kern_lwp.c revision 1.70.2.2 1 /* $NetBSD: kern_lwp.c,v 1.70.2.2 2007/10/14 11:48:40 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit or thread of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp", also known as lwp_t.
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing concurrently in the kernel.
52 *
53 * Execution states
54 *
55 * At any given time, an LWP has overall state that is described by
56 * lwp::l_stat. The states are broken into two sets below. The first
57 * set is guaranteed to represent the absolute, current state of the
58 * LWP:
59 *
60 * LSONPROC
61 *
62 * On processor: the LWP is executing on a CPU, either in the
63 * kernel or in user space.
64 *
65 * LSRUN
66 *
67 * Runnable: the LWP is parked on a run queue, and may soon be
68 * chosen to run by a idle processor, or by a processor that
69 * has been asked to preempt a currently runnning but lower
70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 * then the LWP is not on a run queue, but may be soon.
72 *
73 * LSIDL
74 *
75 * Idle: the LWP has been created but has not yet executed,
76 * or it has ceased executing a unit of work and is waiting
77 * to be started again.
78 *
79 * LSSUSPENDED:
80 *
81 * Suspended: the LWP has had its execution suspended by
82 * another LWP in the same process using the _lwp_suspend()
83 * system call. User-level LWPs also enter the suspended
84 * state when the system is shutting down.
85 *
86 * The second set represent a "statement of intent" on behalf of the
87 * LWP. The LWP may in fact be executing on a processor, may be
88 * sleeping or idle. It is expected to take the necessary action to
89 * stop executing or become "running" again within a short timeframe.
90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91 * Importantly, in indicates that its state is tied to a CPU.
92 *
93 * LSZOMB:
94 *
95 * Dead or dying: the LWP has released most of its resources
96 * and is a) about to switch away into oblivion b) has already
97 * switched away. When it switches away, its few remaining
98 * resources can be collected.
99 *
100 * LSSLEEP:
101 *
102 * Sleeping: the LWP has entered itself onto a sleep queue, and
103 * has switched away or will switch away shortly to allow other
104 * LWPs to run on the CPU.
105 *
106 * LSSTOP:
107 *
108 * Stopped: the LWP has been stopped as a result of a job
109 * control signal, or as a result of the ptrace() interface.
110 *
111 * Stopped LWPs may run briefly within the kernel to handle
112 * signals that they receive, but will not return to user space
113 * until their process' state is changed away from stopped.
114 *
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP state may only be set when returning to
122 * user space in userret(), or when sleeping interruptably. The
123 * LSSUSPENDED state may only be set in userret(). Before setting
124 * those states, we try to ensure that the LWPs will release all
125 * locks that they hold, and at a minimum try to ensure that the
126 * LWP can be set runnable again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Other state transitions are possible with kernel threads (eg
145 * ONPROC -> IDL), but only happen under tightly controlled
146 * circumstances the side effects are understood.
147 *
148 * Locking
149 *
150 * The majority of fields in 'struct lwp' are covered by a single,
151 * general spin lock pointed to by lwp::l_mutex. The locks covering
152 * each field are documented in sys/lwp.h.
153 *
154 * State transitions must be made with the LWP's general lock held,
155 * and may cause the LWP's lock pointer to change. Manipulation of
156 * the general lock is not performed directly, but through calls to
157 * lwp_lock(), lwp_relock() and similar.
158 *
159 * States and their associated locks:
160 *
161 * LSONPROC, LSZOMB:
162 *
163 * Always covered by spc_lwplock, which protects running LWPs.
164 * This is a per-CPU lock.
165 *
166 * LSIDL, LSRUN:
167 *
168 * Always covered by spc_mutex, which protects the run queues.
169 * This may be a per-CPU lock, depending on the scheduler.
170 *
171 * LSSLEEP:
172 *
173 * Covered by a lock associated with the sleep queue that the
174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175 *
176 * LSSTOP, LSSUSPENDED:
177 *
178 * If the LWP was previously sleeping (l_wchan != NULL), then
179 * l_mutex references the sleep queue lock. If the LWP was
180 * runnable or on the CPU when halted, or has been removed from
181 * the sleep queue since halted, then the lock is spc_lwplock.
182 *
183 * The lock order is as follows:
184 *
185 * spc::spc_lwplock ->
186 * sleepq_t::sq_mutex ->
187 * tschain_t::tc_mutex ->
188 * spc::spc_mutex
189 *
190 * Each process has an scheduler state lock (proc::p_smutex), and a
191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192 * so on. When an LWP is to be entered into or removed from one of the
193 * following states, p_mutex must be held and the process wide counters
194 * adjusted:
195 *
196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197 *
198 * Note that an LWP is considered running or likely to run soon if in
199 * one of the following states. This affects the value of p_nrlwps:
200 *
201 * LSRUN, LSONPROC, LSSLEEP
202 *
203 * p_smutex does not need to be held when transitioning among these
204 * three states.
205 */
206
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.70.2.2 2007/10/14 11:48:40 yamt Exp $");
209
210 #include "opt_multiprocessor.h"
211 #include "opt_lockdebug.h"
212
213 #define _LWP_API_PRIVATE
214
215 #include <sys/param.h>
216 #include <sys/systm.h>
217 #include <sys/cpu.h>
218 #include <sys/pool.h>
219 #include <sys/proc.h>
220 #include <sys/syscallargs.h>
221 #include <sys/syscall_stats.h>
222 #include <sys/kauth.h>
223 #include <sys/sleepq.h>
224 #include <sys/lockdebug.h>
225 #include <sys/kmem.h>
226
227 #include <uvm/uvm_extern.h>
228
229 struct lwplist alllwp;
230
231 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
232 &pool_allocator_nointr, IPL_NONE);
233 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
234 &pool_allocator_nointr, IPL_NONE);
235
236 static specificdata_domain_t lwp_specificdata_domain;
237
238 #define LWP_DEBUG
239
240 #ifdef LWP_DEBUG
241 int lwp_debug = 0;
242 #define DPRINTF(x) if (lwp_debug) printf x
243 #else
244 #define DPRINTF(x)
245 #endif
246
247 void
248 lwpinit(void)
249 {
250
251 lwp_specificdata_domain = specificdata_domain_create();
252 KASSERT(lwp_specificdata_domain != NULL);
253 lwp_sys_init();
254 }
255
256 /*
257 * Set an suspended.
258 *
259 * Must be called with p_smutex held, and the LWP locked. Will unlock the
260 * LWP before return.
261 */
262 int
263 lwp_suspend(struct lwp *curl, struct lwp *t)
264 {
265 int error;
266
267 KASSERT(mutex_owned(&t->l_proc->p_smutex));
268 KASSERT(lwp_locked(t, NULL));
269
270 KASSERT(curl != t || curl->l_stat == LSONPROC);
271
272 /*
273 * If the current LWP has been told to exit, we must not suspend anyone
274 * else or deadlock could occur. We won't return to userspace.
275 */
276 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
277 lwp_unlock(t);
278 return (EDEADLK);
279 }
280
281 error = 0;
282
283 switch (t->l_stat) {
284 case LSRUN:
285 case LSONPROC:
286 t->l_flag |= LW_WSUSPEND;
287 lwp_need_userret(t);
288 lwp_unlock(t);
289 break;
290
291 case LSSLEEP:
292 t->l_flag |= LW_WSUSPEND;
293
294 /*
295 * Kick the LWP and try to get it to the kernel boundary
296 * so that it will release any locks that it holds.
297 * setrunnable() will release the lock.
298 */
299 if ((t->l_flag & LW_SINTR) != 0)
300 setrunnable(t);
301 else
302 lwp_unlock(t);
303 break;
304
305 case LSSUSPENDED:
306 lwp_unlock(t);
307 break;
308
309 case LSSTOP:
310 t->l_flag |= LW_WSUSPEND;
311 setrunnable(t);
312 break;
313
314 case LSIDL:
315 case LSZOMB:
316 error = EINTR; /* It's what Solaris does..... */
317 lwp_unlock(t);
318 break;
319 }
320
321 return (error);
322 }
323
324 /*
325 * Restart a suspended LWP.
326 *
327 * Must be called with p_smutex held, and the LWP locked. Will unlock the
328 * LWP before return.
329 */
330 void
331 lwp_continue(struct lwp *l)
332 {
333
334 KASSERT(mutex_owned(&l->l_proc->p_smutex));
335 KASSERT(lwp_locked(l, NULL));
336
337 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
338 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
339 l->l_wchan));
340
341 /* If rebooting or not suspended, then just bail out. */
342 if ((l->l_flag & LW_WREBOOT) != 0) {
343 lwp_unlock(l);
344 return;
345 }
346
347 l->l_flag &= ~LW_WSUSPEND;
348
349 if (l->l_stat != LSSUSPENDED) {
350 lwp_unlock(l);
351 return;
352 }
353
354 /* setrunnable() will release the lock. */
355 setrunnable(l);
356 }
357
358 /*
359 * Wait for an LWP within the current process to exit. If 'lid' is
360 * non-zero, we are waiting for a specific LWP.
361 *
362 * Must be called with p->p_smutex held.
363 */
364 int
365 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
366 {
367 struct proc *p = l->l_proc;
368 struct lwp *l2;
369 int nfound, error;
370 lwpid_t curlid;
371 bool exiting;
372
373 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
374 p->p_pid, l->l_lid, lid));
375
376 KASSERT(mutex_owned(&p->p_smutex));
377
378 p->p_nlwpwait++;
379 l->l_waitingfor = lid;
380 curlid = l->l_lid;
381 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
382
383 for (;;) {
384 /*
385 * Avoid a race between exit1() and sigexit(): if the
386 * process is dumping core, then we need to bail out: call
387 * into lwp_userret() where we will be suspended until the
388 * deed is done.
389 */
390 if ((p->p_sflag & PS_WCORE) != 0) {
391 mutex_exit(&p->p_smutex);
392 lwp_userret(l);
393 #ifdef DIAGNOSTIC
394 panic("lwp_wait1");
395 #endif
396 /* NOTREACHED */
397 }
398
399 /*
400 * First off, drain any detached LWP that is waiting to be
401 * reaped.
402 */
403 while ((l2 = p->p_zomblwp) != NULL) {
404 p->p_zomblwp = NULL;
405 lwp_free(l2, false, false);/* releases proc mutex */
406 mutex_enter(&p->p_smutex);
407 }
408
409 /*
410 * Now look for an LWP to collect. If the whole process is
411 * exiting, count detached LWPs as eligible to be collected,
412 * but don't drain them here.
413 */
414 nfound = 0;
415 error = 0;
416 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
417 /*
418 * If a specific wait and the target is waiting on
419 * us, then avoid deadlock. This also traps LWPs
420 * that try to wait on themselves.
421 *
422 * Note that this does not handle more complicated
423 * cycles, like: t1 -> t2 -> t3 -> t1. The process
424 * can still be killed so it is not a major problem.
425 */
426 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
427 error = EDEADLK;
428 break;
429 }
430 if (l2 == l)
431 continue;
432 if ((l2->l_prflag & LPR_DETACHED) != 0) {
433 nfound += exiting;
434 continue;
435 }
436 if (lid != 0) {
437 if (l2->l_lid != lid)
438 continue;
439 /*
440 * Mark this LWP as the first waiter, if there
441 * is no other.
442 */
443 if (l2->l_waiter == 0)
444 l2->l_waiter = curlid;
445 } else if (l2->l_waiter != 0) {
446 /*
447 * It already has a waiter - so don't
448 * collect it. If the waiter doesn't
449 * grab it we'll get another chance
450 * later.
451 */
452 nfound++;
453 continue;
454 }
455 nfound++;
456
457 /* No need to lock the LWP in order to see LSZOMB. */
458 if (l2->l_stat != LSZOMB)
459 continue;
460
461 /*
462 * We're no longer waiting. Reset the "first waiter"
463 * pointer on the target, in case it was us.
464 */
465 l->l_waitingfor = 0;
466 l2->l_waiter = 0;
467 p->p_nlwpwait--;
468 if (departed)
469 *departed = l2->l_lid;
470
471 /* lwp_free() releases the proc lock. */
472 lwp_free(l2, false, false);
473 mutex_enter(&p->p_smutex);
474 return 0;
475 }
476
477 if (error != 0)
478 break;
479 if (nfound == 0) {
480 error = ESRCH;
481 break;
482 }
483
484 /*
485 * The kernel is careful to ensure that it can not deadlock
486 * when exiting - just keep waiting.
487 */
488 if (exiting) {
489 KASSERT(p->p_nlwps > 1);
490 cv_wait(&p->p_lwpcv, &p->p_smutex);
491 continue;
492 }
493
494 /*
495 * If all other LWPs are waiting for exits or suspends
496 * and the supply of zombies and potential zombies is
497 * exhausted, then we are about to deadlock.
498 *
499 * If the process is exiting (and this LWP is not the one
500 * that is coordinating the exit) then bail out now.
501 */
502 if ((p->p_sflag & PS_WEXIT) != 0 ||
503 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
504 error = EDEADLK;
505 break;
506 }
507
508 /*
509 * Sit around and wait for something to happen. We'll be
510 * awoken if any of the conditions examined change: if an
511 * LWP exits, is collected, or is detached.
512 */
513 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
514 break;
515 }
516
517 /*
518 * We didn't find any LWPs to collect, we may have received a
519 * signal, or some other condition has caused us to bail out.
520 *
521 * If waiting on a specific LWP, clear the waiters marker: some
522 * other LWP may want it. Then, kick all the remaining waiters
523 * so that they can re-check for zombies and for deadlock.
524 */
525 if (lid != 0) {
526 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
527 if (l2->l_lid == lid) {
528 if (l2->l_waiter == curlid)
529 l2->l_waiter = 0;
530 break;
531 }
532 }
533 }
534 p->p_nlwpwait--;
535 l->l_waitingfor = 0;
536 cv_broadcast(&p->p_lwpcv);
537
538 return error;
539 }
540
541 /*
542 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
543 * The new LWP is created in state LSIDL and must be set running,
544 * suspended, or stopped by the caller.
545 */
546 int
547 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
548 int flags, void *stack, size_t stacksize,
549 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
550 {
551 struct lwp *l2, *isfree;
552 turnstile_t *ts;
553
554 /*
555 * First off, reap any detached LWP waiting to be collected.
556 * We can re-use its LWP structure and turnstile.
557 */
558 isfree = NULL;
559 if (p2->p_zomblwp != NULL) {
560 mutex_enter(&p2->p_smutex);
561 if ((isfree = p2->p_zomblwp) != NULL) {
562 p2->p_zomblwp = NULL;
563 lwp_free(isfree, true, false);/* releases proc mutex */
564 } else
565 mutex_exit(&p2->p_smutex);
566 }
567 if (isfree == NULL) {
568 l2 = pool_get(&lwp_pool, PR_WAITOK);
569 memset(l2, 0, sizeof(*l2));
570 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
571 SLIST_INIT(&l2->l_pi_lenders);
572 } else {
573 l2 = isfree;
574 ts = l2->l_ts;
575 KASSERT(l2->l_inheritedprio == MAXPRI);
576 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
577 memset(l2, 0, sizeof(*l2));
578 l2->l_ts = ts;
579 }
580
581 l2->l_stat = LSIDL;
582 l2->l_proc = p2;
583 l2->l_refcnt = 1;
584 l2->l_priority = l1->l_priority;
585 l2->l_usrpri = l1->l_usrpri;
586 l2->l_inheritedprio = MAXPRI;
587 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
588 l2->l_cpu = l1->l_cpu;
589 l2->l_flag = inmem ? LW_INMEM : 0;
590
591 if (p2->p_flag & PK_SYSTEM) {
592 /*
593 * Mark it as a system process and not a candidate for
594 * swapping.
595 */
596 l2->l_flag |= LW_SYSTEM;
597 } else {
598 /* Look for a CPU to start */
599 l2->l_cpu = sched_takecpu(l2);
600 l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
601 }
602
603 lwp_initspecific(l2);
604 sched_lwp_fork(l2);
605 lwp_update_creds(l2);
606 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
607 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
608 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
609 cv_init(&l2->l_sigcv, "sigwait");
610 l2->l_syncobj = &sched_syncobj;
611
612 if (rnewlwpp != NULL)
613 *rnewlwpp = l2;
614
615 l2->l_addr = UAREA_TO_USER(uaddr);
616 uvm_lwp_fork(l1, l2, stack, stacksize, func,
617 (arg != NULL) ? arg : l2);
618
619 mutex_enter(&p2->p_smutex);
620
621 if ((flags & LWP_DETACHED) != 0) {
622 l2->l_prflag = LPR_DETACHED;
623 p2->p_ndlwps++;
624 } else
625 l2->l_prflag = 0;
626
627 l2->l_sigmask = l1->l_sigmask;
628 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
629 sigemptyset(&l2->l_sigpend.sp_set);
630
631 p2->p_nlwpid++;
632 if (p2->p_nlwpid == 0)
633 p2->p_nlwpid++;
634 l2->l_lid = p2->p_nlwpid;
635 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
636 p2->p_nlwps++;
637
638 mutex_exit(&p2->p_smutex);
639
640 mutex_enter(&proclist_lock);
641 mutex_enter(&proclist_mutex);
642 LIST_INSERT_HEAD(&alllwp, l2, l_list);
643 mutex_exit(&proclist_mutex);
644 mutex_exit(&proclist_lock);
645
646 SYSCALL_TIME_LWP_INIT(l2);
647
648 if (p2->p_emul->e_lwp_fork)
649 (*p2->p_emul->e_lwp_fork)(l1, l2);
650
651 return (0);
652 }
653
654 /*
655 * Called by MD code when a new LWP begins execution. Must be called
656 * with the previous LWP locked (so at splsched), or if there is no
657 * previous LWP, at splsched.
658 */
659 void
660 lwp_startup(struct lwp *prev, struct lwp *new)
661 {
662
663 if (prev != NULL) {
664 lwp_unlock(prev);
665 }
666 spl0();
667 pmap_activate(new);
668 LOCKDEBUG_BARRIER(NULL, 0);
669 if ((new->l_pflag & LP_MPSAFE) == 0) {
670 KERNEL_LOCK(1, new);
671 }
672 }
673
674 /*
675 * Exit an LWP.
676 */
677 void
678 lwp_exit(struct lwp *l)
679 {
680 struct proc *p = l->l_proc;
681 struct lwp *l2;
682 bool current;
683
684 current = (l == curlwp);
685
686 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
687 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
688 KASSERT(current || l->l_stat == LSIDL);
689
690 /*
691 * Verify that we hold no locks other than the kernel lock.
692 */
693 #ifdef MULTIPROCESSOR
694 LOCKDEBUG_BARRIER(&kernel_lock, 0);
695 #else
696 LOCKDEBUG_BARRIER(NULL, 0);
697 #endif
698
699 /*
700 * If we are the last live LWP in a process, we need to exit the
701 * entire process. We do so with an exit status of zero, because
702 * it's a "controlled" exit, and because that's what Solaris does.
703 *
704 * We are not quite a zombie yet, but for accounting purposes we
705 * must increment the count of zombies here.
706 *
707 * Note: the last LWP's specificdata will be deleted here.
708 */
709 mutex_enter(&p->p_smutex);
710 if (p->p_nlwps - p->p_nzlwps == 1) {
711 KASSERT(current == true);
712 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
713 p->p_pid, l->l_lid));
714 exit1(l, 0);
715 /* NOTREACHED */
716 }
717 p->p_nzlwps++;
718 mutex_exit(&p->p_smutex);
719
720 if (p->p_emul->e_lwp_exit)
721 (*p->p_emul->e_lwp_exit)(l);
722
723 /* Delete the specificdata while it's still safe to sleep. */
724 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
725
726 /*
727 * Release our cached credentials.
728 */
729 kauth_cred_free(l->l_cred);
730 callout_destroy(&l->l_timeout_ch);
731
732 /*
733 * While we can still block, mark the LWP as unswappable to
734 * prevent conflicts with the with the swapper.
735 */
736 if (current)
737 uvm_lwp_hold(l);
738
739 /*
740 * Remove the LWP from the global list.
741 */
742 mutex_enter(&proclist_lock);
743 mutex_enter(&proclist_mutex);
744 LIST_REMOVE(l, l_list);
745 mutex_exit(&proclist_mutex);
746 mutex_exit(&proclist_lock);
747
748 /*
749 * Get rid of all references to the LWP that others (e.g. procfs)
750 * may have, and mark the LWP as a zombie. If the LWP is detached,
751 * mark it waiting for collection in the proc structure. Note that
752 * before we can do that, we need to free any other dead, deatched
753 * LWP waiting to meet its maker.
754 *
755 * XXXSMP disable preemption.
756 */
757 mutex_enter(&p->p_smutex);
758 lwp_drainrefs(l);
759
760 if ((l->l_prflag & LPR_DETACHED) != 0) {
761 while ((l2 = p->p_zomblwp) != NULL) {
762 p->p_zomblwp = NULL;
763 lwp_free(l2, false, false);/* releases proc mutex */
764 mutex_enter(&p->p_smutex);
765 l->l_refcnt++;
766 lwp_drainrefs(l);
767 }
768 p->p_zomblwp = l;
769 }
770
771 /*
772 * If we find a pending signal for the process and we have been
773 * asked to check for signals, then we loose: arrange to have
774 * all other LWPs in the process check for signals.
775 */
776 if ((l->l_flag & LW_PENDSIG) != 0 &&
777 firstsig(&p->p_sigpend.sp_set) != 0) {
778 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
779 lwp_lock(l2);
780 l2->l_flag |= LW_PENDSIG;
781 lwp_unlock(l2);
782 }
783 }
784
785 lwp_lock(l);
786 l->l_stat = LSZOMB;
787 lwp_unlock(l);
788 p->p_nrlwps--;
789 cv_broadcast(&p->p_lwpcv);
790 mutex_exit(&p->p_smutex);
791
792 /*
793 * We can no longer block. At this point, lwp_free() may already
794 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
795 *
796 * Free MD LWP resources.
797 */
798 #ifndef __NO_CPU_LWP_FREE
799 cpu_lwp_free(l, 0);
800 #endif
801
802 if (current) {
803 pmap_deactivate(l);
804
805 /*
806 * Release the kernel lock, and switch away into
807 * oblivion.
808 */
809 #ifdef notyet
810 /* XXXSMP hold in lwp_userret() */
811 KERNEL_UNLOCK_LAST(l);
812 #else
813 KERNEL_UNLOCK_ALL(l, NULL);
814 #endif
815 lwp_exit_switchaway(l);
816 }
817 }
818
819 void
820 lwp_exit_switchaway(struct lwp *l)
821 {
822 struct cpu_info *ci;
823 struct lwp *idlelwp;
824
825 /* Unlocked, but is for statistics only. */
826 uvmexp.swtch++;
827
828 (void)splsched();
829 l->l_flag &= ~LW_RUNNING;
830 ci = curcpu();
831 idlelwp = ci->ci_data.cpu_idlelwp;
832 idlelwp->l_stat = LSONPROC;
833 cpu_switchto(NULL, idlelwp);
834 }
835
836 /*
837 * Free a dead LWP's remaining resources.
838 *
839 * XXXLWP limits.
840 */
841 void
842 lwp_free(struct lwp *l, bool recycle, bool last)
843 {
844 struct proc *p = l->l_proc;
845 ksiginfoq_t kq;
846
847 /*
848 * If this was not the last LWP in the process, then adjust
849 * counters and unlock.
850 */
851 if (!last) {
852 /*
853 * Add the LWP's run time to the process' base value.
854 * This needs to co-incide with coming off p_lwps.
855 */
856 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
857 p->p_pctcpu += l->l_pctcpu;
858 LIST_REMOVE(l, l_sibling);
859 p->p_nlwps--;
860 p->p_nzlwps--;
861 if ((l->l_prflag & LPR_DETACHED) != 0)
862 p->p_ndlwps--;
863
864 /*
865 * Have any LWPs sleeping in lwp_wait() recheck for
866 * deadlock.
867 */
868 cv_broadcast(&p->p_lwpcv);
869 mutex_exit(&p->p_smutex);
870 }
871
872 #ifdef MULTIPROCESSOR
873 /*
874 * In the unlikely event that the LWP is still on the CPU,
875 * then spin until it has switched away. We need to release
876 * all locks to avoid deadlock against interrupt handlers on
877 * the target CPU.
878 */
879 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
880 int count;
881 (void)count; /* XXXgcc */
882 KERNEL_UNLOCK_ALL(curlwp, &count);
883 while ((l->l_flag & LW_RUNNING) != 0 ||
884 l->l_cpu->ci_curlwp == l)
885 SPINLOCK_BACKOFF_HOOK;
886 KERNEL_LOCK(count, curlwp);
887 }
888 #endif
889
890 /*
891 * Destroy the LWP's remaining signal information.
892 */
893 ksiginfo_queue_init(&kq);
894 sigclear(&l->l_sigpend, NULL, &kq);
895 ksiginfo_queue_drain(&kq);
896 cv_destroy(&l->l_sigcv);
897 mutex_destroy(&l->l_swaplock);
898
899 /*
900 * Free the LWP's turnstile and the LWP structure itself unless the
901 * caller wants to recycle them. Also, free the scheduler specific data.
902 *
903 * We can't return turnstile0 to the pool (it didn't come from it),
904 * so if it comes up just drop it quietly and move on.
905 *
906 * We don't recycle the VM resources at this time.
907 */
908 KERNEL_LOCK(1, curlwp); /* XXXSMP */
909
910 sched_lwp_exit(l);
911
912 if (!recycle && l->l_ts != &turnstile0)
913 pool_cache_put(&turnstile_cache, l->l_ts);
914 #ifndef __NO_CPU_LWP_FREE
915 cpu_lwp_free2(l);
916 #endif
917 uvm_lwp_exit(l);
918 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
919 KASSERT(l->l_inheritedprio == MAXPRI);
920 if (!recycle)
921 pool_put(&lwp_pool, l);
922 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
923 }
924
925 /*
926 * Pick a LWP to represent the process for those operations which
927 * want information about a "process" that is actually associated
928 * with a LWP.
929 *
930 * If 'locking' is false, no locking or lock checks are performed.
931 * This is intended for use by DDB.
932 *
933 * We don't bother locking the LWP here, since code that uses this
934 * interface is broken by design and an exact match is not required.
935 */
936 struct lwp *
937 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
938 {
939 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
940 struct lwp *signalled;
941 int cnt;
942
943 if (locking) {
944 KASSERT(mutex_owned(&p->p_smutex));
945 }
946
947 /* Trivial case: only one LWP */
948 if (p->p_nlwps == 1) {
949 l = LIST_FIRST(&p->p_lwps);
950 if (nrlwps)
951 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
952 return l;
953 }
954
955 cnt = 0;
956 switch (p->p_stat) {
957 case SSTOP:
958 case SACTIVE:
959 /* Pick the most live LWP */
960 onproc = running = sleeping = stopped = suspended = NULL;
961 signalled = NULL;
962 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
963 if ((l->l_flag & LW_IDLE) != 0) {
964 continue;
965 }
966 if (l->l_lid == p->p_sigctx.ps_lwp)
967 signalled = l;
968 switch (l->l_stat) {
969 case LSONPROC:
970 onproc = l;
971 cnt++;
972 break;
973 case LSRUN:
974 running = l;
975 cnt++;
976 break;
977 case LSSLEEP:
978 sleeping = l;
979 break;
980 case LSSTOP:
981 stopped = l;
982 break;
983 case LSSUSPENDED:
984 suspended = l;
985 break;
986 }
987 }
988 if (nrlwps)
989 *nrlwps = cnt;
990 if (signalled)
991 l = signalled;
992 else if (onproc)
993 l = onproc;
994 else if (running)
995 l = running;
996 else if (sleeping)
997 l = sleeping;
998 else if (stopped)
999 l = stopped;
1000 else if (suspended)
1001 l = suspended;
1002 else
1003 break;
1004 return l;
1005 #ifdef DIAGNOSTIC
1006 case SIDL:
1007 case SZOMB:
1008 case SDYING:
1009 case SDEAD:
1010 if (locking)
1011 mutex_exit(&p->p_smutex);
1012 /* We have more than one LWP and we're in SIDL?
1013 * How'd that happen?
1014 */
1015 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1016 p->p_pid, p->p_comm, p->p_stat);
1017 break;
1018 default:
1019 if (locking)
1020 mutex_exit(&p->p_smutex);
1021 panic("Process %d (%s) in unknown state %d",
1022 p->p_pid, p->p_comm, p->p_stat);
1023 #endif
1024 }
1025
1026 if (locking)
1027 mutex_exit(&p->p_smutex);
1028 panic("proc_representative_lwp: couldn't find a lwp for process"
1029 " %d (%s)", p->p_pid, p->p_comm);
1030 /* NOTREACHED */
1031 return NULL;
1032 }
1033
1034 /*
1035 * Look up a live LWP within the speicifed process, and return it locked.
1036 *
1037 * Must be called with p->p_smutex held.
1038 */
1039 struct lwp *
1040 lwp_find(struct proc *p, int id)
1041 {
1042 struct lwp *l;
1043
1044 KASSERT(mutex_owned(&p->p_smutex));
1045
1046 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1047 if (l->l_lid == id)
1048 break;
1049 }
1050
1051 /*
1052 * No need to lock - all of these conditions will
1053 * be visible with the process level mutex held.
1054 */
1055 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1056 l = NULL;
1057
1058 return l;
1059 }
1060
1061 /*
1062 * Update an LWP's cached credentials to mirror the process' master copy.
1063 *
1064 * This happens early in the syscall path, on user trap, and on LWP
1065 * creation. A long-running LWP can also voluntarily choose to update
1066 * it's credentials by calling this routine. This may be called from
1067 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1068 */
1069 void
1070 lwp_update_creds(struct lwp *l)
1071 {
1072 kauth_cred_t oc;
1073 struct proc *p;
1074
1075 p = l->l_proc;
1076 oc = l->l_cred;
1077
1078 mutex_enter(&p->p_mutex);
1079 kauth_cred_hold(p->p_cred);
1080 l->l_cred = p->p_cred;
1081 mutex_exit(&p->p_mutex);
1082 if (oc != NULL) {
1083 KERNEL_LOCK(1, l); /* XXXSMP */
1084 kauth_cred_free(oc);
1085 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
1086 }
1087 }
1088
1089 /*
1090 * Verify that an LWP is locked, and optionally verify that the lock matches
1091 * one we specify.
1092 */
1093 int
1094 lwp_locked(struct lwp *l, kmutex_t *mtx)
1095 {
1096 kmutex_t *cur = l->l_mutex;
1097
1098 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1099 }
1100
1101 /*
1102 * Lock an LWP.
1103 */
1104 void
1105 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1106 {
1107
1108 /*
1109 * XXXgcc ignoring kmutex_t * volatile on i386
1110 *
1111 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1112 */
1113 #if 1
1114 while (l->l_mutex != old) {
1115 #else
1116 for (;;) {
1117 #endif
1118 mutex_spin_exit(old);
1119 old = l->l_mutex;
1120 mutex_spin_enter(old);
1121
1122 /*
1123 * mutex_enter() will have posted a read barrier. Re-test
1124 * l->l_mutex. If it has changed, we need to try again.
1125 */
1126 #if 1
1127 }
1128 #else
1129 } while (__predict_false(l->l_mutex != old));
1130 #endif
1131 }
1132
1133 /*
1134 * Lend a new mutex to an LWP. The old mutex must be held.
1135 */
1136 void
1137 lwp_setlock(struct lwp *l, kmutex_t *new)
1138 {
1139
1140 KASSERT(mutex_owned(l->l_mutex));
1141
1142 mb_write();
1143 l->l_mutex = new;
1144 }
1145
1146 /*
1147 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1148 * must be held.
1149 */
1150 void
1151 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1152 {
1153 kmutex_t *old;
1154
1155 KASSERT(mutex_owned(l->l_mutex));
1156
1157 old = l->l_mutex;
1158 mb_write();
1159 l->l_mutex = new;
1160 mutex_spin_exit(old);
1161 }
1162
1163 /*
1164 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1165 * locked.
1166 */
1167 void
1168 lwp_relock(struct lwp *l, kmutex_t *new)
1169 {
1170 kmutex_t *old;
1171
1172 KASSERT(mutex_owned(l->l_mutex));
1173
1174 old = l->l_mutex;
1175 if (old != new) {
1176 mutex_spin_enter(new);
1177 l->l_mutex = new;
1178 mutex_spin_exit(old);
1179 }
1180 }
1181
1182 int
1183 lwp_trylock(struct lwp *l)
1184 {
1185 kmutex_t *old;
1186
1187 for (;;) {
1188 if (!mutex_tryenter(old = l->l_mutex))
1189 return 0;
1190 if (__predict_true(l->l_mutex == old))
1191 return 1;
1192 mutex_spin_exit(old);
1193 }
1194 }
1195
1196 /*
1197 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1198 * set.
1199 */
1200 void
1201 lwp_userret(struct lwp *l)
1202 {
1203 struct proc *p;
1204 void (*hook)(void);
1205 int sig;
1206
1207 p = l->l_proc;
1208
1209 /*
1210 * It should be safe to do this read unlocked on a multiprocessor
1211 * system..
1212 */
1213 while ((l->l_flag & LW_USERRET) != 0) {
1214 /*
1215 * Process pending signals first, unless the process
1216 * is dumping core or exiting, where we will instead
1217 * enter the L_WSUSPEND case below.
1218 */
1219 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1220 LW_PENDSIG) {
1221 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1222 mutex_enter(&p->p_smutex);
1223 while ((sig = issignal(l)) != 0)
1224 postsig(sig);
1225 mutex_exit(&p->p_smutex);
1226 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1227 }
1228
1229 /*
1230 * Core-dump or suspend pending.
1231 *
1232 * In case of core dump, suspend ourselves, so that the
1233 * kernel stack and therefore the userland registers saved
1234 * in the trapframe are around for coredump() to write them
1235 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1236 * will write the core file out once all other LWPs are
1237 * suspended.
1238 */
1239 if ((l->l_flag & LW_WSUSPEND) != 0) {
1240 mutex_enter(&p->p_smutex);
1241 p->p_nrlwps--;
1242 cv_broadcast(&p->p_lwpcv);
1243 lwp_lock(l);
1244 l->l_stat = LSSUSPENDED;
1245 mutex_exit(&p->p_smutex);
1246 mi_switch(l);
1247 }
1248
1249 /* Process is exiting. */
1250 if ((l->l_flag & LW_WEXIT) != 0) {
1251 KERNEL_LOCK(1, l);
1252 lwp_exit(l);
1253 KASSERT(0);
1254 /* NOTREACHED */
1255 }
1256
1257 /* Call userret hook; used by Linux emulation. */
1258 if ((l->l_flag & LW_WUSERRET) != 0) {
1259 lwp_lock(l);
1260 l->l_flag &= ~LW_WUSERRET;
1261 lwp_unlock(l);
1262 hook = p->p_userret;
1263 p->p_userret = NULL;
1264 (*hook)();
1265 }
1266 }
1267 }
1268
1269 /*
1270 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1271 */
1272 void
1273 lwp_need_userret(struct lwp *l)
1274 {
1275 KASSERT(lwp_locked(l, NULL));
1276
1277 /*
1278 * Since the tests in lwp_userret() are done unlocked, make sure
1279 * that the condition will be seen before forcing the LWP to enter
1280 * kernel mode.
1281 */
1282 mb_write();
1283 cpu_signotify(l);
1284 }
1285
1286 /*
1287 * Add one reference to an LWP. This will prevent the LWP from
1288 * exiting, thus keep the lwp structure and PCB around to inspect.
1289 */
1290 void
1291 lwp_addref(struct lwp *l)
1292 {
1293
1294 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1295 KASSERT(l->l_stat != LSZOMB);
1296 KASSERT(l->l_refcnt != 0);
1297
1298 l->l_refcnt++;
1299 }
1300
1301 /*
1302 * Remove one reference to an LWP. If this is the last reference,
1303 * then we must finalize the LWP's death.
1304 */
1305 void
1306 lwp_delref(struct lwp *l)
1307 {
1308 struct proc *p = l->l_proc;
1309
1310 mutex_enter(&p->p_smutex);
1311 KASSERT(l->l_stat != LSZOMB);
1312 KASSERT(l->l_refcnt > 0);
1313 if (--l->l_refcnt == 0)
1314 cv_broadcast(&p->p_refcv);
1315 mutex_exit(&p->p_smutex);
1316 }
1317
1318 /*
1319 * Drain all references to the current LWP.
1320 */
1321 void
1322 lwp_drainrefs(struct lwp *l)
1323 {
1324 struct proc *p = l->l_proc;
1325
1326 KASSERT(mutex_owned(&p->p_smutex));
1327 KASSERT(l->l_refcnt != 0);
1328
1329 l->l_refcnt--;
1330 while (l->l_refcnt != 0)
1331 cv_wait(&p->p_refcv, &p->p_smutex);
1332 }
1333
1334 /*
1335 * lwp_specific_key_create --
1336 * Create a key for subsystem lwp-specific data.
1337 */
1338 int
1339 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1340 {
1341
1342 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1343 }
1344
1345 /*
1346 * lwp_specific_key_delete --
1347 * Delete a key for subsystem lwp-specific data.
1348 */
1349 void
1350 lwp_specific_key_delete(specificdata_key_t key)
1351 {
1352
1353 specificdata_key_delete(lwp_specificdata_domain, key);
1354 }
1355
1356 /*
1357 * lwp_initspecific --
1358 * Initialize an LWP's specificdata container.
1359 */
1360 void
1361 lwp_initspecific(struct lwp *l)
1362 {
1363 int error;
1364
1365 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1366 KASSERT(error == 0);
1367 }
1368
1369 /*
1370 * lwp_finispecific --
1371 * Finalize an LWP's specificdata container.
1372 */
1373 void
1374 lwp_finispecific(struct lwp *l)
1375 {
1376
1377 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1378 }
1379
1380 /*
1381 * lwp_getspecific --
1382 * Return lwp-specific data corresponding to the specified key.
1383 *
1384 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1385 * only its OWN SPECIFIC DATA. If it is necessary to access another
1386 * LWP's specifc data, care must be taken to ensure that doing so
1387 * would not cause internal data structure inconsistency (i.e. caller
1388 * can guarantee that the target LWP is not inside an lwp_getspecific()
1389 * or lwp_setspecific() call).
1390 */
1391 void *
1392 lwp_getspecific(specificdata_key_t key)
1393 {
1394
1395 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1396 &curlwp->l_specdataref, key));
1397 }
1398
1399 void *
1400 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1401 {
1402
1403 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1404 &l->l_specdataref, key));
1405 }
1406
1407 /*
1408 * lwp_setspecific --
1409 * Set lwp-specific data corresponding to the specified key.
1410 */
1411 void
1412 lwp_setspecific(specificdata_key_t key, void *data)
1413 {
1414
1415 specificdata_setspecific(lwp_specificdata_domain,
1416 &curlwp->l_specdataref, key, data);
1417 }
1418