			lwp_free(isfree, true, false);/* releases proc mutex */
    552 		} else
    553 			mutex_exit(&p2->p_smutex);
    554 	}
    555 	if (isfree == NULL) {
    556 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    557 		memset(l2, 0, sizeof(*l2));
    558 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    559 		SLIST_INIT(&l2->l_pi_lenders);
    560 	} else {
    561 		l2 = isfree;
    562 		ts = l2->l_ts;
    563 		KASSERT(l2->l_inheritedprio == -1);
    564 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    565 		memset(l2, 0, sizeof(*l2));
    566 		l2->l_ts = ts;
    567 	}
    568 
    569 	l2->l_stat = LSIDL;
    570 	l2->l_proc = p2;
    571 	l2->l_refcnt = 1;
    572 	l2->l_class = sclass;
    573 	l2->l_kpriority = l1->l_kpriority;
    574 	l2->l_priority = l1->l_priority;
    575 	l2->l_inheritedprio = -1;
    576 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    577 	l2->l_cpu = l1->l_cpu;
    578 	l2->l_flag = inmem ? LW_INMEM : 0;
    579 
    580 	if (p2->p_flag & PK_SYSTEM) {
    581 		/*
    582 		 * Mark it as a system process and not a candidate for
    583 		 * swapping.
    584 		 */
    585 		l2->l_flag |= LW_SYSTEM;
    586 	} else {
    587 		/* Look for a CPU to start */
    588 		l2->l_cpu = sched_takecpu(l2);
    589 		l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
    590 	}
    591 
    592 	lwp_initspecific(l2);
    593 	sched_lwp_fork(l1, l2);
    594 	lwp_update_creds(l2);
    595 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    596 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    597 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    598 	cv_init(&l2->l_sigcv, "sigwait");
    599 	l2->l_syncobj = &sched_syncobj;
    600 
    601 	if (rnewlwpp != NULL)
    602 		*rnewlwpp = l2;
    603 
    604 	l2->l_addr = UAREA_TO_USER(uaddr);
    605 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    606 	    (arg != NULL) ? arg : l2);
    607 
    608 	mutex_enter(&p2->p_smutex);
    609 
    610 	if ((flags & LWP_DETACHED) != 0) {
    611 		l2->l_prflag = LPR_DETACHED;
    612 		p2->p_ndlwps++;
    613 	} else
    614 		l2->l_prflag = 0;
    615 
    616 	l2->l_sigmask = l1->l_sigmask;
    617 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    618 	sigemptyset(&l2->l_sigpend.sp_set);
    619 
    620 	p2->p_nlwpid++;
    621 	if (p2->p_nlwpid == 0)
    622 		p2->p_nlwpid++;
    623 	l2->l_lid = p2->p_nlwpid;
    624 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    625 	p2->p_nlwps++;
    626 
    627 	mutex_exit(&p2->p_smutex);
    628 
    629 	mutex_enter(&proclist_lock);
    630 	mutex_enter(&proclist_mutex);
    631 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    632 	mutex_exit(&proclist_mutex);
    633 	mutex_exit(&proclist_lock);
    634 
    635 	SYSCALL_TIME_LWP_INIT(l2);
    636 
    637 	if (p2->p_emul->e_lwp_fork)
    638 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    639 
    640 	return (0);
    641 }
    642 
    643 /*
    644  * Called by MD code when a new LWP begins execution.  Must be called
    645  * with the previous LWP locked (so at splsched), or if there is no
    646  * previous LWP, at splsched.
    647  */
    648 void
    649 lwp_startup(struct lwp *prev, struct lwp *new)
    650 {
    651 
    652 	if (prev != NULL) {
    653 		lwp_unlock(prev);
    654 	}
    655 	spl0();
    656 	pmap_activate(new);
    657 	LOCKDEBUG_BARRIER(NULL, 0);
    658 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    659 		KERNEL_LOCK(1, new);
    660 	}
    661 }
    662 
    663 /*
    664  * Exit an LWP.
    665  */
    666 void
    667 lwp_exit(struct lwp *l)
    668 {
    669 	struct proc *p = l->l_proc;
    670 	struct lwp *l2;
    671 	bool current;
    672 
    673 	current = (l == curlwp);
    674 
    675 	KASSERT(current || l->l_stat == LSIDL);
    676 
    677 	/*
    678 	 * Verify that we hold no locks other than the kernel lock.
    679 	 */
    680 #ifdef MULTIPROCESSOR
    681 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    682 #else
    683 	LOCKDEBUG_BARRIER(NULL, 0);
    684 #endif
    685 
    686 	/*
    687 	 * If we are the last live LWP in a process, we need to exit the
    688 	 * entire process.  We do so with an exit status of zero, because
    689 	 * it's a "controlled" exit, and because that's what Solaris does.
    690 	 *
    691 	 * We are not quite a zombie yet, but for accounting purposes we
    692 	 * must increment the count of zombies here.
    693 	 *
    694 	 * Note: the last LWP's specificdata will be deleted here.
    695 	 */
    696 	mutex_enter(&p->p_smutex);
    697 	if (p->p_nlwps - p->p_nzlwps == 1) {
    698 		KASSERT(current == true);
    699 		exit1(l, 0);
    700 		/* NOTREACHED */
    701 	}
    702 	p->p_nzlwps++;
    703 	mutex_exit(&p->p_smutex);
    704 
    705 	if (p->p_emul->e_lwp_exit)
    706 		(*p->p_emul->e_lwp_exit)(l);
    707 
    708 	/* Delete the specificdata while it's still safe to sleep. */
    709 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    710 
    711 	/*
    712 	 * Release our cached credentials.
    713 	 */
    714 	kauth_cred_free(l->l_cred);
    715 	callout_destroy(&l->l_timeout_ch);
    716 
    717 	/*
    718 	 * While we can still block, mark the LWP as unswappable to
    719 	 * prevent conflicts with the with the swapper.
    720 	 */
    721 	if (current)
    722 		uvm_lwp_hold(l);
    723 
    724 	/*
    725 	 * Remove the LWP from the global list.
    726 	 */
    727 	mutex_enter(&proclist_lock);
    728 	mutex_enter(&proclist_mutex);
    729 	LIST_REMOVE(l, l_list);
    730 	mutex_exit(&proclist_mutex);
    731 	mutex_exit(&proclist_lock);
    732 
    733 	/*
    734 	 * Get rid of all references to the LWP that others (e.g. procfs)
    735 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    736 	 * mark it waiting for collection in the proc structure.  Note that
    737 	 * before we can do that, we need to free any other dead, deatched
    738 	 * LWP waiting to meet its maker.
    739 	 *
    740 	 * XXXSMP disable preemption.
    741 	 */
    742 	mutex_enter(&p->p_smutex);
    743 	lwp_drainrefs(l);
    744 
    745 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    746 		while ((l2 = p->p_zomblwp) != NULL) {
    747 			p->p_zomblwp = NULL;
    748 			lwp_free(l2, false, false);/* releases proc mutex */
    749 			mutex_enter(&p->p_smutex);
    750 			l->l_refcnt++;
    751 			lwp_drainrefs(l);
    752 		}
    753 		p->p_zomblwp = l;
    754 	}
    755 
    756 	/*
    757 	 * If we find a pending signal for the process and we have been
    758 	 * asked to check for signals, then we loose: arrange to have
    759 	 * all other LWPs in the process check for signals.
    760 	 */
    761 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    762 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    763 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    764 			lwp_lock(l2);
    765 			l2->l_flag |= LW_PENDSIG;
    766 			lwp_unlock(l2);
    767 		}
    768 	}
    769 
    770 	lwp_lock(l);
    771 	l->l_stat = LSZOMB;
    772 	lwp_unlock(l);
    773 	p->p_nrlwps--;
    774 	cv_broadcast(&p->p_lwpcv);
    775 	if (l->l_lwpctl != NULL)
    776 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    777 	mutex_exit(&p->p_smutex);
    778 
    779 	/*
    780 	 * We can no longer block.  At this point, lwp_free() may already
    781 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    782 	 *
    783 	 * Free MD LWP resources.
    784 	 */
    785 #ifndef __NO_CPU_LWP_FREE
    786 	cpu_lwp_free(l, 0);
    787 #endif
    788 
    789 	if (current) {
    790 		pmap_deactivate(l);
    791 
    792 		/*
    793 		 * Release the kernel lock, and switch away into
    794 		 * oblivion.
    795 		 */
    796 #ifdef notyet
    797 		/* XXXSMP hold in lwp_userret() */
    798 		KERNEL_UNLOCK_LAST(l);
    799 #else
    800 		KERNEL_UNLOCK_ALL(l, NULL);
    801 #endif
    802 		lwp_exit_switchaway(l);
    803 	}
    804 }
    805 
    806 void
    807 lwp_exit_switchaway(struct lwp *l)
    808 {
    809 	struct cpu_info *ci;
    810 	struct lwp *idlelwp;
    811 
    812 	/* Unlocked, but is for statistics only. */
    813 	uvmexp.swtch++;
    814 
    815 	(void)splsched();
    816 	l->l_flag &= ~LW_RUNNING;
    817 	ci = curcpu();
    818 	idlelwp = ci->ci_data.cpu_idlelwp;
    819 	idlelwp->l_stat = LSONPROC;
    820 
    821 	/*
    822 	 * cpu_onproc must be updated with the CPU locked, as
    823 	 * aston() may try to set a AST pending on the LWP (and
    824 	 * it does so with the CPU locked).  Otherwise, the LWP
    825 	 * may be destroyed before the AST can be set, leading
    826 	 * to a user-after-free.
    827 	 */
    828 	spc_lock(ci);
    829 	ci->ci_data.cpu_onproc = idlelwp;
    830 	spc_unlock(ci);
    831 	cpu_switchto(NULL, idlelwp, false);
    832 }
    833 
    834 /*
    835  * Free a dead LWP's remaining resources.
    836  *
    837  * XXXLWP limits.
    838  */
    839 void
    840 lwp_free(struct lwp *l, bool recycle, bool last)
    841 {
    842 	struct proc *p = l->l_proc;
    843 	ksiginfoq_t kq;
    844 
    845 	/*
    846 	 * If this was not the last LWP in the process, then adjust
    847 	 * counters and unlock.
    848 	 */
    849 	if (!last) {
    850 		/*
    851 		 * Add the LWP's run time to the process' base value.
    852 		 * This needs to co-incide with coming off p_lwps.
    853 		 */
    854 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    855 		p->p_pctcpu += l->l_pctcpu;
    856 		LIST_REMOVE(l, l_sibling);
    857 		p->p_nlwps--;
    858 		p->p_nzlwps--;
    859 		if ((l->l_prflag & LPR_DETACHED) != 0)
    860 			p->p_ndlwps--;
    861 
    862 		/*
    863 		 * Have any LWPs sleeping in lwp_wait() recheck for
    864 		 * deadlock.
    865 		 */
    866 		cv_broadcast(&p->p_lwpcv);
    867 		mutex_exit(&p->p_smutex);
    868 	}
    869 
    870 #ifdef MULTIPROCESSOR
    871 	/*
    872 	 * In the unlikely event that the LWP is still on the CPU,
    873 	 * then spin until it has switched away.  We need to release
    874 	 * all locks to avoid deadlock against interrupt handlers on
    875 	 * the target CPU.
    876 	 */
    877 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    878 		int count;
    879 		(void)count; /* XXXgcc */
    880 		KERNEL_UNLOCK_ALL(curlwp, &count);
    881 		while ((l->l_flag & LW_RUNNING) != 0 ||
    882 		    l->l_cpu->ci_curlwp == l)
    883 			SPINLOCK_BACKOFF_HOOK;
    884 		KERNEL_LOCK(count, curlwp);
    885 	}
    886 #endif
    887 
    888 	/*
    889 	 * Destroy the LWP's remaining signal information.
    890 	 */
    891 	ksiginfo_queue_init(&kq);
    892 	sigclear(&l->l_sigpend, NULL, &kq);
    893 	ksiginfo_queue_drain(&kq);
    894 	cv_destroy(&l->l_sigcv);
    895 	mutex_destroy(&l->l_swaplock);
    896 
    897 	/*
    898 	 * Free the LWP's turnstile and the LWP structure itself unless the
    899 	 * caller wants to recycle them.  Also, free the scheduler specific data.
    900 	 *
    901 	 * We can't return turnstile0 to the pool (it didn't come from it),
    902 	 * so if it comes up just drop it quietly and move on.
    903 	 *
    904 	 * We don't recycle the VM resources at this time.
    905 	 */
    906 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    907 
    908 	if (l->l_lwpctl != NULL)
    909 		lwp_ctl_free(l);
    910 	sched_lwp_exit(l);
    911 
    912 	if (!recycle && l->l_ts != &turnstile0)
    913 		pool_cache_put(turnstile_cache, l->l_ts);
    914 #ifndef __NO_CPU_LWP_FREE
    915 	cpu_lwp_free2(l);
    916 #endif
    917 	uvm_lwp_exit(l);
    918 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    919 	KASSERT(l->l_inheritedprio == -1);
    920 	if (!recycle)
    921 		pool_put(&lwp_pool, l);
    922 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    923 }
    924 
    925 /*
    926  * Pick a LWP to represent the process for those operations which
    927  * want information about a "process" that is actually associated
    928  * with a LWP.
    929  *
    930  * If 'locking' is false, no locking or lock checks are performed.
    931  * This is intended for use by DDB.
    932  *
    933  * We don't bother locking the LWP here, since code that uses this
    934  * interface is broken by design and an exact match is not required.
    935  */
    936 struct lwp *
    937 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    938 {
    939 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    940 	struct lwp *signalled;
    941 	int cnt;
    942 
    943 	if (locking) {
    944 		KASSERT(mutex_owned(&p->p_smutex));
    945 	}
    946 
    947 	/* Trivial case: only one LWP */
    948 	if (p->p_nlwps == 1) {
    949 		l = LIST_FIRST(&p->p_lwps);
    950 		if (nrlwps)
    951 			*nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
    952 		return l;
    953 	}
    954 
    955 	cnt = 0;
    956 	switch (p->p_stat) {
    957 	case SSTOP:
    958 	case SACTIVE:
    959 		/* Pick the most live LWP */
    960 		onproc = running = sleeping = stopped = suspended = NULL;
    961 		signalled = NULL;
    962 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    963 			if ((l->l_flag & LW_IDLE) != 0) {
    964 				continue;
    965 			}
    966 			if (l->l_lid == p->p_sigctx.ps_lwp)
    967 				signalled = l;
    968 			switch (l->l_stat) {
    969 			case LSONPROC:
    970 				onproc = l;
    971 				cnt++;
    972 				break;
    973 			case LSRUN:
    974 				running = l;
    975 				cnt++;
    976 				break;
    977 			case LSSLEEP:
    978 				sleeping = l;
    979 				break;
    980 			case LSSTOP:
    981 				stopped = l;
    982 				break;
    983 			case LSSUSPENDED:
    984 				suspended = l;
    985 				break;
    986 			}
    987 		}
    988 		if (nrlwps)
    989 			*nrlwps = cnt;
    990 		if (signalled)
    991 			l = signalled;
    992 		else if (onproc)
    993 			l = onproc;
    994 		else if (running)
    995 			l = running;
    996 		else if (sleeping)
    997 			l = sleeping;
    998 		else if (stopped)
    999 			l = stopped;
   1000 		else if (suspended)
   1001 			l = suspended;
   1002 		else
   1003 			break;
   1004 		return l;
   1005 #ifdef DIAGNOSTIC
   1006 	case SIDL:
   1007 	case SZOMB:
   1008 	case SDYING:
   1009 	case SDEAD:
   1010 		if (locking)
   1011 			mutex_exit(&p->p_smutex);
   1012 		/* We have more than one LWP and we're in SIDL?
   1013 		 * How'd that happen?
   1014 		 */
   1015 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
   1016 		    p->p_pid, p->p_comm, p->p_stat);
   1017 		break;
   1018 	default:
   1019 		if (locking)
   1020 			mutex_exit(&p->p_smutex);
   1021 		panic("Process %d (%s) in unknown state %d",
   1022 		    p->p_pid, p->p_comm, p->p_stat);
   1023 #endif
   1024 	}
   1025 
   1026 	if (locking)
   1027 		mutex_exit(&p->p_smutex);
   1028 	panic("proc_representative_lwp: couldn't find a lwp for process"
   1029 		" %d (%s)", p->p_pid, p->p_comm);
   1030 	/* NOTREACHED */
   1031 	return NULL;
   1032 }
   1033 
   1034 /*
   1035  * Look up a live LWP within the speicifed process, and return it locked.
   1036  *
   1037  * Must be called with p->p_smutex held.
   1038  */
   1039 struct lwp *
   1040 lwp_find(struct proc *p, int id)
   1041 {
   1042 	struct lwp *l;
   1043 
   1044 	KASSERT(mutex_owned(&p->p_smutex));
   1045 
   1046 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1047 		if (l->l_lid == id)
   1048 			break;
   1049 	}
   1050 
   1051 	/*
   1052 	 * No need to lock - all of these conditions will
   1053 	 * be visible with the process level mutex held.
   1054 	 */
   1055 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1056 		l = NULL;
   1057 
   1058 	return l;
   1059 }
   1060 
   1061 /*
   1062  * Update an LWP's cached credentials to mirror the process' master copy.
   1063  *
   1064  * This happens early in the syscall path, on user trap, and on LWP
   1065  * creation.  A long-running LWP can also voluntarily choose to update
   1066  * it's credentials by calling this routine.  This may be called from
   1067  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1068  */
   1069 void
   1070 lwp_update_creds(struct lwp *l)
   1071 {
   1072 	kauth_cred_t oc;
   1073 	struct proc *p;
   1074 
   1075 	p = l->l_proc;
   1076 	oc = l->l_cred;
   1077 
   1078 	mutex_enter(&p->p_mutex);
   1079 	kauth_cred_hold(p->p_cred);
   1080 	l->l_cred = p->p_cred;
   1081 	mutex_exit(&p->p_mutex);
   1082 	if (oc != NULL) {
   1083 		KERNEL_LOCK(1, l);	/* XXXSMP */
   1084 		kauth_cred_free(oc);
   1085 		KERNEL_UNLOCK_ONE(l);	/* XXXSMP */
   1086 	}
   1087 }
   1088 
   1089 /*
   1090  * Verify that an LWP is locked, and optionally verify that the lock matches
   1091  * one we specify.
   1092  */
   1093 int
   1094 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1095 {
   1096 	kmutex_t *cur = l->l_mutex;
   1097 
   1098 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1099 }
   1100 
   1101 /*
   1102  * Lock an LWP.
   1103  */
   1104 void
   1105 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1106 {
   1107 
   1108 	/*
   1109 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1110 	 *
   1111 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1112 	 */
   1113 #if 1
   1114 	while (l->l_mutex != old) {
   1115 #else
   1116 	for (;;) {
   1117 #endif
   1118 		mutex_spin_exit(old);
   1119 		old = l->l_mutex;
   1120 		mutex_spin_enter(old);
   1121 
   1122 		/*
   1123 		 * mutex_enter() will have posted a read barrier.  Re-test
   1124 		 * l->l_mutex.  If it has changed, we need to try again.
   1125 		 */
   1126 #if 1
   1127 	}
   1128 #else
   1129 	} while (__predict_false(l->l_mutex != old));
   1130 #endif
   1131 }
   1132 
   1133 /*
   1134  * Lend a new mutex to an LWP.  The old mutex must be held.
   1135  */
   1136 void
   1137 lwp_setlock(struct lwp *l, kmutex_t *new)
   1138 {
   1139 
   1140 	KASSERT(mutex_owned(l->l_mutex));
   1141 
   1142 	mb_write();
   1143 	l->l_mutex = new;
   1144 }
   1145 
   1146 /*
   1147  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1148  * must be held.
   1149  */
   1150 void
   1151 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1152 {
   1153 	kmutex_t *old;
   1154 
   1155 	KASSERT(mutex_owned(l->l_mutex));
   1156 
   1157 	old = l->l_mutex;
   1158 	mb_write();
   1159 	l->l_mutex = new;
   1160 	mutex_spin_exit(old);
   1161 }
   1162 
   1163 /*
   1164  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1165  * locked.
   1166  */
   1167 void
   1168 lwp_relock(struct lwp *l, kmutex_t *new)
   1169 {
   1170 	kmutex_t *old;
   1171 
   1172 	KASSERT(mutex_owned(l->l_mutex));
   1173 
   1174 	old = l->l_mutex;
   1175 	if (old != new) {
   1176 		mutex_spin_enter(new);
   1177 		l->l_mutex = new;
   1178 		mutex_spin_exit(old);
   1179 	}
   1180 }
   1181 
   1182 int
   1183 lwp_trylock(struct lwp *l)
   1184 {
   1185 	kmutex_t *old;
   1186 
   1187 	for (;;) {
   1188 		if (!mutex_tryenter(old = l->l_mutex))
   1189 			return 0;
   1190 		if (__predict_true(l->l_mutex == old))
   1191 			return 1;
   1192 		mutex_spin_exit(old);
   1193 	}
   1194 }
   1195 
   1196 /*
   1197  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1198  * set.
   1199  */
   1200 void
   1201 lwp_userret(struct lwp *l)
   1202 {
   1203 	struct proc *p;
   1204 	void (*hook)(void);
   1205 	int sig;
   1206 
   1207 	p = l->l_proc;
   1208 
   1209 #ifndef __HAVE_FAST_SOFTINTS
   1210 	/* Run pending soft interrupts. */
   1211 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1212 		softint_overlay();
   1213 #endif
   1214 
   1215 	/*
   1216 	 * It should be safe to do this read unlocked on a multiprocessor
   1217 	 * system..
   1218 	 */
   1219 	while ((l->l_flag & LW_USERRET) != 0) {
   1220 		/*
   1221 		 * Process pending signals first, unless the process
   1222 		 * is dumping core or exiting, where we will instead
   1223 		 * enter the L_WSUSPEND case below.
   1224 		 */
   1225 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1226 		    LW_PENDSIG) {
   1227 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1228 			mutex_enter(&p->p_smutex);
   1229 			while ((sig = issignal(l)) != 0)
   1230 				postsig(sig);
   1231 			mutex_exit(&p->p_smutex);
   1232 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1233 		}
   1234 
   1235 		/*
   1236 		 * Core-dump or suspend pending.
   1237 		 *
   1238 		 * In case of core dump, suspend ourselves, so that the
   1239 		 * kernel stack and therefore the userland registers saved
   1240 		 * in the trapframe are around for coredump() to write them
   1241 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1242 		 * will write the core file out once all other LWPs are
   1243 		 * suspended.
   1244 		 */
   1245 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1246 			mutex_enter(&p->p_smutex);
   1247 			p->p_nrlwps--;
   1248 			cv_broadcast(&p->p_lwpcv);
   1249 			lwp_lock(l);
   1250 			l->l_stat = LSSUSPENDED;
   1251 			mutex_exit(&p->p_smutex);
   1252 			mi_switch(l);
   1253 		}
   1254 
   1255 		/* Process is exiting. */
   1256 		if ((l->l_flag & LW_WEXIT) != 0) {
   1257 			KERNEL_LOCK(1, l);
   1258 			lwp_exit(l);
   1259 			KASSERT(0);
   1260 			/* NOTREACHED */
   1261 		}
   1262 
   1263 		/* Call userret hook; used by Linux emulation. */
   1264 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1265 			lwp_lock(l);
   1266 			l->l_flag &= ~LW_WUSERRET;
   1267 			lwp_unlock(l);
   1268 			hook = p->p_userret;
   1269 			p->p_userret = NULL;
   1270 			(*hook)();
   1271 		}
   1272 	}
   1273 }
   1274 
   1275 /*
   1276  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1277  */
   1278 void
   1279 lwp_need_userret(struct lwp *l)
   1280 {
   1281 	KASSERT(lwp_locked(l, NULL));
   1282 
   1283 	/*
   1284 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1285 	 * that the condition will be seen before forcing the LWP to enter
   1286 	 * kernel mode.
   1287 	 */
   1288 	mb_write();
   1289 	cpu_signotify(l);
   1290 }
   1291 
   1292 /*
   1293  * Add one reference to an LWP.  This will prevent the LWP from
   1294  * exiting, thus keep the lwp structure and PCB around to inspect.
   1295  */
   1296 void
   1297 lwp_addref(struct lwp *l)
   1298 {
   1299 
   1300 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1301 	KASSERT(l->l_stat != LSZOMB);
   1302 	KASSERT(l->l_refcnt != 0);
   1303 
   1304 	l->l_refcnt++;
   1305 }
   1306 
   1307 /*
   1308  * Remove one reference to an LWP.  If this is the last reference,
   1309  * then we must finalize the LWP's death.
   1310  */
   1311 void
   1312 lwp_delref(struct lwp *l)
   1313 {
   1314 	struct proc *p = l->l_proc;
   1315 
   1316 	mutex_enter(&p->p_smutex);
   1317 	KASSERT(l->l_stat != LSZOMB);
   1318 	KASSERT(l->l_refcnt > 0);
   1319 	if (--l->l_refcnt == 0)
   1320 		cv_broadcast(&p->p_lwpcv);
   1321 	mutex_exit(&p->p_smutex);
   1322 }
   1323 
   1324 /*
   1325  * Drain all references to the current LWP.
   1326  */
   1327 void
   1328 lwp_drainrefs(struct lwp *l)
   1329 {
   1330 	struct proc *p = l->l_proc;
   1331 
   1332 	KASSERT(mutex_owned(&p->p_smutex));
   1333 	KASSERT(l->l_refcnt != 0);
   1334 
   1335 	l->l_refcnt--;
   1336 	while (l->l_refcnt != 0)
   1337 		cv_wait(&p->p_lwpcv, &p->p_smutex);
   1338 }
   1339 
   1340 /*
   1341  * lwp_specific_key_create --
   1342  *	Create a key for subsystem lwp-specific data.
   1343  */
   1344 int
   1345 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1346 {
   1347 
   1348 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1349 }
   1350 
   1351 /*
   1352  * lwp_specific_key_delete --
   1353  *	Delete a key for subsystem lwp-specific data.
   1354  */
   1355 void
   1356 lwp_specific_key_delete(specificdata_key_t key)
   1357 {
   1358 
   1359 	specificdata_key_delete(lwp_specificdata_domain, key);
   1360 }
   1361 
   1362 /*
   1363  * lwp_initspecific --
   1364  *	Initialize an LWP's specificdata container.
   1365  */
   1366 void
   1367 lwp_initspecific(struct lwp *l)
   1368 {
   1369 	int error;
   1370 
   1371 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1372 	KASSERT(error == 0);
   1373 }
   1374 
   1375 /*
   1376  * lwp_finispecific --
   1377  *	Finalize an LWP's specificdata container.
   1378  */
   1379 void
   1380 lwp_finispecific(struct lwp *l)
   1381 {
   1382 
   1383 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1384 }
   1385 
   1386 /*
   1387  * lwp_getspecific --
   1388  *	Return lwp-specific data corresponding to the specified key.
   1389  *
   1390  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1391  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1392  *	LWP's specifc data, care must be taken to ensure that doing so
   1393  *	would not cause internal data structure inconsistency (i.e. caller
   1394  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1395  *	or lwp_setspecific() call).
   1396  */
   1397 void *
   1398 lwp_getspecific(specificdata_key_t key)
   1399 {
   1400 
   1401 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1402 						  &curlwp->l_specdataref, key));
   1403 }
   1404 
   1405 void *
   1406 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1407 {
   1408 
   1409 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1410 						  &l->l_specdataref, key));
   1411 }
   1412 
   1413 /*
   1414  * lwp_setspecific --
   1415  *	Set lwp-specific data corresponding to the specified key.
   1416  */
   1417 void
   1418 lwp_setspecific(specificdata_key_t key, void *data)
   1419 {
   1420 
   1421 	specificdata_setspecific(lwp_specificdata_domain,
   1422 				 &curlwp->l_specdataref, key, data);
   1423 }
   1424 
   1425 /*
   1426  * Allocate a new lwpctl structure for a user LWP.
   1427  */
   1428 int
   1429 lwp_ctl_alloc(vaddr_t *uaddr)
   1430 {
   1431 	lcproc_t *lp;
   1432 	u_int bit, i, offset;
   1433 	struct uvm_object *uao;
   1434 	int error;
   1435 	lcpage_t *lcp;
   1436 	proc_t *p;
   1437 	lwp_t *l;
   1438 
   1439 	l = curlwp;
   1440 	p = l->l_proc;
   1441 
   1442 	if (l->l_lcpage != NULL)
   1443 		return (EINVAL);
   1444 
   1445 	/* First time around, allocate header structure for the process. */
   1446 	if ((lp = p->p_lwpctl) == NULL) {
   1447 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1448 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1449 		lp->lp_uao = NULL;
   1450 		TAILQ_INIT(&lp->lp_pages);
   1451 		mutex_enter(&p->p_mutex);
   1452 		if (p->p_lwpctl == NULL) {
   1453 			p->p_lwpctl = lp;
   1454 			mutex_exit(&p->p_mutex);
   1455 		} else {
   1456 			mutex_exit(&p->p_mutex);
   1457 			mutex_destroy(&lp->lp_lock);
   1458 			kmem_free(lp, sizeof(*lp));
   1459 			lp = p->p_lwpctl;
   1460 		}
   1461 	}
   1462 
   1463  	/*
   1464  	 * Set up an anonymous memory region to hold the shared pages.
   1465  	 * Map them into the process' address space.  The user vmspace
   1466  	 * gets the first reference on the UAO.
   1467  	 */
   1468 	mutex_enter(&lp->lp_lock);
   1469 	if (lp->lp_uao == NULL) {
   1470 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1471 		lp->lp_cur = 0;
   1472 		lp->lp_max = LWPCTL_UAREA_SZ;
   1473 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1474 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1475 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1476 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1477 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1478 		if (error != 0) {
   1479 			uao_detach(lp->lp_uao);
   1480 			lp->lp_uao = NULL;
   1481 			mutex_exit(&lp->lp_lock);
   1482 			return error;
   1483 		}
   1484 	}
   1485 
   1486 	/* Get a free block and allocate for this LWP. */
   1487 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1488 		if (lcp->lcp_nfree != 0)
   1489 			break;
   1490 	}
   1491 	if (lcp == NULL) {
   1492 		/* Nothing available - try to set up a free page. */
   1493 		if (lp->lp_cur == lp->lp_max) {
   1494 			mutex_exit(&lp->lp_lock);
   1495 			return ENOMEM;
   1496 		}
   1497 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1498 		if (lcp == NULL) {
   1499 			mutex_exit(&lp->lp_lock);
   1500 			return ENOMEM;
   1501 		}
   1502 		/*
   1503 		 * Wire the next page down in kernel space.  Since this
   1504 		 * is a new mapping, we must add a reference.
   1505 		 */
   1506 		uao = lp->lp_uao;
   1507 		(*uao->pgops->pgo_reference)(uao);
   1508 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1509 		    uao, lp->lp_cur, PAGE_SIZE,
   1510 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1511 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1512 		if (error == 0)
   1513 			error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1514 			    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1515 		if (error != 0) {
   1516 			mutex_exit(&lp->lp_lock);
   1517 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1518 			(*uao->pgops->pgo_detach)(uao);
   1519 			return error;
   1520 		}
   1521 		/* Prepare the page descriptor and link into the list. */
   1522 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1523 		lp->lp_cur += PAGE_SIZE;
   1524 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1525 		lcp->lcp_rotor = 0;
   1526 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1527 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1528 	}
   1529 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1530 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1531 			i = 0;
   1532 	}
   1533 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1534 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1535 	lcp->lcp_rotor = i;
   1536 	lcp->lcp_nfree--;
   1537 	l->l_lcpage = lcp;
   1538 	offset = (i << 5) + bit;
   1539 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1540 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1541 	mutex_exit(&lp->lp_lock);
   1542 
   1543 	l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
   1544 
   1545 	return 0;
   1546 }
   1547 
   1548 /*
   1549  * Free an lwpctl structure back to the per-process list.
   1550  */
   1551 void
   1552 lwp_ctl_free(lwp_t *l)
   1553 {
   1554 	lcproc_t *lp;
   1555 	lcpage_t *lcp;
   1556 	u_int map, offset;
   1557 
   1558 	lp = l->l_proc->p_lwpctl;
   1559 	KASSERT(lp != NULL);
   1560 
   1561 	lcp = l->l_lcpage;
   1562 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1563 	KASSERT(offset < LWPCTL_PER_PAGE);
   1564 
   1565 	mutex_enter(&lp->lp_lock);
   1566 	lcp->lcp_nfree++;
   1567 	map = offset >> 5;
   1568 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1569 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1570 		lcp->lcp_rotor = map;
   1571 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1572 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1573 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1574 	}
   1575 	mutex_exit(&lp->lp_lock);
   1576 }
   1577 
   1578 /*
   1579  * Process is exiting; tear down lwpctl state.  This can only be safely
   1580  * called by the last LWP in the process.
   1581  */
   1582 void
   1583 lwp_ctl_exit(void)
   1584 {
   1585 	lcpage_t *lcp, *next;
   1586 	lcproc_t *lp;
   1587 	proc_t *p;
   1588 	lwp_t *l;
   1589 
   1590 	l = curlwp;
   1591 	l->l_lwpctl = NULL;
   1592 	p = l->l_proc;
   1593 	lp = p->p_lwpctl;
   1594 
   1595 	KASSERT(lp != NULL);
   1596 	KASSERT(p->p_nlwps == 1);
   1597 
   1598 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1599 		next = TAILQ_NEXT(lcp, lcp_chain);
   1600 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1601 		    lcp->lcp_kaddr + PAGE_SIZE);
   1602 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1603 	}
   1604 
   1605 	if (lp->lp_uao != NULL) {
   1606 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1607 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1608 	}
   1609 
   1610 	mutex_destroy(&lp->lp_lock);
   1611 	kmem_free(lp, sizeof(*lp));
   1612 	p->p_lwpctl = NULL;
   1613 }
   1614