kern_lwp.c revision 1.69.2.6 1 /* $NetBSD: kern_lwp.c,v 1.69.2.6 2007/12/03 16:14:49 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit or thread of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp", also known as lwp_t.
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing concurrently in the kernel.
52 *
53 * Execution states
54 *
55 * At any given time, an LWP has overall state that is described by
56 * lwp::l_stat. The states are broken into two sets below. The first
57 * set is guaranteed to represent the absolute, current state of the
58 * LWP:
59 *
60 * LSONPROC
61 *
62 * On processor: the LWP is executing on a CPU, either in the
63 * kernel or in user space.
64 *
65 * LSRUN
66 *
67 * Runnable: the LWP is parked on a run queue, and may soon be
68 * chosen to run by a idle processor, or by a processor that
69 * has been asked to preempt a currently runnning but lower
70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 * then the LWP is not on a run queue, but may be soon.
72 *
73 * LSIDL
74 *
75 * Idle: the LWP has been created but has not yet executed,
76 * or it has ceased executing a unit of work and is waiting
77 * to be started again.
78 *
79 * LSSUSPENDED:
80 *
81 * Suspended: the LWP has had its execution suspended by
82 * another LWP in the same process using the _lwp_suspend()
83 * system call. User-level LWPs also enter the suspended
84 * state when the system is shutting down.
85 *
86 * The second set represent a "statement of intent" on behalf of the
87 * LWP. The LWP may in fact be executing on a processor, may be
88 * sleeping or idle. It is expected to take the necessary action to
89 * stop executing or become "running" again within a short timeframe.
90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91 * Importantly, in indicates that its state is tied to a CPU.
92 *
93 * LSZOMB:
94 *
95 * Dead or dying: the LWP has released most of its resources
96 * and is a) about to switch away into oblivion b) has already
97 * switched away. When it switches away, its few remaining
98 * resources can be collected.
99 *
100 * LSSLEEP:
101 *
102 * Sleeping: the LWP has entered itself onto a sleep queue, and
103 * has switched away or will switch away shortly to allow other
104 * LWPs to run on the CPU.
105 *
106 * LSSTOP:
107 *
108 * Stopped: the LWP has been stopped as a result of a job
109 * control signal, or as a result of the ptrace() interface.
110 *
111 * Stopped LWPs may run briefly within the kernel to handle
112 * signals that they receive, but will not return to user space
113 * until their process' state is changed away from stopped.
114 *
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP state may only be set when returning to
122 * user space in userret(), or when sleeping interruptably. The
123 * LSSUSPENDED state may only be set in userret(). Before setting
124 * those states, we try to ensure that the LWPs will release all
125 * locks that they hold, and at a minimum try to ensure that the
126 * LWP can be set runnable again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Other state transitions are possible with kernel threads (eg
145 * ONPROC -> IDL), but only happen under tightly controlled
146 * circumstances the side effects are understood.
147 *
148 * Locking
149 *
150 * The majority of fields in 'struct lwp' are covered by a single,
151 * general spin lock pointed to by lwp::l_mutex. The locks covering
152 * each field are documented in sys/lwp.h.
153 *
154 * State transitions must be made with the LWP's general lock held,
155 * and may cause the LWP's lock pointer to change. Manipulation of
156 * the general lock is not performed directly, but through calls to
157 * lwp_lock(), lwp_relock() and similar.
158 *
159 * States and their associated locks:
160 *
161 * LSONPROC, LSZOMB:
162 *
163 * Always covered by spc_lwplock, which protects running LWPs.
164 * This is a per-CPU lock.
165 *
166 * LSIDL, LSRUN:
167 *
168 * Always covered by spc_mutex, which protects the run queues.
169 * This may be a per-CPU lock, depending on the scheduler.
170 *
171 * LSSLEEP:
172 *
173 * Covered by a lock associated with the sleep queue that the
174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175 *
176 * LSSTOP, LSSUSPENDED:
177 *
178 * If the LWP was previously sleeping (l_wchan != NULL), then
179 * l_mutex references the sleep queue lock. If the LWP was
180 * runnable or on the CPU when halted, or has been removed from
181 * the sleep queue since halted, then the lock is spc_lwplock.
182 *
183 * The lock order is as follows:
184 *
185 * spc::spc_lwplock ->
186 * sleepq_t::sq_mutex ->
187 * tschain_t::tc_mutex ->
188 * spc::spc_mutex
189 *
190 * Each process has an scheduler state lock (proc::p_smutex), and a
191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192 * so on. When an LWP is to be entered into or removed from one of the
193 * following states, p_mutex must be held and the process wide counters
194 * adjusted:
195 *
196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197 *
198 * Note that an LWP is considered running or likely to run soon if in
199 * one of the following states. This affects the value of p_nrlwps:
200 *
201 * LSRUN, LSONPROC, LSSLEEP
202 *
203 * p_smutex does not need to be held when transitioning among these
204 * three states.
205 */
206
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.69.2.6 2007/12/03 16:14:49 joerg Exp $");
209
210 #include "opt_multiprocessor.h"
211 #include "opt_lockdebug.h"
212
213 #define _LWP_API_PRIVATE
214
215 #include <sys/param.h>
216 #include <sys/systm.h>
217 #include <sys/cpu.h>
218 #include <sys/pool.h>
219 #include <sys/proc.h>
220 #include <sys/syscallargs.h>
221 #include <sys/syscall_stats.h>
222 #include <sys/kauth.h>
223 #include <sys/sleepq.h>
224 #include <sys/lockdebug.h>
225 #include <sys/kmem.h>
226 #include <sys/intr.h>
227 #include <sys/lwpctl.h>
228 #include <sys/atomic.h>
229
230 #include <uvm/uvm_extern.h>
231 #include <uvm/uvm_object.h>
232
233 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
234
235 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
236 &pool_allocator_nointr, IPL_NONE);
237 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
238 &pool_allocator_nointr, IPL_NONE);
239
240 static specificdata_domain_t lwp_specificdata_domain;
241
242 void
243 lwpinit(void)
244 {
245
246 lwp_specificdata_domain = specificdata_domain_create();
247 KASSERT(lwp_specificdata_domain != NULL);
248 lwp_sys_init();
249 }
250
251 /*
252 * Set an suspended.
253 *
254 * Must be called with p_smutex held, and the LWP locked. Will unlock the
255 * LWP before return.
256 */
257 int
258 lwp_suspend(struct lwp *curl, struct lwp *t)
259 {
260 int error;
261
262 KASSERT(mutex_owned(&t->l_proc->p_smutex));
263 KASSERT(lwp_locked(t, NULL));
264
265 KASSERT(curl != t || curl->l_stat == LSONPROC);
266
267 /*
268 * If the current LWP has been told to exit, we must not suspend anyone
269 * else or deadlock could occur. We won't return to userspace.
270 */
271 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
272 lwp_unlock(t);
273 return (EDEADLK);
274 }
275
276 error = 0;
277
278 switch (t->l_stat) {
279 case LSRUN:
280 case LSONPROC:
281 t->l_flag |= LW_WSUSPEND;
282 lwp_need_userret(t);
283 lwp_unlock(t);
284 break;
285
286 case LSSLEEP:
287 t->l_flag |= LW_WSUSPEND;
288
289 /*
290 * Kick the LWP and try to get it to the kernel boundary
291 * so that it will release any locks that it holds.
292 * setrunnable() will release the lock.
293 */
294 if ((t->l_flag & LW_SINTR) != 0)
295 setrunnable(t);
296 else
297 lwp_unlock(t);
298 break;
299
300 case LSSUSPENDED:
301 lwp_unlock(t);
302 break;
303
304 case LSSTOP:
305 t->l_flag |= LW_WSUSPEND;
306 setrunnable(t);
307 break;
308
309 case LSIDL:
310 case LSZOMB:
311 error = EINTR; /* It's what Solaris does..... */
312 lwp_unlock(t);
313 break;
314 }
315
316 return (error);
317 }
318
319 /*
320 * Restart a suspended LWP.
321 *
322 * Must be called with p_smutex held, and the LWP locked. Will unlock the
323 * LWP before return.
324 */
325 void
326 lwp_continue(struct lwp *l)
327 {
328
329 KASSERT(mutex_owned(&l->l_proc->p_smutex));
330 KASSERT(lwp_locked(l, NULL));
331
332 /* If rebooting or not suspended, then just bail out. */
333 if ((l->l_flag & LW_WREBOOT) != 0) {
334 lwp_unlock(l);
335 return;
336 }
337
338 l->l_flag &= ~LW_WSUSPEND;
339
340 if (l->l_stat != LSSUSPENDED) {
341 lwp_unlock(l);
342 return;
343 }
344
345 /* setrunnable() will release the lock. */
346 setrunnable(l);
347 }
348
349 /*
350 * Wait for an LWP within the current process to exit. If 'lid' is
351 * non-zero, we are waiting for a specific LWP.
352 *
353 * Must be called with p->p_smutex held.
354 */
355 int
356 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
357 {
358 struct proc *p = l->l_proc;
359 struct lwp *l2;
360 int nfound, error;
361 lwpid_t curlid;
362 bool exiting;
363
364 KASSERT(mutex_owned(&p->p_smutex));
365
366 p->p_nlwpwait++;
367 l->l_waitingfor = lid;
368 curlid = l->l_lid;
369 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
370
371 for (;;) {
372 /*
373 * Avoid a race between exit1() and sigexit(): if the
374 * process is dumping core, then we need to bail out: call
375 * into lwp_userret() where we will be suspended until the
376 * deed is done.
377 */
378 if ((p->p_sflag & PS_WCORE) != 0) {
379 mutex_exit(&p->p_smutex);
380 lwp_userret(l);
381 #ifdef DIAGNOSTIC
382 panic("lwp_wait1");
383 #endif
384 /* NOTREACHED */
385 }
386
387 /*
388 * First off, drain any detached LWP that is waiting to be
389 * reaped.
390 */
391 while ((l2 = p->p_zomblwp) != NULL) {
392 p->p_zomblwp = NULL;
393 lwp_free(l2, false, false);/* releases proc mutex */
394 mutex_enter(&p->p_smutex);
395 }
396
397 /*
398 * Now look for an LWP to collect. If the whole process is
399 * exiting, count detached LWPs as eligible to be collected,
400 * but don't drain them here.
401 */
402 nfound = 0;
403 error = 0;
404 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
405 /*
406 * If a specific wait and the target is waiting on
407 * us, then avoid deadlock. This also traps LWPs
408 * that try to wait on themselves.
409 *
410 * Note that this does not handle more complicated
411 * cycles, like: t1 -> t2 -> t3 -> t1. The process
412 * can still be killed so it is not a major problem.
413 */
414 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
415 error = EDEADLK;
416 break;
417 }
418 if (l2 == l)
419 continue;
420 if ((l2->l_prflag & LPR_DETACHED) != 0) {
421 nfound += exiting;
422 continue;
423 }
424 if (lid != 0) {
425 if (l2->l_lid != lid)
426 continue;
427 /*
428 * Mark this LWP as the first waiter, if there
429 * is no other.
430 */
431 if (l2->l_waiter == 0)
432 l2->l_waiter = curlid;
433 } else if (l2->l_waiter != 0) {
434 /*
435 * It already has a waiter - so don't
436 * collect it. If the waiter doesn't
437 * grab it we'll get another chance
438 * later.
439 */
440 nfound++;
441 continue;
442 }
443 nfound++;
444
445 /* No need to lock the LWP in order to see LSZOMB. */
446 if (l2->l_stat != LSZOMB)
447 continue;
448
449 /*
450 * We're no longer waiting. Reset the "first waiter"
451 * pointer on the target, in case it was us.
452 */
453 l->l_waitingfor = 0;
454 l2->l_waiter = 0;
455 p->p_nlwpwait--;
456 if (departed)
457 *departed = l2->l_lid;
458 sched_lwp_collect(l2);
459
460 /* lwp_free() releases the proc lock. */
461 lwp_free(l2, false, false);
462 mutex_enter(&p->p_smutex);
463 return 0;
464 }
465
466 if (error != 0)
467 break;
468 if (nfound == 0) {
469 error = ESRCH;
470 break;
471 }
472
473 /*
474 * The kernel is careful to ensure that it can not deadlock
475 * when exiting - just keep waiting.
476 */
477 if (exiting) {
478 KASSERT(p->p_nlwps > 1);
479 cv_wait(&p->p_lwpcv, &p->p_smutex);
480 continue;
481 }
482
483 /*
484 * If all other LWPs are waiting for exits or suspends
485 * and the supply of zombies and potential zombies is
486 * exhausted, then we are about to deadlock.
487 *
488 * If the process is exiting (and this LWP is not the one
489 * that is coordinating the exit) then bail out now.
490 */
491 if ((p->p_sflag & PS_WEXIT) != 0 ||
492 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
493 error = EDEADLK;
494 break;
495 }
496
497 /*
498 * Sit around and wait for something to happen. We'll be
499 * awoken if any of the conditions examined change: if an
500 * LWP exits, is collected, or is detached.
501 */
502 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
503 break;
504 }
505
506 /*
507 * We didn't find any LWPs to collect, we may have received a
508 * signal, or some other condition has caused us to bail out.
509 *
510 * If waiting on a specific LWP, clear the waiters marker: some
511 * other LWP may want it. Then, kick all the remaining waiters
512 * so that they can re-check for zombies and for deadlock.
513 */
514 if (lid != 0) {
515 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
516 if (l2->l_lid == lid) {
517 if (l2->l_waiter == curlid)
518 l2->l_waiter = 0;
519 break;
520 }
521 }
522 }
523 p->p_nlwpwait--;
524 l->l_waitingfor = 0;
525 cv_broadcast(&p->p_lwpcv);
526
527 return error;
528 }
529
530 /*
531 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
532 * The new LWP is created in state LSIDL and must be set running,
533 * suspended, or stopped by the caller.
534 */
535 int
536 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
537 void *stack, size_t stacksize, void (*func)(void *), void *arg,
538 lwp_t **rnewlwpp, int sclass)
539 {
540 struct lwp *l2, *isfree;
541 turnstile_t *ts;
542
543 /*
544 * First off, reap any detached LWP waiting to be collected.
545 * We can re-use its LWP structure and turnstile.
546 */
547 isfree = NULL;
548 if (p2->p_zomblwp != NULL) {
549 mutex_enter(&p2->p_smutex);
550 if ((isfree = p2->p_zomblwp) != NULL) {
551 p2->p_zomblwp = NULL;
552 lwp_free(isfree, true, false);/* releases proc mutex */
553 } else
554 mutex_exit(&p2->p_smutex);
555 }
556 if (isfree == NULL) {
557 l2 = pool_get(&lwp_pool, PR_WAITOK);
558 memset(l2, 0, sizeof(*l2));
559 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
560 SLIST_INIT(&l2->l_pi_lenders);
561 } else {
562 l2 = isfree;
563 ts = l2->l_ts;
564 KASSERT(l2->l_inheritedprio == -1);
565 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
566 memset(l2, 0, sizeof(*l2));
567 l2->l_ts = ts;
568 }
569
570 l2->l_stat = LSIDL;
571 l2->l_proc = p2;
572 l2->l_refcnt = 1;
573 l2->l_class = sclass;
574 l2->l_kpriority = l1->l_kpriority;
575 l2->l_priority = l1->l_priority;
576 l2->l_inheritedprio = -1;
577 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
578 l2->l_cpu = l1->l_cpu;
579 l2->l_flag = inmem ? LW_INMEM : 0;
580
581 if (p2->p_flag & PK_SYSTEM) {
582 /*
583 * Mark it as a system process and not a candidate for
584 * swapping.
585 */
586 l2->l_flag |= LW_SYSTEM;
587 } else {
588 /* Look for a CPU to start */
589 l2->l_cpu = sched_takecpu(l2);
590 l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
591 }
592
593 lwp_initspecific(l2);
594 sched_lwp_fork(l1, l2);
595 lwp_update_creds(l2);
596 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
597 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
598 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
599 cv_init(&l2->l_sigcv, "sigwait");
600 l2->l_syncobj = &sched_syncobj;
601
602 if (rnewlwpp != NULL)
603 *rnewlwpp = l2;
604
605 l2->l_addr = UAREA_TO_USER(uaddr);
606 uvm_lwp_fork(l1, l2, stack, stacksize, func,
607 (arg != NULL) ? arg : l2);
608
609 mutex_enter(&p2->p_smutex);
610
611 if ((flags & LWP_DETACHED) != 0) {
612 l2->l_prflag = LPR_DETACHED;
613 p2->p_ndlwps++;
614 } else
615 l2->l_prflag = 0;
616
617 l2->l_sigmask = l1->l_sigmask;
618 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
619 sigemptyset(&l2->l_sigpend.sp_set);
620
621 p2->p_nlwpid++;
622 if (p2->p_nlwpid == 0)
623 p2->p_nlwpid++;
624 l2->l_lid = p2->p_nlwpid;
625 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
626 p2->p_nlwps++;
627
628 mutex_exit(&p2->p_smutex);
629
630 mutex_enter(&proclist_lock);
631 mutex_enter(&proclist_mutex);
632 LIST_INSERT_HEAD(&alllwp, l2, l_list);
633 mutex_exit(&proclist_mutex);
634 mutex_exit(&proclist_lock);
635
636 SYSCALL_TIME_LWP_INIT(l2);
637
638 if (p2->p_emul->e_lwp_fork)
639 (*p2->p_emul->e_lwp_fork)(l1, l2);
640
641 return (0);
642 }
643
644 /*
645 * Called by MD code when a new LWP begins execution. Must be called
646 * with the previous LWP locked (so at splsched), or if there is no
647 * previous LWP, at splsched.
648 */
649 void
650 lwp_startup(struct lwp *prev, struct lwp *new)
651 {
652
653 if (prev != NULL) {
654 /*
655 * Normalize the count of the spin-mutexes, it was
656 * increased in mi_switch(). Unmark the state of
657 * context switch - it is finished for previous LWP.
658 */
659 curcpu()->ci_mtx_count++;
660 membar_exit();
661 prev->l_ctxswtch = 0;
662 }
663 spl0();
664 pmap_activate(new);
665 LOCKDEBUG_BARRIER(NULL, 0);
666 if ((new->l_pflag & LP_MPSAFE) == 0) {
667 KERNEL_LOCK(1, new);
668 }
669 }
670
671 /*
672 * Exit an LWP.
673 */
674 void
675 lwp_exit(struct lwp *l)
676 {
677 struct proc *p = l->l_proc;
678 struct lwp *l2;
679 bool current;
680
681 current = (l == curlwp);
682
683 KASSERT(current || l->l_stat == LSIDL);
684
685 /*
686 * Verify that we hold no locks other than the kernel lock.
687 */
688 #ifdef MULTIPROCESSOR
689 LOCKDEBUG_BARRIER(&kernel_lock, 0);
690 #else
691 LOCKDEBUG_BARRIER(NULL, 0);
692 #endif
693
694 /*
695 * If we are the last live LWP in a process, we need to exit the
696 * entire process. We do so with an exit status of zero, because
697 * it's a "controlled" exit, and because that's what Solaris does.
698 *
699 * We are not quite a zombie yet, but for accounting purposes we
700 * must increment the count of zombies here.
701 *
702 * Note: the last LWP's specificdata will be deleted here.
703 */
704 mutex_enter(&p->p_smutex);
705 if (p->p_nlwps - p->p_nzlwps == 1) {
706 KASSERT(current == true);
707 exit1(l, 0);
708 /* NOTREACHED */
709 }
710 p->p_nzlwps++;
711 mutex_exit(&p->p_smutex);
712
713 if (p->p_emul->e_lwp_exit)
714 (*p->p_emul->e_lwp_exit)(l);
715
716 /* Delete the specificdata while it's still safe to sleep. */
717 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
718
719 /*
720 * Release our cached credentials.
721 */
722 kauth_cred_free(l->l_cred);
723 callout_destroy(&l->l_timeout_ch);
724
725 /*
726 * While we can still block, mark the LWP as unswappable to
727 * prevent conflicts with the with the swapper.
728 */
729 if (current)
730 uvm_lwp_hold(l);
731
732 /*
733 * Remove the LWP from the global list.
734 */
735 mutex_enter(&proclist_lock);
736 mutex_enter(&proclist_mutex);
737 LIST_REMOVE(l, l_list);
738 mutex_exit(&proclist_mutex);
739 mutex_exit(&proclist_lock);
740
741 /*
742 * Get rid of all references to the LWP that others (e.g. procfs)
743 * may have, and mark the LWP as a zombie. If the LWP is detached,
744 * mark it waiting for collection in the proc structure. Note that
745 * before we can do that, we need to free any other dead, deatched
746 * LWP waiting to meet its maker.
747 *
748 * XXXSMP disable preemption.
749 */
750 mutex_enter(&p->p_smutex);
751 lwp_drainrefs(l);
752
753 if ((l->l_prflag & LPR_DETACHED) != 0) {
754 while ((l2 = p->p_zomblwp) != NULL) {
755 p->p_zomblwp = NULL;
756 lwp_free(l2, false, false);/* releases proc mutex */
757 mutex_enter(&p->p_smutex);
758 l->l_refcnt++;
759 lwp_drainrefs(l);
760 }
761 p->p_zomblwp = l;
762 }
763
764 /*
765 * If we find a pending signal for the process and we have been
766 * asked to check for signals, then we loose: arrange to have
767 * all other LWPs in the process check for signals.
768 */
769 if ((l->l_flag & LW_PENDSIG) != 0 &&
770 firstsig(&p->p_sigpend.sp_set) != 0) {
771 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
772 lwp_lock(l2);
773 l2->l_flag |= LW_PENDSIG;
774 lwp_unlock(l2);
775 }
776 }
777
778 lwp_lock(l);
779 l->l_stat = LSZOMB;
780 lwp_unlock(l);
781 p->p_nrlwps--;
782 cv_broadcast(&p->p_lwpcv);
783 if (l->l_lwpctl != NULL)
784 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
785 mutex_exit(&p->p_smutex);
786
787 /*
788 * We can no longer block. At this point, lwp_free() may already
789 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
790 *
791 * Free MD LWP resources.
792 */
793 #ifndef __NO_CPU_LWP_FREE
794 cpu_lwp_free(l, 0);
795 #endif
796
797 if (current) {
798 pmap_deactivate(l);
799
800 /*
801 * Release the kernel lock, and switch away into
802 * oblivion.
803 */
804 #ifdef notyet
805 /* XXXSMP hold in lwp_userret() */
806 KERNEL_UNLOCK_LAST(l);
807 #else
808 KERNEL_UNLOCK_ALL(l, NULL);
809 #endif
810 lwp_exit_switchaway(l);
811 }
812 }
813
814 void
815 lwp_exit_switchaway(struct lwp *l)
816 {
817 struct cpu_info *ci;
818 struct lwp *idlelwp;
819
820 /* Unlocked, but is for statistics only. */
821 uvmexp.swtch++;
822
823 (void)splsched();
824 l->l_flag &= ~LW_RUNNING;
825 ci = curcpu();
826 idlelwp = ci->ci_data.cpu_idlelwp;
827 idlelwp->l_stat = LSONPROC;
828
829 /*
830 * cpu_onproc must be updated with the CPU locked, as
831 * aston() may try to set a AST pending on the LWP (and
832 * it does so with the CPU locked). Otherwise, the LWP
833 * may be destroyed before the AST can be set, leading
834 * to a user-after-free.
835 */
836 spc_lock(ci);
837 ci->ci_data.cpu_onproc = idlelwp;
838 spc_unlock(ci);
839 cpu_switchto(NULL, idlelwp, false);
840 }
841
842 /*
843 * Free a dead LWP's remaining resources.
844 *
845 * XXXLWP limits.
846 */
847 void
848 lwp_free(struct lwp *l, bool recycle, bool last)
849 {
850 struct proc *p = l->l_proc;
851 ksiginfoq_t kq;
852
853 /*
854 * If this was not the last LWP in the process, then adjust
855 * counters and unlock.
856 */
857 if (!last) {
858 /*
859 * Add the LWP's run time to the process' base value.
860 * This needs to co-incide with coming off p_lwps.
861 */
862 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
863 p->p_pctcpu += l->l_pctcpu;
864 LIST_REMOVE(l, l_sibling);
865 p->p_nlwps--;
866 p->p_nzlwps--;
867 if ((l->l_prflag & LPR_DETACHED) != 0)
868 p->p_ndlwps--;
869
870 /*
871 * Have any LWPs sleeping in lwp_wait() recheck for
872 * deadlock.
873 */
874 cv_broadcast(&p->p_lwpcv);
875 mutex_exit(&p->p_smutex);
876 }
877
878 #ifdef MULTIPROCESSOR
879 /*
880 * In the unlikely event that the LWP is still on the CPU,
881 * then spin until it has switched away. We need to release
882 * all locks to avoid deadlock against interrupt handlers on
883 * the target CPU.
884 */
885 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
886 int count;
887 (void)count; /* XXXgcc */
888 KERNEL_UNLOCK_ALL(curlwp, &count);
889 while ((l->l_flag & LW_RUNNING) != 0 ||
890 l->l_cpu->ci_curlwp == l)
891 SPINLOCK_BACKOFF_HOOK;
892 KERNEL_LOCK(count, curlwp);
893 }
894 #endif
895
896 /*
897 * Destroy the LWP's remaining signal information.
898 */
899 ksiginfo_queue_init(&kq);
900 sigclear(&l->l_sigpend, NULL, &kq);
901 ksiginfo_queue_drain(&kq);
902 cv_destroy(&l->l_sigcv);
903 mutex_destroy(&l->l_swaplock);
904
905 /*
906 * Free the LWP's turnstile and the LWP structure itself unless the
907 * caller wants to recycle them. Also, free the scheduler specific data.
908 *
909 * We can't return turnstile0 to the pool (it didn't come from it),
910 * so if it comes up just drop it quietly and move on.
911 *
912 * We don't recycle the VM resources at this time.
913 */
914 KERNEL_LOCK(1, curlwp); /* XXXSMP */
915
916 if (l->l_lwpctl != NULL)
917 lwp_ctl_free(l);
918 sched_lwp_exit(l);
919
920 if (!recycle && l->l_ts != &turnstile0)
921 pool_cache_put(turnstile_cache, l->l_ts);
922 #ifndef __NO_CPU_LWP_FREE
923 cpu_lwp_free2(l);
924 #endif
925 uvm_lwp_exit(l);
926 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
927 KASSERT(l->l_inheritedprio == -1);
928 if (!recycle)
929 pool_put(&lwp_pool, l);
930 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
931 }
932
933 /*
934 * Pick a LWP to represent the process for those operations which
935 * want information about a "process" that is actually associated
936 * with a LWP.
937 *
938 * If 'locking' is false, no locking or lock checks are performed.
939 * This is intended for use by DDB.
940 *
941 * We don't bother locking the LWP here, since code that uses this
942 * interface is broken by design and an exact match is not required.
943 */
944 struct lwp *
945 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
946 {
947 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
948 struct lwp *signalled;
949 int cnt;
950
951 if (locking) {
952 KASSERT(mutex_owned(&p->p_smutex));
953 }
954
955 /* Trivial case: only one LWP */
956 if (p->p_nlwps == 1) {
957 l = LIST_FIRST(&p->p_lwps);
958 if (nrlwps)
959 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
960 return l;
961 }
962
963 cnt = 0;
964 switch (p->p_stat) {
965 case SSTOP:
966 case SACTIVE:
967 /* Pick the most live LWP */
968 onproc = running = sleeping = stopped = suspended = NULL;
969 signalled = NULL;
970 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
971 if ((l->l_flag & LW_IDLE) != 0) {
972 continue;
973 }
974 if (l->l_lid == p->p_sigctx.ps_lwp)
975 signalled = l;
976 switch (l->l_stat) {
977 case LSONPROC:
978 onproc = l;
979 cnt++;
980 break;
981 case LSRUN:
982 running = l;
983 cnt++;
984 break;
985 case LSSLEEP:
986 sleeping = l;
987 break;
988 case LSSTOP:
989 stopped = l;
990 break;
991 case LSSUSPENDED:
992 suspended = l;
993 break;
994 }
995 }
996 if (nrlwps)
997 *nrlwps = cnt;
998 if (signalled)
999 l = signalled;
1000 else if (onproc)
1001 l = onproc;
1002 else if (running)
1003 l = running;
1004 else if (sleeping)
1005 l = sleeping;
1006 else if (stopped)
1007 l = stopped;
1008 else if (suspended)
1009 l = suspended;
1010 else
1011 break;
1012 return l;
1013 #ifdef DIAGNOSTIC
1014 case SIDL:
1015 case SZOMB:
1016 case SDYING:
1017 case SDEAD:
1018 if (locking)
1019 mutex_exit(&p->p_smutex);
1020 /* We have more than one LWP and we're in SIDL?
1021 * How'd that happen?
1022 */
1023 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1024 p->p_pid, p->p_comm, p->p_stat);
1025 break;
1026 default:
1027 if (locking)
1028 mutex_exit(&p->p_smutex);
1029 panic("Process %d (%s) in unknown state %d",
1030 p->p_pid, p->p_comm, p->p_stat);
1031 #endif
1032 }
1033
1034 if (locking)
1035 mutex_exit(&p->p_smutex);
1036 panic("proc_representative_lwp: couldn't find a lwp for process"
1037 " %d (%s)", p->p_pid, p->p_comm);
1038 /* NOTREACHED */
1039 return NULL;
1040 }
1041
1042 /*
1043 * Look up a live LWP within the speicifed process, and return it locked.
1044 *
1045 * Must be called with p->p_smutex held.
1046 */
1047 struct lwp *
1048 lwp_find(struct proc *p, int id)
1049 {
1050 struct lwp *l;
1051
1052 KASSERT(mutex_owned(&p->p_smutex));
1053
1054 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1055 if (l->l_lid == id)
1056 break;
1057 }
1058
1059 /*
1060 * No need to lock - all of these conditions will
1061 * be visible with the process level mutex held.
1062 */
1063 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1064 l = NULL;
1065
1066 return l;
1067 }
1068
1069 /*
1070 * Update an LWP's cached credentials to mirror the process' master copy.
1071 *
1072 * This happens early in the syscall path, on user trap, and on LWP
1073 * creation. A long-running LWP can also voluntarily choose to update
1074 * it's credentials by calling this routine. This may be called from
1075 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1076 */
1077 void
1078 lwp_update_creds(struct lwp *l)
1079 {
1080 kauth_cred_t oc;
1081 struct proc *p;
1082
1083 p = l->l_proc;
1084 oc = l->l_cred;
1085
1086 mutex_enter(&p->p_mutex);
1087 kauth_cred_hold(p->p_cred);
1088 l->l_cred = p->p_cred;
1089 mutex_exit(&p->p_mutex);
1090 if (oc != NULL) {
1091 KERNEL_LOCK(1, l); /* XXXSMP */
1092 kauth_cred_free(oc);
1093 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
1094 }
1095 }
1096
1097 /*
1098 * Verify that an LWP is locked, and optionally verify that the lock matches
1099 * one we specify.
1100 */
1101 int
1102 lwp_locked(struct lwp *l, kmutex_t *mtx)
1103 {
1104 kmutex_t *cur = l->l_mutex;
1105
1106 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1107 }
1108
1109 /*
1110 * Lock an LWP.
1111 */
1112 void
1113 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1114 {
1115
1116 /*
1117 * XXXgcc ignoring kmutex_t * volatile on i386
1118 *
1119 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1120 */
1121 #if 1
1122 while (l->l_mutex != old) {
1123 #else
1124 for (;;) {
1125 #endif
1126 mutex_spin_exit(old);
1127 old = l->l_mutex;
1128 mutex_spin_enter(old);
1129
1130 /*
1131 * mutex_enter() will have posted a read barrier. Re-test
1132 * l->l_mutex. If it has changed, we need to try again.
1133 */
1134 #if 1
1135 }
1136 #else
1137 } while (__predict_false(l->l_mutex != old));
1138 #endif
1139 }
1140
1141 /*
1142 * Lend a new mutex to an LWP. The old mutex must be held.
1143 */
1144 void
1145 lwp_setlock(struct lwp *l, kmutex_t *new)
1146 {
1147
1148 KASSERT(mutex_owned(l->l_mutex));
1149
1150 membar_producer();
1151 l->l_mutex = new;
1152 }
1153
1154 /*
1155 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1156 * must be held.
1157 */
1158 void
1159 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1160 {
1161 kmutex_t *old;
1162
1163 KASSERT(mutex_owned(l->l_mutex));
1164
1165 old = l->l_mutex;
1166 membar_producer();
1167 l->l_mutex = new;
1168 mutex_spin_exit(old);
1169 }
1170
1171 /*
1172 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1173 * locked.
1174 */
1175 void
1176 lwp_relock(struct lwp *l, kmutex_t *new)
1177 {
1178 kmutex_t *old;
1179
1180 KASSERT(mutex_owned(l->l_mutex));
1181
1182 old = l->l_mutex;
1183 if (old != new) {
1184 mutex_spin_enter(new);
1185 l->l_mutex = new;
1186 mutex_spin_exit(old);
1187 }
1188 }
1189
1190 int
1191 lwp_trylock(struct lwp *l)
1192 {
1193 kmutex_t *old;
1194
1195 for (;;) {
1196 if (!mutex_tryenter(old = l->l_mutex))
1197 return 0;
1198 if (__predict_true(l->l_mutex == old))
1199 return 1;
1200 mutex_spin_exit(old);
1201 }
1202 }
1203
1204 /*
1205 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1206 * set.
1207 */
1208 void
1209 lwp_userret(struct lwp *l)
1210 {
1211 struct proc *p;
1212 void (*hook)(void);
1213 int sig;
1214
1215 p = l->l_proc;
1216
1217 #ifndef __HAVE_FAST_SOFTINTS
1218 /* Run pending soft interrupts. */
1219 if (l->l_cpu->ci_data.cpu_softints != 0)
1220 softint_overlay();
1221 #endif
1222
1223 /*
1224 * It should be safe to do this read unlocked on a multiprocessor
1225 * system..
1226 */
1227 while ((l->l_flag & LW_USERRET) != 0) {
1228 /*
1229 * Process pending signals first, unless the process
1230 * is dumping core or exiting, where we will instead
1231 * enter the L_WSUSPEND case below.
1232 */
1233 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1234 LW_PENDSIG) {
1235 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1236 mutex_enter(&p->p_smutex);
1237 while ((sig = issignal(l)) != 0)
1238 postsig(sig);
1239 mutex_exit(&p->p_smutex);
1240 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1241 }
1242
1243 /*
1244 * Core-dump or suspend pending.
1245 *
1246 * In case of core dump, suspend ourselves, so that the
1247 * kernel stack and therefore the userland registers saved
1248 * in the trapframe are around for coredump() to write them
1249 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1250 * will write the core file out once all other LWPs are
1251 * suspended.
1252 */
1253 if ((l->l_flag & LW_WSUSPEND) != 0) {
1254 mutex_enter(&p->p_smutex);
1255 p->p_nrlwps--;
1256 cv_broadcast(&p->p_lwpcv);
1257 lwp_lock(l);
1258 l->l_stat = LSSUSPENDED;
1259 mutex_exit(&p->p_smutex);
1260 mi_switch(l);
1261 }
1262
1263 /* Process is exiting. */
1264 if ((l->l_flag & LW_WEXIT) != 0) {
1265 KERNEL_LOCK(1, l);
1266 lwp_exit(l);
1267 KASSERT(0);
1268 /* NOTREACHED */
1269 }
1270
1271 /* Call userret hook; used by Linux emulation. */
1272 if ((l->l_flag & LW_WUSERRET) != 0) {
1273 lwp_lock(l);
1274 l->l_flag &= ~LW_WUSERRET;
1275 lwp_unlock(l);
1276 hook = p->p_userret;
1277 p->p_userret = NULL;
1278 (*hook)();
1279 }
1280 }
1281 }
1282
1283 /*
1284 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1285 */
1286 void
1287 lwp_need_userret(struct lwp *l)
1288 {
1289 KASSERT(lwp_locked(l, NULL));
1290
1291 /*
1292 * Since the tests in lwp_userret() are done unlocked, make sure
1293 * that the condition will be seen before forcing the LWP to enter
1294 * kernel mode.
1295 */
1296 membar_producer();
1297 cpu_signotify(l);
1298 }
1299
1300 /*
1301 * Add one reference to an LWP. This will prevent the LWP from
1302 * exiting, thus keep the lwp structure and PCB around to inspect.
1303 */
1304 void
1305 lwp_addref(struct lwp *l)
1306 {
1307
1308 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1309 KASSERT(l->l_stat != LSZOMB);
1310 KASSERT(l->l_refcnt != 0);
1311
1312 l->l_refcnt++;
1313 }
1314
1315 /*
1316 * Remove one reference to an LWP. If this is the last reference,
1317 * then we must finalize the LWP's death.
1318 */
1319 void
1320 lwp_delref(struct lwp *l)
1321 {
1322 struct proc *p = l->l_proc;
1323
1324 mutex_enter(&p->p_smutex);
1325 KASSERT(l->l_stat != LSZOMB);
1326 KASSERT(l->l_refcnt > 0);
1327 if (--l->l_refcnt == 0)
1328 cv_broadcast(&p->p_lwpcv);
1329 mutex_exit(&p->p_smutex);
1330 }
1331
1332 /*
1333 * Drain all references to the current LWP.
1334 */
1335 void
1336 lwp_drainrefs(struct lwp *l)
1337 {
1338 struct proc *p = l->l_proc;
1339
1340 KASSERT(mutex_owned(&p->p_smutex));
1341 KASSERT(l->l_refcnt != 0);
1342
1343 l->l_refcnt--;
1344 while (l->l_refcnt != 0)
1345 cv_wait(&p->p_lwpcv, &p->p_smutex);
1346 }
1347
1348 /*
1349 * lwp_specific_key_create --
1350 * Create a key for subsystem lwp-specific data.
1351 */
1352 int
1353 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1354 {
1355
1356 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1357 }
1358
1359 /*
1360 * lwp_specific_key_delete --
1361 * Delete a key for subsystem lwp-specific data.
1362 */
1363 void
1364 lwp_specific_key_delete(specificdata_key_t key)
1365 {
1366
1367 specificdata_key_delete(lwp_specificdata_domain, key);
1368 }
1369
1370 /*
1371 * lwp_initspecific --
1372 * Initialize an LWP's specificdata container.
1373 */
1374 void
1375 lwp_initspecific(struct lwp *l)
1376 {
1377 int error;
1378
1379 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1380 KASSERT(error == 0);
1381 }
1382
1383 /*
1384 * lwp_finispecific --
1385 * Finalize an LWP's specificdata container.
1386 */
1387 void
1388 lwp_finispecific(struct lwp *l)
1389 {
1390
1391 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1392 }
1393
1394 /*
1395 * lwp_getspecific --
1396 * Return lwp-specific data corresponding to the specified key.
1397 *
1398 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1399 * only its OWN SPECIFIC DATA. If it is necessary to access another
1400 * LWP's specifc data, care must be taken to ensure that doing so
1401 * would not cause internal data structure inconsistency (i.e. caller
1402 * can guarantee that the target LWP is not inside an lwp_getspecific()
1403 * or lwp_setspecific() call).
1404 */
1405 void *
1406 lwp_getspecific(specificdata_key_t key)
1407 {
1408
1409 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1410 &curlwp->l_specdataref, key));
1411 }
1412
1413 void *
1414 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1415 {
1416
1417 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1418 &l->l_specdataref, key));
1419 }
1420
1421 /*
1422 * lwp_setspecific --
1423 * Set lwp-specific data corresponding to the specified key.
1424 */
1425 void
1426 lwp_setspecific(specificdata_key_t key, void *data)
1427 {
1428
1429 specificdata_setspecific(lwp_specificdata_domain,
1430 &curlwp->l_specdataref, key, data);
1431 }
1432
1433 /*
1434 * Allocate a new lwpctl structure for a user LWP.
1435 */
1436 int
1437 lwp_ctl_alloc(vaddr_t *uaddr)
1438 {
1439 lcproc_t *lp;
1440 u_int bit, i, offset;
1441 struct uvm_object *uao;
1442 int error;
1443 lcpage_t *lcp;
1444 proc_t *p;
1445 lwp_t *l;
1446
1447 l = curlwp;
1448 p = l->l_proc;
1449
1450 if (l->l_lcpage != NULL) {
1451 lcp = l->l_lcpage;
1452 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1453 return (EINVAL);
1454 }
1455
1456 /* First time around, allocate header structure for the process. */
1457 if ((lp = p->p_lwpctl) == NULL) {
1458 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1459 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1460 lp->lp_uao = NULL;
1461 TAILQ_INIT(&lp->lp_pages);
1462 mutex_enter(&p->p_mutex);
1463 if (p->p_lwpctl == NULL) {
1464 p->p_lwpctl = lp;
1465 mutex_exit(&p->p_mutex);
1466 } else {
1467 mutex_exit(&p->p_mutex);
1468 mutex_destroy(&lp->lp_lock);
1469 kmem_free(lp, sizeof(*lp));
1470 lp = p->p_lwpctl;
1471 }
1472 }
1473
1474 /*
1475 * Set up an anonymous memory region to hold the shared pages.
1476 * Map them into the process' address space. The user vmspace
1477 * gets the first reference on the UAO.
1478 */
1479 mutex_enter(&lp->lp_lock);
1480 if (lp->lp_uao == NULL) {
1481 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1482 lp->lp_cur = 0;
1483 lp->lp_max = LWPCTL_UAREA_SZ;
1484 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1485 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1486 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1487 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1488 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1489 if (error != 0) {
1490 uao_detach(lp->lp_uao);
1491 lp->lp_uao = NULL;
1492 mutex_exit(&lp->lp_lock);
1493 return error;
1494 }
1495 }
1496
1497 /* Get a free block and allocate for this LWP. */
1498 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1499 if (lcp->lcp_nfree != 0)
1500 break;
1501 }
1502 if (lcp == NULL) {
1503 /* Nothing available - try to set up a free page. */
1504 if (lp->lp_cur == lp->lp_max) {
1505 mutex_exit(&lp->lp_lock);
1506 return ENOMEM;
1507 }
1508 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1509 if (lcp == NULL) {
1510 mutex_exit(&lp->lp_lock);
1511 return ENOMEM;
1512 }
1513 /*
1514 * Wire the next page down in kernel space. Since this
1515 * is a new mapping, we must add a reference.
1516 */
1517 uao = lp->lp_uao;
1518 (*uao->pgops->pgo_reference)(uao);
1519 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1520 uao, lp->lp_cur, PAGE_SIZE,
1521 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1522 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1523 if (error == 0)
1524 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1525 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1526 if (error != 0) {
1527 mutex_exit(&lp->lp_lock);
1528 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1529 (*uao->pgops->pgo_detach)(uao);
1530 return error;
1531 }
1532 /* Prepare the page descriptor and link into the list. */
1533 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1534 lp->lp_cur += PAGE_SIZE;
1535 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1536 lcp->lcp_rotor = 0;
1537 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1538 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1539 }
1540 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1541 if (++i >= LWPCTL_BITMAP_ENTRIES)
1542 i = 0;
1543 }
1544 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1545 lcp->lcp_bitmap[i] ^= (1 << bit);
1546 lcp->lcp_rotor = i;
1547 lcp->lcp_nfree--;
1548 l->l_lcpage = lcp;
1549 offset = (i << 5) + bit;
1550 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1551 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1552 mutex_exit(&lp->lp_lock);
1553
1554 l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
1555
1556 return 0;
1557 }
1558
1559 /*
1560 * Free an lwpctl structure back to the per-process list.
1561 */
1562 void
1563 lwp_ctl_free(lwp_t *l)
1564 {
1565 lcproc_t *lp;
1566 lcpage_t *lcp;
1567 u_int map, offset;
1568
1569 lp = l->l_proc->p_lwpctl;
1570 KASSERT(lp != NULL);
1571
1572 lcp = l->l_lcpage;
1573 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1574 KASSERT(offset < LWPCTL_PER_PAGE);
1575
1576 mutex_enter(&lp->lp_lock);
1577 lcp->lcp_nfree++;
1578 map = offset >> 5;
1579 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1580 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1581 lcp->lcp_rotor = map;
1582 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1583 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1584 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1585 }
1586 mutex_exit(&lp->lp_lock);
1587 }
1588
1589 /*
1590 * Process is exiting; tear down lwpctl state. This can only be safely
1591 * called by the last LWP in the process.
1592 */
1593 void
1594 lwp_ctl_exit(void)
1595 {
1596 lcpage_t *lcp, *next;
1597 lcproc_t *lp;
1598 proc_t *p;
1599 lwp_t *l;
1600
1601 l = curlwp;
1602 l->l_lwpctl = NULL;
1603 p = l->l_proc;
1604 lp = p->p_lwpctl;
1605
1606 KASSERT(lp != NULL);
1607 KASSERT(p->p_nlwps == 1);
1608
1609 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1610 next = TAILQ_NEXT(lcp, lcp_chain);
1611 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1612 lcp->lcp_kaddr + PAGE_SIZE);
1613 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1614 }
1615
1616 if (lp->lp_uao != NULL) {
1617 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1618 lp->lp_uva + LWPCTL_UAREA_SZ);
1619 }
1620
1621 mutex_destroy(&lp->lp_lock);
1622 kmem_free(lp, sizeof(*lp));
1623 p->p_lwpctl = NULL;
1624 }
1625