kern_lwp.c revision 1.72 1 /* $NetBSD: kern_lwp.c,v 1.72 2007/10/08 18:11:11 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit or thread of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp", also known as lwp_t.
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing concurrently in the kernel.
52 *
53 * Execution states
54 *
55 * At any given time, an LWP has overall state that is described by
56 * lwp::l_stat. The states are broken into two sets below. The first
57 * set is guaranteed to represent the absolute, current state of the
58 * LWP:
59 *
60 * LSONPROC
61 *
62 * On processor: the LWP is executing on a CPU, either in the
63 * kernel or in user space.
64 *
65 * LSRUN
66 *
67 * Runnable: the LWP is parked on a run queue, and may soon be
68 * chosen to run by a idle processor, or by a processor that
69 * has been asked to preempt a currently runnning but lower
70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 * then the LWP is not on a run queue, but may be soon.
72 *
73 * LSIDL
74 *
75 * Idle: the LWP has been created but has not yet executed,
76 * or it has ceased executing a unit of work and is waiting
77 * to be started again.
78 *
79 * LSSUSPENDED:
80 *
81 * Suspended: the LWP has had its execution suspended by
82 * another LWP in the same process using the _lwp_suspend()
83 * system call. User-level LWPs also enter the suspended
84 * state when the system is shutting down.
85 *
86 * The second set represent a "statement of intent" on behalf of the
87 * LWP. The LWP may in fact be executing on a processor, may be
88 * sleeping or idle. It is expected to take the necessary action to
89 * stop executing or become "running" again within a short timeframe.
90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91 * Importantly, in indicates that its state is tied to a CPU.
92 *
93 * LSZOMB:
94 *
95 * Dead or dying: the LWP has released most of its resources
96 * and is a) about to switch away into oblivion b) has already
97 * switched away. When it switches away, its few remaining
98 * resources can be collected.
99 *
100 * LSSLEEP:
101 *
102 * Sleeping: the LWP has entered itself onto a sleep queue, and
103 * has switched away or will switch away shortly to allow other
104 * LWPs to run on the CPU.
105 *
106 * LSSTOP:
107 *
108 * Stopped: the LWP has been stopped as a result of a job
109 * control signal, or as a result of the ptrace() interface.
110 *
111 * Stopped LWPs may run briefly within the kernel to handle
112 * signals that they receive, but will not return to user space
113 * until their process' state is changed away from stopped.
114 *
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP state may only be set when returning to
122 * user space in userret(), or when sleeping interruptably. The
123 * LSSUSPENDED state may only be set in userret(). Before setting
124 * those states, we try to ensure that the LWPs will release all
125 * locks that they hold, and at a minimum try to ensure that the
126 * LWP can be set runnable again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Other state transitions are possible with kernel threads (eg
145 * ONPROC -> IDL), but only happen under tightly controlled
146 * circumstances the side effects are understood.
147 *
148 * Locking
149 *
150 * The majority of fields in 'struct lwp' are covered by a single,
151 * general spin lock pointed to by lwp::l_mutex. The locks covering
152 * each field are documented in sys/lwp.h.
153 *
154 * State transitions must be made with the LWP's general lock held,
155 * and may cause the LWP's lock pointer to change. Manipulation of
156 * the general lock is not performed directly, but through calls to
157 * lwp_lock(), lwp_relock() and similar.
158 *
159 * States and their associated locks:
160 *
161 * LSIDL, LSZOMB, LSONPROC:
162 *
163 * Always covered by spc_lwplock, which protects running LWPs.
164 * This is a per-CPU lock.
165 *
166 * LSRUN:
167 *
168 * Always covered by spc_mutex, which protects the run queues.
169 * This may be a per-CPU lock, depending on the scheduler.
170 *
171 * LSSLEEP:
172 *
173 * Covered by a lock associated with the sleep queue that the
174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175 *
176 * LSSTOP, LSSUSPENDED:
177 *
178 * If the LWP was previously sleeping (l_wchan != NULL), then
179 * l_mutex references the sleep queue lock. If the LWP was
180 * runnable or on the CPU when halted, or has been removed from
181 * the sleep queue since halted, then the lock is spc_lwplock.
182 *
183 * The lock order is as follows:
184 *
185 * spc::spc_lwplock ->
186 * sleepq_t::sq_mutex ->
187 * tschain_t::tc_mutex ->
188 * spc::spc_mutex
189 *
190 * Each process has an scheduler state lock (proc::p_smutex), and a
191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192 * so on. When an LWP is to be entered into or removed from one of the
193 * following states, p_mutex must be held and the process wide counters
194 * adjusted:
195 *
196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197 *
198 * Note that an LWP is considered running or likely to run soon if in
199 * one of the following states. This affects the value of p_nrlwps:
200 *
201 * LSRUN, LSONPROC, LSSLEEP
202 *
203 * p_smutex does not need to be held when transitioning among these
204 * three states.
205 */
206
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.72 2007/10/08 18:11:11 ad Exp $");
209
210 #include "opt_multiprocessor.h"
211 #include "opt_lockdebug.h"
212
213 #define _LWP_API_PRIVATE
214
215 #include <sys/param.h>
216 #include <sys/systm.h>
217 #include <sys/cpu.h>
218 #include <sys/pool.h>
219 #include <sys/proc.h>
220 #include <sys/syscallargs.h>
221 #include <sys/syscall_stats.h>
222 #include <sys/kauth.h>
223 #include <sys/sleepq.h>
224 #include <sys/lockdebug.h>
225 #include <sys/kmem.h>
226
227 #include <uvm/uvm_extern.h>
228
229 struct lwplist alllwp;
230
231 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
232 &pool_allocator_nointr, IPL_NONE);
233 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
234 &pool_allocator_nointr, IPL_NONE);
235
236 static specificdata_domain_t lwp_specificdata_domain;
237
238 #define LWP_DEBUG
239
240 #ifdef LWP_DEBUG
241 int lwp_debug = 0;
242 #define DPRINTF(x) if (lwp_debug) printf x
243 #else
244 #define DPRINTF(x)
245 #endif
246
247 void
248 lwpinit(void)
249 {
250
251 lwp_specificdata_domain = specificdata_domain_create();
252 KASSERT(lwp_specificdata_domain != NULL);
253 lwp_sys_init();
254 }
255
256 /*
257 * Set an suspended.
258 *
259 * Must be called with p_smutex held, and the LWP locked. Will unlock the
260 * LWP before return.
261 */
262 int
263 lwp_suspend(struct lwp *curl, struct lwp *t)
264 {
265 int error;
266
267 KASSERT(mutex_owned(&t->l_proc->p_smutex));
268 KASSERT(lwp_locked(t, NULL));
269
270 KASSERT(curl != t || curl->l_stat == LSONPROC);
271
272 /*
273 * If the current LWP has been told to exit, we must not suspend anyone
274 * else or deadlock could occur. We won't return to userspace.
275 */
276 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
277 lwp_unlock(t);
278 return (EDEADLK);
279 }
280
281 error = 0;
282
283 switch (t->l_stat) {
284 case LSRUN:
285 case LSONPROC:
286 t->l_flag |= LW_WSUSPEND;
287 lwp_need_userret(t);
288 lwp_unlock(t);
289 break;
290
291 case LSSLEEP:
292 t->l_flag |= LW_WSUSPEND;
293
294 /*
295 * Kick the LWP and try to get it to the kernel boundary
296 * so that it will release any locks that it holds.
297 * setrunnable() will release the lock.
298 */
299 if ((t->l_flag & LW_SINTR) != 0)
300 setrunnable(t);
301 else
302 lwp_unlock(t);
303 break;
304
305 case LSSUSPENDED:
306 lwp_unlock(t);
307 break;
308
309 case LSSTOP:
310 t->l_flag |= LW_WSUSPEND;
311 setrunnable(t);
312 break;
313
314 case LSIDL:
315 case LSZOMB:
316 error = EINTR; /* It's what Solaris does..... */
317 lwp_unlock(t);
318 break;
319 }
320
321 return (error);
322 }
323
324 /*
325 * Restart a suspended LWP.
326 *
327 * Must be called with p_smutex held, and the LWP locked. Will unlock the
328 * LWP before return.
329 */
330 void
331 lwp_continue(struct lwp *l)
332 {
333
334 KASSERT(mutex_owned(&l->l_proc->p_smutex));
335 KASSERT(lwp_locked(l, NULL));
336
337 DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
338 l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
339 l->l_wchan));
340
341 /* If rebooting or not suspended, then just bail out. */
342 if ((l->l_flag & LW_WREBOOT) != 0) {
343 lwp_unlock(l);
344 return;
345 }
346
347 l->l_flag &= ~LW_WSUSPEND;
348
349 if (l->l_stat != LSSUSPENDED) {
350 lwp_unlock(l);
351 return;
352 }
353
354 /* setrunnable() will release the lock. */
355 setrunnable(l);
356 }
357
358 /*
359 * Wait for an LWP within the current process to exit. If 'lid' is
360 * non-zero, we are waiting for a specific LWP.
361 *
362 * Must be called with p->p_smutex held.
363 */
364 int
365 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
366 {
367 struct proc *p = l->l_proc;
368 struct lwp *l2;
369 int nfound, error;
370 lwpid_t curlid;
371 bool exiting;
372
373 DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
374 p->p_pid, l->l_lid, lid));
375
376 KASSERT(mutex_owned(&p->p_smutex));
377
378 p->p_nlwpwait++;
379 l->l_waitingfor = lid;
380 curlid = l->l_lid;
381 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
382
383 for (;;) {
384 /*
385 * Avoid a race between exit1() and sigexit(): if the
386 * process is dumping core, then we need to bail out: call
387 * into lwp_userret() where we will be suspended until the
388 * deed is done.
389 */
390 if ((p->p_sflag & PS_WCORE) != 0) {
391 mutex_exit(&p->p_smutex);
392 lwp_userret(l);
393 #ifdef DIAGNOSTIC
394 panic("lwp_wait1");
395 #endif
396 /* NOTREACHED */
397 }
398
399 /*
400 * First off, drain any detached LWP that is waiting to be
401 * reaped.
402 */
403 while ((l2 = p->p_zomblwp) != NULL) {
404 p->p_zomblwp = NULL;
405 lwp_free(l2, false, false);/* releases proc mutex */
406 mutex_enter(&p->p_smutex);
407 }
408
409 /*
410 * Now look for an LWP to collect. If the whole process is
411 * exiting, count detached LWPs as eligible to be collected,
412 * but don't drain them here.
413 */
414 nfound = 0;
415 error = 0;
416 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
417 /*
418 * If a specific wait and the target is waiting on
419 * us, then avoid deadlock. This also traps LWPs
420 * that try to wait on themselves.
421 *
422 * Note that this does not handle more complicated
423 * cycles, like: t1 -> t2 -> t3 -> t1. The process
424 * can still be killed so it is not a major problem.
425 */
426 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
427 error = EDEADLK;
428 break;
429 }
430 if (l2 == l)
431 continue;
432 if ((l2->l_prflag & LPR_DETACHED) != 0) {
433 nfound += exiting;
434 continue;
435 }
436 if (lid != 0) {
437 if (l2->l_lid != lid)
438 continue;
439 /*
440 * Mark this LWP as the first waiter, if there
441 * is no other.
442 */
443 if (l2->l_waiter == 0)
444 l2->l_waiter = curlid;
445 } else if (l2->l_waiter != 0) {
446 /*
447 * It already has a waiter - so don't
448 * collect it. If the waiter doesn't
449 * grab it we'll get another chance
450 * later.
451 */
452 nfound++;
453 continue;
454 }
455 nfound++;
456
457 /* No need to lock the LWP in order to see LSZOMB. */
458 if (l2->l_stat != LSZOMB)
459 continue;
460
461 /*
462 * We're no longer waiting. Reset the "first waiter"
463 * pointer on the target, in case it was us.
464 */
465 l->l_waitingfor = 0;
466 l2->l_waiter = 0;
467 p->p_nlwpwait--;
468 if (departed)
469 *departed = l2->l_lid;
470
471 /* lwp_free() releases the proc lock. */
472 lwp_free(l2, false, false);
473 mutex_enter(&p->p_smutex);
474 return 0;
475 }
476
477 if (error != 0)
478 break;
479 if (nfound == 0) {
480 error = ESRCH;
481 break;
482 }
483
484 /*
485 * The kernel is careful to ensure that it can not deadlock
486 * when exiting - just keep waiting.
487 */
488 if (exiting) {
489 KASSERT(p->p_nlwps > 1);
490 cv_wait(&p->p_lwpcv, &p->p_smutex);
491 continue;
492 }
493
494 /*
495 * If all other LWPs are waiting for exits or suspends
496 * and the supply of zombies and potential zombies is
497 * exhausted, then we are about to deadlock.
498 *
499 * If the process is exiting (and this LWP is not the one
500 * that is coordinating the exit) then bail out now.
501 */
502 if ((p->p_sflag & PS_WEXIT) != 0 ||
503 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
504 error = EDEADLK;
505 break;
506 }
507
508 /*
509 * Sit around and wait for something to happen. We'll be
510 * awoken if any of the conditions examined change: if an
511 * LWP exits, is collected, or is detached.
512 */
513 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
514 break;
515 }
516
517 /*
518 * We didn't find any LWPs to collect, we may have received a
519 * signal, or some other condition has caused us to bail out.
520 *
521 * If waiting on a specific LWP, clear the waiters marker: some
522 * other LWP may want it. Then, kick all the remaining waiters
523 * so that they can re-check for zombies and for deadlock.
524 */
525 if (lid != 0) {
526 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
527 if (l2->l_lid == lid) {
528 if (l2->l_waiter == curlid)
529 l2->l_waiter = 0;
530 break;
531 }
532 }
533 }
534 p->p_nlwpwait--;
535 l->l_waitingfor = 0;
536 cv_broadcast(&p->p_lwpcv);
537
538 return error;
539 }
540
541 /*
542 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
543 * The new LWP is created in state LSIDL and must be set running,
544 * suspended, or stopped by the caller.
545 */
546 int
547 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
548 int flags, void *stack, size_t stacksize,
549 void (*func)(void *), void *arg, struct lwp **rnewlwpp)
550 {
551 struct lwp *l2, *isfree;
552 turnstile_t *ts;
553
554 /*
555 * First off, reap any detached LWP waiting to be collected.
556 * We can re-use its LWP structure and turnstile.
557 */
558 isfree = NULL;
559 if (p2->p_zomblwp != NULL) {
560 mutex_enter(&p2->p_smutex);
561 if ((isfree = p2->p_zomblwp) != NULL) {
562 p2->p_zomblwp = NULL;
563 lwp_free(isfree, true, false);/* releases proc mutex */
564 } else
565 mutex_exit(&p2->p_smutex);
566 }
567 if (isfree == NULL) {
568 l2 = pool_get(&lwp_pool, PR_WAITOK);
569 memset(l2, 0, sizeof(*l2));
570 l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
571 SLIST_INIT(&l2->l_pi_lenders);
572 } else {
573 l2 = isfree;
574 ts = l2->l_ts;
575 KASSERT(l2->l_inheritedprio == MAXPRI);
576 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
577 memset(l2, 0, sizeof(*l2));
578 l2->l_ts = ts;
579 }
580
581 l2->l_stat = LSIDL;
582 l2->l_proc = p2;
583 l2->l_refcnt = 1;
584 l2->l_priority = l1->l_priority;
585 l2->l_usrpri = l1->l_usrpri;
586 l2->l_inheritedprio = MAXPRI;
587 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
588 l2->l_cpu = l1->l_cpu;
589 l2->l_flag = inmem ? LW_INMEM : 0;
590 lwp_initspecific(l2);
591 sched_lwp_fork(l2);
592
593 if (p2->p_flag & PK_SYSTEM) {
594 /*
595 * Mark it as a system process and not a candidate for
596 * swapping.
597 */
598 l2->l_flag |= LW_SYSTEM;
599 }
600
601 lwp_update_creds(l2);
602 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
603 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
604 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
605 cv_init(&l2->l_sigcv, "sigwait");
606 l2->l_syncobj = &sched_syncobj;
607
608 if (rnewlwpp != NULL)
609 *rnewlwpp = l2;
610
611 l2->l_addr = UAREA_TO_USER(uaddr);
612 uvm_lwp_fork(l1, l2, stack, stacksize, func,
613 (arg != NULL) ? arg : l2);
614
615 mutex_enter(&p2->p_smutex);
616
617 if ((flags & LWP_DETACHED) != 0) {
618 l2->l_prflag = LPR_DETACHED;
619 p2->p_ndlwps++;
620 } else
621 l2->l_prflag = 0;
622
623 l2->l_sigmask = l1->l_sigmask;
624 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
625 sigemptyset(&l2->l_sigpend.sp_set);
626
627 p2->p_nlwpid++;
628 if (p2->p_nlwpid == 0)
629 p2->p_nlwpid++;
630 l2->l_lid = p2->p_nlwpid;
631 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
632 p2->p_nlwps++;
633
634 mutex_exit(&p2->p_smutex);
635
636 mutex_enter(&proclist_lock);
637 mutex_enter(&proclist_mutex);
638 LIST_INSERT_HEAD(&alllwp, l2, l_list);
639 mutex_exit(&proclist_mutex);
640 mutex_exit(&proclist_lock);
641
642 SYSCALL_TIME_LWP_INIT(l2);
643
644 if (p2->p_emul->e_lwp_fork)
645 (*p2->p_emul->e_lwp_fork)(l1, l2);
646
647 return (0);
648 }
649
650 /*
651 * Called by MD code when a new LWP begins execution. Must be called
652 * with the previous LWP locked (so at splsched), or if there is no
653 * previous LWP, at splsched.
654 */
655 void
656 lwp_startup(struct lwp *prev, struct lwp *new)
657 {
658
659 if (prev != NULL) {
660 lwp_unlock(prev);
661 }
662 spl0();
663 pmap_activate(new);
664 LOCKDEBUG_BARRIER(NULL, 0);
665 if ((new->l_pflag & LP_MPSAFE) == 0) {
666 KERNEL_LOCK(1, new);
667 }
668 }
669
670 /*
671 * Exit an LWP.
672 */
673 void
674 lwp_exit(struct lwp *l)
675 {
676 struct proc *p = l->l_proc;
677 struct lwp *l2;
678 bool current;
679
680 current = (l == curlwp);
681
682 DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
683 DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
684 KASSERT(current || l->l_stat == LSIDL);
685
686 /*
687 * Verify that we hold no locks other than the kernel lock.
688 */
689 #ifdef MULTIPROCESSOR
690 LOCKDEBUG_BARRIER(&kernel_lock, 0);
691 #else
692 LOCKDEBUG_BARRIER(NULL, 0);
693 #endif
694
695 /*
696 * If we are the last live LWP in a process, we need to exit the
697 * entire process. We do so with an exit status of zero, because
698 * it's a "controlled" exit, and because that's what Solaris does.
699 *
700 * We are not quite a zombie yet, but for accounting purposes we
701 * must increment the count of zombies here.
702 *
703 * Note: the last LWP's specificdata will be deleted here.
704 */
705 mutex_enter(&p->p_smutex);
706 if (p->p_nlwps - p->p_nzlwps == 1) {
707 KASSERT(current == true);
708 DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
709 p->p_pid, l->l_lid));
710 exit1(l, 0);
711 /* NOTREACHED */
712 }
713 p->p_nzlwps++;
714 mutex_exit(&p->p_smutex);
715
716 if (p->p_emul->e_lwp_exit)
717 (*p->p_emul->e_lwp_exit)(l);
718
719 /* Delete the specificdata while it's still safe to sleep. */
720 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
721
722 /*
723 * Release our cached credentials.
724 */
725 kauth_cred_free(l->l_cred);
726 callout_destroy(&l->l_timeout_ch);
727
728 /*
729 * While we can still block, mark the LWP as unswappable to
730 * prevent conflicts with the with the swapper.
731 */
732 if (current)
733 uvm_lwp_hold(l);
734
735 /*
736 * Remove the LWP from the global list.
737 */
738 mutex_enter(&proclist_lock);
739 mutex_enter(&proclist_mutex);
740 LIST_REMOVE(l, l_list);
741 mutex_exit(&proclist_mutex);
742 mutex_exit(&proclist_lock);
743
744 /*
745 * Get rid of all references to the LWP that others (e.g. procfs)
746 * may have, and mark the LWP as a zombie. If the LWP is detached,
747 * mark it waiting for collection in the proc structure. Note that
748 * before we can do that, we need to free any other dead, deatched
749 * LWP waiting to meet its maker.
750 *
751 * XXXSMP disable preemption.
752 */
753 mutex_enter(&p->p_smutex);
754 lwp_drainrefs(l);
755
756 if ((l->l_prflag & LPR_DETACHED) != 0) {
757 while ((l2 = p->p_zomblwp) != NULL) {
758 p->p_zomblwp = NULL;
759 lwp_free(l2, false, false);/* releases proc mutex */
760 mutex_enter(&p->p_smutex);
761 l->l_refcnt++;
762 lwp_drainrefs(l);
763 }
764 p->p_zomblwp = l;
765 }
766
767 /*
768 * If we find a pending signal for the process and we have been
769 * asked to check for signals, then we loose: arrange to have
770 * all other LWPs in the process check for signals.
771 */
772 if ((l->l_flag & LW_PENDSIG) != 0 &&
773 firstsig(&p->p_sigpend.sp_set) != 0) {
774 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
775 lwp_lock(l2);
776 l2->l_flag |= LW_PENDSIG;
777 lwp_unlock(l2);
778 }
779 }
780
781 lwp_lock(l);
782 l->l_stat = LSZOMB;
783 lwp_unlock(l);
784 p->p_nrlwps--;
785 cv_broadcast(&p->p_lwpcv);
786 mutex_exit(&p->p_smutex);
787
788 /*
789 * We can no longer block. At this point, lwp_free() may already
790 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
791 *
792 * Free MD LWP resources.
793 */
794 #ifndef __NO_CPU_LWP_FREE
795 cpu_lwp_free(l, 0);
796 #endif
797
798 if (current) {
799 pmap_deactivate(l);
800
801 /*
802 * Release the kernel lock, and switch away into
803 * oblivion.
804 */
805 #ifdef notyet
806 /* XXXSMP hold in lwp_userret() */
807 KERNEL_UNLOCK_LAST(l);
808 #else
809 KERNEL_UNLOCK_ALL(l, NULL);
810 #endif
811 lwp_exit_switchaway(l);
812 }
813 }
814
815 void
816 lwp_exit_switchaway(struct lwp *l)
817 {
818 struct cpu_info *ci;
819 struct lwp *idlelwp;
820
821 /* Unlocked, but is for statistics only. */
822 uvmexp.swtch++;
823
824 (void)splsched();
825 l->l_flag &= ~LW_RUNNING;
826 ci = curcpu();
827 idlelwp = ci->ci_data.cpu_idlelwp;
828 idlelwp->l_stat = LSONPROC;
829 cpu_switchto(NULL, idlelwp);
830 }
831
832 /*
833 * Free a dead LWP's remaining resources.
834 *
835 * XXXLWP limits.
836 */
837 void
838 lwp_free(struct lwp *l, bool recycle, bool last)
839 {
840 struct proc *p = l->l_proc;
841 ksiginfoq_t kq;
842
843 /*
844 * If this was not the last LWP in the process, then adjust
845 * counters and unlock.
846 */
847 if (!last) {
848 /*
849 * Add the LWP's run time to the process' base value.
850 * This needs to co-incide with coming off p_lwps.
851 */
852 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
853 p->p_pctcpu += l->l_pctcpu;
854 LIST_REMOVE(l, l_sibling);
855 p->p_nlwps--;
856 p->p_nzlwps--;
857 if ((l->l_prflag & LPR_DETACHED) != 0)
858 p->p_ndlwps--;
859
860 /*
861 * Have any LWPs sleeping in lwp_wait() recheck for
862 * deadlock.
863 */
864 cv_broadcast(&p->p_lwpcv);
865 mutex_exit(&p->p_smutex);
866 }
867
868 #ifdef MULTIPROCESSOR
869 /*
870 * In the unlikely event that the LWP is still on the CPU,
871 * then spin until it has switched away. We need to release
872 * all locks to avoid deadlock against interrupt handlers on
873 * the target CPU.
874 */
875 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
876 int count;
877 (void)count; /* XXXgcc */
878 KERNEL_UNLOCK_ALL(curlwp, &count);
879 while ((l->l_flag & LW_RUNNING) != 0 ||
880 l->l_cpu->ci_curlwp == l)
881 SPINLOCK_BACKOFF_HOOK;
882 KERNEL_LOCK(count, curlwp);
883 }
884 #endif
885
886 /*
887 * Destroy the LWP's remaining signal information.
888 */
889 ksiginfo_queue_init(&kq);
890 sigclear(&l->l_sigpend, NULL, &kq);
891 ksiginfo_queue_drain(&kq);
892 cv_destroy(&l->l_sigcv);
893 mutex_destroy(&l->l_swaplock);
894
895 /*
896 * Free the LWP's turnstile and the LWP structure itself unless the
897 * caller wants to recycle them. Also, free the scheduler specific data.
898 *
899 * We can't return turnstile0 to the pool (it didn't come from it),
900 * so if it comes up just drop it quietly and move on.
901 *
902 * We don't recycle the VM resources at this time.
903 */
904 KERNEL_LOCK(1, curlwp); /* XXXSMP */
905
906 sched_lwp_exit(l);
907
908 if (!recycle && l->l_ts != &turnstile0)
909 pool_cache_put(&turnstile_cache, l->l_ts);
910 #ifndef __NO_CPU_LWP_FREE
911 cpu_lwp_free2(l);
912 #endif
913 uvm_lwp_exit(l);
914 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
915 KASSERT(l->l_inheritedprio == MAXPRI);
916 if (!recycle)
917 pool_put(&lwp_pool, l);
918 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
919 }
920
921 /*
922 * Pick a LWP to represent the process for those operations which
923 * want information about a "process" that is actually associated
924 * with a LWP.
925 *
926 * If 'locking' is false, no locking or lock checks are performed.
927 * This is intended for use by DDB.
928 *
929 * We don't bother locking the LWP here, since code that uses this
930 * interface is broken by design and an exact match is not required.
931 */
932 struct lwp *
933 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
934 {
935 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
936 struct lwp *signalled;
937 int cnt;
938
939 if (locking) {
940 KASSERT(mutex_owned(&p->p_smutex));
941 }
942
943 /* Trivial case: only one LWP */
944 if (p->p_nlwps == 1) {
945 l = LIST_FIRST(&p->p_lwps);
946 if (nrlwps)
947 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
948 return l;
949 }
950
951 cnt = 0;
952 switch (p->p_stat) {
953 case SSTOP:
954 case SACTIVE:
955 /* Pick the most live LWP */
956 onproc = running = sleeping = stopped = suspended = NULL;
957 signalled = NULL;
958 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
959 if ((l->l_flag & LW_IDLE) != 0) {
960 continue;
961 }
962 if (l->l_lid == p->p_sigctx.ps_lwp)
963 signalled = l;
964 switch (l->l_stat) {
965 case LSONPROC:
966 onproc = l;
967 cnt++;
968 break;
969 case LSRUN:
970 running = l;
971 cnt++;
972 break;
973 case LSSLEEP:
974 sleeping = l;
975 break;
976 case LSSTOP:
977 stopped = l;
978 break;
979 case LSSUSPENDED:
980 suspended = l;
981 break;
982 }
983 }
984 if (nrlwps)
985 *nrlwps = cnt;
986 if (signalled)
987 l = signalled;
988 else if (onproc)
989 l = onproc;
990 else if (running)
991 l = running;
992 else if (sleeping)
993 l = sleeping;
994 else if (stopped)
995 l = stopped;
996 else if (suspended)
997 l = suspended;
998 else
999 break;
1000 return l;
1001 #ifdef DIAGNOSTIC
1002 case SIDL:
1003 case SZOMB:
1004 case SDYING:
1005 case SDEAD:
1006 if (locking)
1007 mutex_exit(&p->p_smutex);
1008 /* We have more than one LWP and we're in SIDL?
1009 * How'd that happen?
1010 */
1011 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1012 p->p_pid, p->p_comm, p->p_stat);
1013 break;
1014 default:
1015 if (locking)
1016 mutex_exit(&p->p_smutex);
1017 panic("Process %d (%s) in unknown state %d",
1018 p->p_pid, p->p_comm, p->p_stat);
1019 #endif
1020 }
1021
1022 if (locking)
1023 mutex_exit(&p->p_smutex);
1024 panic("proc_representative_lwp: couldn't find a lwp for process"
1025 " %d (%s)", p->p_pid, p->p_comm);
1026 /* NOTREACHED */
1027 return NULL;
1028 }
1029
1030 /*
1031 * Look up a live LWP within the speicifed process, and return it locked.
1032 *
1033 * Must be called with p->p_smutex held.
1034 */
1035 struct lwp *
1036 lwp_find(struct proc *p, int id)
1037 {
1038 struct lwp *l;
1039
1040 KASSERT(mutex_owned(&p->p_smutex));
1041
1042 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1043 if (l->l_lid == id)
1044 break;
1045 }
1046
1047 /*
1048 * No need to lock - all of these conditions will
1049 * be visible with the process level mutex held.
1050 */
1051 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1052 l = NULL;
1053
1054 return l;
1055 }
1056
1057 /*
1058 * Update an LWP's cached credentials to mirror the process' master copy.
1059 *
1060 * This happens early in the syscall path, on user trap, and on LWP
1061 * creation. A long-running LWP can also voluntarily choose to update
1062 * it's credentials by calling this routine. This may be called from
1063 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1064 */
1065 void
1066 lwp_update_creds(struct lwp *l)
1067 {
1068 kauth_cred_t oc;
1069 struct proc *p;
1070
1071 p = l->l_proc;
1072 oc = l->l_cred;
1073
1074 mutex_enter(&p->p_mutex);
1075 kauth_cred_hold(p->p_cred);
1076 l->l_cred = p->p_cred;
1077 mutex_exit(&p->p_mutex);
1078 if (oc != NULL) {
1079 KERNEL_LOCK(1, l); /* XXXSMP */
1080 kauth_cred_free(oc);
1081 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
1082 }
1083 }
1084
1085 /*
1086 * Verify that an LWP is locked, and optionally verify that the lock matches
1087 * one we specify.
1088 */
1089 int
1090 lwp_locked(struct lwp *l, kmutex_t *mtx)
1091 {
1092 kmutex_t *cur = l->l_mutex;
1093
1094 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1095 }
1096
1097 /*
1098 * Lock an LWP.
1099 */
1100 void
1101 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1102 {
1103
1104 /*
1105 * XXXgcc ignoring kmutex_t * volatile on i386
1106 *
1107 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1108 */
1109 #if 1
1110 while (l->l_mutex != old) {
1111 #else
1112 for (;;) {
1113 #endif
1114 mutex_spin_exit(old);
1115 old = l->l_mutex;
1116 mutex_spin_enter(old);
1117
1118 /*
1119 * mutex_enter() will have posted a read barrier. Re-test
1120 * l->l_mutex. If it has changed, we need to try again.
1121 */
1122 #if 1
1123 }
1124 #else
1125 } while (__predict_false(l->l_mutex != old));
1126 #endif
1127 }
1128
1129 /*
1130 * Lend a new mutex to an LWP. The old mutex must be held.
1131 */
1132 void
1133 lwp_setlock(struct lwp *l, kmutex_t *new)
1134 {
1135
1136 KASSERT(mutex_owned(l->l_mutex));
1137
1138 mb_write();
1139 l->l_mutex = new;
1140 }
1141
1142 /*
1143 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1144 * must be held.
1145 */
1146 void
1147 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1148 {
1149 kmutex_t *old;
1150
1151 KASSERT(mutex_owned(l->l_mutex));
1152
1153 old = l->l_mutex;
1154 mb_write();
1155 l->l_mutex = new;
1156 mutex_spin_exit(old);
1157 }
1158
1159 /*
1160 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1161 * locked.
1162 */
1163 void
1164 lwp_relock(struct lwp *l, kmutex_t *new)
1165 {
1166 kmutex_t *old;
1167
1168 KASSERT(mutex_owned(l->l_mutex));
1169
1170 old = l->l_mutex;
1171 if (old != new) {
1172 mutex_spin_enter(new);
1173 l->l_mutex = new;
1174 mutex_spin_exit(old);
1175 }
1176 }
1177
1178 int
1179 lwp_trylock(struct lwp *l)
1180 {
1181 kmutex_t *old;
1182
1183 for (;;) {
1184 if (!mutex_tryenter(old = l->l_mutex))
1185 return 0;
1186 if (__predict_true(l->l_mutex == old))
1187 return 1;
1188 mutex_spin_exit(old);
1189 }
1190 }
1191
1192 /*
1193 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1194 * set.
1195 */
1196 void
1197 lwp_userret(struct lwp *l)
1198 {
1199 struct proc *p;
1200 void (*hook)(void);
1201 int sig;
1202
1203 p = l->l_proc;
1204
1205 /*
1206 * It should be safe to do this read unlocked on a multiprocessor
1207 * system..
1208 */
1209 while ((l->l_flag & LW_USERRET) != 0) {
1210 /*
1211 * Process pending signals first, unless the process
1212 * is dumping core or exiting, where we will instead
1213 * enter the L_WSUSPEND case below.
1214 */
1215 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1216 LW_PENDSIG) {
1217 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1218 mutex_enter(&p->p_smutex);
1219 while ((sig = issignal(l)) != 0)
1220 postsig(sig);
1221 mutex_exit(&p->p_smutex);
1222 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1223 }
1224
1225 /*
1226 * Core-dump or suspend pending.
1227 *
1228 * In case of core dump, suspend ourselves, so that the
1229 * kernel stack and therefore the userland registers saved
1230 * in the trapframe are around for coredump() to write them
1231 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1232 * will write the core file out once all other LWPs are
1233 * suspended.
1234 */
1235 if ((l->l_flag & LW_WSUSPEND) != 0) {
1236 mutex_enter(&p->p_smutex);
1237 p->p_nrlwps--;
1238 cv_broadcast(&p->p_lwpcv);
1239 lwp_lock(l);
1240 l->l_stat = LSSUSPENDED;
1241 mutex_exit(&p->p_smutex);
1242 mi_switch(l);
1243 }
1244
1245 /* Process is exiting. */
1246 if ((l->l_flag & LW_WEXIT) != 0) {
1247 KERNEL_LOCK(1, l);
1248 lwp_exit(l);
1249 KASSERT(0);
1250 /* NOTREACHED */
1251 }
1252
1253 /* Call userret hook; used by Linux emulation. */
1254 if ((l->l_flag & LW_WUSERRET) != 0) {
1255 lwp_lock(l);
1256 l->l_flag &= ~LW_WUSERRET;
1257 lwp_unlock(l);
1258 hook = p->p_userret;
1259 p->p_userret = NULL;
1260 (*hook)();
1261 }
1262 }
1263 }
1264
1265 /*
1266 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1267 */
1268 void
1269 lwp_need_userret(struct lwp *l)
1270 {
1271 KASSERT(lwp_locked(l, NULL));
1272
1273 /*
1274 * Since the tests in lwp_userret() are done unlocked, make sure
1275 * that the condition will be seen before forcing the LWP to enter
1276 * kernel mode.
1277 */
1278 mb_write();
1279 cpu_signotify(l);
1280 }
1281
1282 /*
1283 * Add one reference to an LWP. This will prevent the LWP from
1284 * exiting, thus keep the lwp structure and PCB around to inspect.
1285 */
1286 void
1287 lwp_addref(struct lwp *l)
1288 {
1289
1290 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1291 KASSERT(l->l_stat != LSZOMB);
1292 KASSERT(l->l_refcnt != 0);
1293
1294 l->l_refcnt++;
1295 }
1296
1297 /*
1298 * Remove one reference to an LWP. If this is the last reference,
1299 * then we must finalize the LWP's death.
1300 */
1301 void
1302 lwp_delref(struct lwp *l)
1303 {
1304 struct proc *p = l->l_proc;
1305
1306 mutex_enter(&p->p_smutex);
1307 KASSERT(l->l_stat != LSZOMB);
1308 KASSERT(l->l_refcnt > 0);
1309 if (--l->l_refcnt == 0)
1310 cv_broadcast(&p->p_refcv);
1311 mutex_exit(&p->p_smutex);
1312 }
1313
1314 /*
1315 * Drain all references to the current LWP.
1316 */
1317 void
1318 lwp_drainrefs(struct lwp *l)
1319 {
1320 struct proc *p = l->l_proc;
1321
1322 KASSERT(mutex_owned(&p->p_smutex));
1323 KASSERT(l->l_refcnt != 0);
1324
1325 l->l_refcnt--;
1326 while (l->l_refcnt != 0)
1327 cv_wait(&p->p_refcv, &p->p_smutex);
1328 }
1329
1330 /*
1331 * lwp_specific_key_create --
1332 * Create a key for subsystem lwp-specific data.
1333 */
1334 int
1335 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1336 {
1337
1338 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1339 }
1340
1341 /*
1342 * lwp_specific_key_delete --
1343 * Delete a key for subsystem lwp-specific data.
1344 */
1345 void
1346 lwp_specific_key_delete(specificdata_key_t key)
1347 {
1348
1349 specificdata_key_delete(lwp_specificdata_domain, key);
1350 }
1351
1352 /*
1353 * lwp_initspecific --
1354 * Initialize an LWP's specificdata container.
1355 */
1356 void
1357 lwp_initspecific(struct lwp *l)
1358 {
1359 int error;
1360
1361 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1362 KASSERT(error == 0);
1363 }
1364
1365 /*
1366 * lwp_finispecific --
1367 * Finalize an LWP's specificdata container.
1368 */
1369 void
1370 lwp_finispecific(struct lwp *l)
1371 {
1372
1373 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1374 }
1375
1376 /*
1377 * lwp_getspecific --
1378 * Return lwp-specific data corresponding to the specified key.
1379 *
1380 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1381 * only its OWN SPECIFIC DATA. If it is necessary to access another
1382 * LWP's specifc data, care must be taken to ensure that doing so
1383 * would not cause internal data structure inconsistency (i.e. caller
1384 * can guarantee that the target LWP is not inside an lwp_getspecific()
1385 * or lwp_setspecific() call).
1386 */
1387 void *
1388 lwp_getspecific(specificdata_key_t key)
1389 {
1390
1391 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1392 &curlwp->l_specdataref, key));
1393 }
1394
1395 void *
1396 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1397 {
1398
1399 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1400 &l->l_specdataref, key));
1401 }
1402
1403 /*
1404 * lwp_setspecific --
1405 * Set lwp-specific data corresponding to the specified key.
1406 */
1407 void
1408 lwp_setspecific(specificdata_key_t key, void *data)
1409 {
1410
1411 specificdata_setspecific(lwp_specificdata_domain,
1412 &curlwp->l_specdataref, key, data);
1413 }
1414