Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.72
      1 /*	$NetBSD: kern_lwp.c,v 1.72 2007/10/08 18:11:11 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit or thread of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp", also known as lwp_t.
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing concurrently in the kernel.
     52  *
     53  * Execution states
     54  *
     55  *	At any given time, an LWP has overall state that is described by
     56  *	lwp::l_stat.  The states are broken into two sets below.  The first
     57  *	set is guaranteed to represent the absolute, current state of the
     58  *	LWP:
     59  *
     60  * 	LSONPROC
     61  *
     62  * 		On processor: the LWP is executing on a CPU, either in the
     63  * 		kernel or in user space.
     64  *
     65  * 	LSRUN
     66  *
     67  * 		Runnable: the LWP is parked on a run queue, and may soon be
     68  * 		chosen to run by a idle processor, or by a processor that
     69  * 		has been asked to preempt a currently runnning but lower
     70  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     71  *		then the LWP is not on a run queue, but may be soon.
     72  *
     73  * 	LSIDL
     74  *
     75  * 		Idle: the LWP has been created but has not yet executed,
     76  *		or it has ceased executing a unit of work and is waiting
     77  *		to be started again.
     78  *
     79  * 	LSSUSPENDED:
     80  *
     81  * 		Suspended: the LWP has had its execution suspended by
     82  *		another LWP in the same process using the _lwp_suspend()
     83  *		system call.  User-level LWPs also enter the suspended
     84  *		state when the system is shutting down.
     85  *
     86  *	The second set represent a "statement of intent" on behalf of the
     87  *	LWP.  The LWP may in fact be executing on a processor, may be
     88  *	sleeping or idle. It is expected to take the necessary action to
     89  *	stop executing or become "running" again within	a short timeframe.
     90  *	The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
     91  *	Importantly, in indicates that its state is tied to a CPU.
     92  *
     93  * 	LSZOMB:
     94  *
     95  * 		Dead or dying: the LWP has released most of its resources
     96  *		and is a) about to switch away into oblivion b) has already
     97  *		switched away.  When it switches away, its few remaining
     98  *		resources can be collected.
     99  *
    100  * 	LSSLEEP:
    101  *
    102  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    103  * 		has switched away or will switch away shortly to allow other
    104  *		LWPs to run on the CPU.
    105  *
    106  * 	LSSTOP:
    107  *
    108  * 		Stopped: the LWP has been stopped as a result of a job
    109  * 		control signal, or as a result of the ptrace() interface.
    110  *
    111  * 		Stopped LWPs may run briefly within the kernel to handle
    112  * 		signals that they receive, but will not return to user space
    113  * 		until their process' state is changed away from stopped.
    114  *
    115  * 		Single LWPs within a process can not be set stopped
    116  * 		selectively: all actions that can stop or continue LWPs
    117  * 		occur at the process level.
    118  *
    119  * State transitions
    120  *
    121  *	Note that the LSSTOP state may only be set when returning to
    122  *	user space in userret(), or when sleeping interruptably.  The
    123  *	LSSUSPENDED state may only be set in userret().  Before setting
    124  *	those states, we try to ensure that the LWPs will release all
    125  *	locks that they hold, and at a minimum try to ensure that the
    126  *	LWP can be set runnable again by a signal.
    127  *
    128  *	LWPs may transition states in the following ways:
    129  *
    130  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131  *	            > STOPPED			    > SLEEP
    132  *	            > SUSPENDED			    > STOPPED
    133  *						    > SUSPENDED
    134  *						    > ZOMB
    135  *
    136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  *	            > SLEEP			    > SLEEP
    138  *
    139  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  *		    > RUN		            > SUSPENDED
    141  *		    > STOPPED                       > STOPPED
    142  *		    > SUSPENDED
    143  *
    144  *	Other state transitions are possible with kernel threads (eg
    145  *	ONPROC -> IDL), but only happen under tightly controlled
    146  *	circumstances the side effects are understood.
    147  *
    148  * Locking
    149  *
    150  *	The majority of fields in 'struct lwp' are covered by a single,
    151  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    152  *	each field are documented in sys/lwp.h.
    153  *
    154  *	State transitions must be made with the LWP's general lock held,
    155  * 	and may cause the LWP's lock pointer to change. Manipulation of
    156  *	the general lock is not performed directly, but through calls to
    157  *	lwp_lock(), lwp_relock() and similar.
    158  *
    159  *	States and their associated locks:
    160  *
    161  *	LSIDL, LSZOMB, LSONPROC:
    162  *
    163  *		Always covered by spc_lwplock, which protects running LWPs.
    164  *		This is a per-CPU lock.
    165  *
    166  *	LSRUN:
    167  *
    168  *		Always covered by spc_mutex, which protects the run queues.
    169  *		This may be a per-CPU lock, depending on the scheduler.
    170  *
    171  *	LSSLEEP:
    172  *
    173  *		Covered by a lock associated with the sleep queue that the
    174  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    175  *
    176  *	LSSTOP, LSSUSPENDED:
    177  *
    178  *		If the LWP was previously sleeping (l_wchan != NULL), then
    179  *		l_mutex references the sleep queue lock.  If the LWP was
    180  *		runnable or on the CPU when halted, or has been removed from
    181  *		the sleep queue since halted, then the lock is spc_lwplock.
    182  *
    183  *	The lock order is as follows:
    184  *
    185  *		spc::spc_lwplock ->
    186  *		    sleepq_t::sq_mutex ->
    187  *			tschain_t::tc_mutex ->
    188  *			    spc::spc_mutex
    189  *
    190  *	Each process has an scheduler state lock (proc::p_smutex), and a
    191  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    192  *	so on.  When an LWP is to be entered into or removed from one of the
    193  *	following states, p_mutex must be held and the process wide counters
    194  *	adjusted:
    195  *
    196  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    197  *
    198  *	Note that an LWP is considered running or likely to run soon if in
    199  *	one of the following states.  This affects the value of p_nrlwps:
    200  *
    201  *		LSRUN, LSONPROC, LSSLEEP
    202  *
    203  *	p_smutex does not need to be held when transitioning among these
    204  *	three states.
    205  */
    206 
    207 #include <sys/cdefs.h>
    208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.72 2007/10/08 18:11:11 ad Exp $");
    209 
    210 #include "opt_multiprocessor.h"
    211 #include "opt_lockdebug.h"
    212 
    213 #define _LWP_API_PRIVATE
    214 
    215 #include <sys/param.h>
    216 #include <sys/systm.h>
    217 #include <sys/cpu.h>
    218 #include <sys/pool.h>
    219 #include <sys/proc.h>
    220 #include <sys/syscallargs.h>
    221 #include <sys/syscall_stats.h>
    222 #include <sys/kauth.h>
    223 #include <sys/sleepq.h>
    224 #include <sys/lockdebug.h>
    225 #include <sys/kmem.h>
    226 
    227 #include <uvm/uvm_extern.h>
    228 
    229 struct lwplist	alllwp;
    230 
    231 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    232     &pool_allocator_nointr, IPL_NONE);
    233 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    234     &pool_allocator_nointr, IPL_NONE);
    235 
    236 static specificdata_domain_t lwp_specificdata_domain;
    237 
    238 #define LWP_DEBUG
    239 
    240 #ifdef LWP_DEBUG
    241 int lwp_debug = 0;
    242 #define DPRINTF(x) if (lwp_debug) printf x
    243 #else
    244 #define DPRINTF(x)
    245 #endif
    246 
    247 void
    248 lwpinit(void)
    249 {
    250 
    251 	lwp_specificdata_domain = specificdata_domain_create();
    252 	KASSERT(lwp_specificdata_domain != NULL);
    253 	lwp_sys_init();
    254 }
    255 
    256 /*
    257  * Set an suspended.
    258  *
    259  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    260  * LWP before return.
    261  */
    262 int
    263 lwp_suspend(struct lwp *curl, struct lwp *t)
    264 {
    265 	int error;
    266 
    267 	KASSERT(mutex_owned(&t->l_proc->p_smutex));
    268 	KASSERT(lwp_locked(t, NULL));
    269 
    270 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    271 
    272 	/*
    273 	 * If the current LWP has been told to exit, we must not suspend anyone
    274 	 * else or deadlock could occur.  We won't return to userspace.
    275 	 */
    276 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    277 		lwp_unlock(t);
    278 		return (EDEADLK);
    279 	}
    280 
    281 	error = 0;
    282 
    283 	switch (t->l_stat) {
    284 	case LSRUN:
    285 	case LSONPROC:
    286 		t->l_flag |= LW_WSUSPEND;
    287 		lwp_need_userret(t);
    288 		lwp_unlock(t);
    289 		break;
    290 
    291 	case LSSLEEP:
    292 		t->l_flag |= LW_WSUSPEND;
    293 
    294 		/*
    295 		 * Kick the LWP and try to get it to the kernel boundary
    296 		 * so that it will release any locks that it holds.
    297 		 * setrunnable() will release the lock.
    298 		 */
    299 		if ((t->l_flag & LW_SINTR) != 0)
    300 			setrunnable(t);
    301 		else
    302 			lwp_unlock(t);
    303 		break;
    304 
    305 	case LSSUSPENDED:
    306 		lwp_unlock(t);
    307 		break;
    308 
    309 	case LSSTOP:
    310 		t->l_flag |= LW_WSUSPEND;
    311 		setrunnable(t);
    312 		break;
    313 
    314 	case LSIDL:
    315 	case LSZOMB:
    316 		error = EINTR; /* It's what Solaris does..... */
    317 		lwp_unlock(t);
    318 		break;
    319 	}
    320 
    321 	return (error);
    322 }
    323 
    324 /*
    325  * Restart a suspended LWP.
    326  *
    327  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    328  * LWP before return.
    329  */
    330 void
    331 lwp_continue(struct lwp *l)
    332 {
    333 
    334 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
    335 	KASSERT(lwp_locked(l, NULL));
    336 
    337 	DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
    338 	    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
    339 	    l->l_wchan));
    340 
    341 	/* If rebooting or not suspended, then just bail out. */
    342 	if ((l->l_flag & LW_WREBOOT) != 0) {
    343 		lwp_unlock(l);
    344 		return;
    345 	}
    346 
    347 	l->l_flag &= ~LW_WSUSPEND;
    348 
    349 	if (l->l_stat != LSSUSPENDED) {
    350 		lwp_unlock(l);
    351 		return;
    352 	}
    353 
    354 	/* setrunnable() will release the lock. */
    355 	setrunnable(l);
    356 }
    357 
    358 /*
    359  * Wait for an LWP within the current process to exit.  If 'lid' is
    360  * non-zero, we are waiting for a specific LWP.
    361  *
    362  * Must be called with p->p_smutex held.
    363  */
    364 int
    365 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    366 {
    367 	struct proc *p = l->l_proc;
    368 	struct lwp *l2;
    369 	int nfound, error;
    370 	lwpid_t curlid;
    371 	bool exiting;
    372 
    373 	DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
    374 	    p->p_pid, l->l_lid, lid));
    375 
    376 	KASSERT(mutex_owned(&p->p_smutex));
    377 
    378 	p->p_nlwpwait++;
    379 	l->l_waitingfor = lid;
    380 	curlid = l->l_lid;
    381 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    382 
    383 	for (;;) {
    384 		/*
    385 		 * Avoid a race between exit1() and sigexit(): if the
    386 		 * process is dumping core, then we need to bail out: call
    387 		 * into lwp_userret() where we will be suspended until the
    388 		 * deed is done.
    389 		 */
    390 		if ((p->p_sflag & PS_WCORE) != 0) {
    391 			mutex_exit(&p->p_smutex);
    392 			lwp_userret(l);
    393 #ifdef DIAGNOSTIC
    394 			panic("lwp_wait1");
    395 #endif
    396 			/* NOTREACHED */
    397 		}
    398 
    399 		/*
    400 		 * First off, drain any detached LWP that is waiting to be
    401 		 * reaped.
    402 		 */
    403 		while ((l2 = p->p_zomblwp) != NULL) {
    404 			p->p_zomblwp = NULL;
    405 			lwp_free(l2, false, false);/* releases proc mutex */
    406 			mutex_enter(&p->p_smutex);
    407 		}
    408 
    409 		/*
    410 		 * Now look for an LWP to collect.  If the whole process is
    411 		 * exiting, count detached LWPs as eligible to be collected,
    412 		 * but don't drain them here.
    413 		 */
    414 		nfound = 0;
    415 		error = 0;
    416 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    417 			/*
    418 			 * If a specific wait and the target is waiting on
    419 			 * us, then avoid deadlock.  This also traps LWPs
    420 			 * that try to wait on themselves.
    421 			 *
    422 			 * Note that this does not handle more complicated
    423 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    424 			 * can still be killed so it is not a major problem.
    425 			 */
    426 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    427 				error = EDEADLK;
    428 				break;
    429 			}
    430 			if (l2 == l)
    431 				continue;
    432 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    433 				nfound += exiting;
    434 				continue;
    435 			}
    436 			if (lid != 0) {
    437 				if (l2->l_lid != lid)
    438 					continue;
    439 				/*
    440 				 * Mark this LWP as the first waiter, if there
    441 				 * is no other.
    442 				 */
    443 				if (l2->l_waiter == 0)
    444 					l2->l_waiter = curlid;
    445 			} else if (l2->l_waiter != 0) {
    446 				/*
    447 				 * It already has a waiter - so don't
    448 				 * collect it.  If the waiter doesn't
    449 				 * grab it we'll get another chance
    450 				 * later.
    451 				 */
    452 				nfound++;
    453 				continue;
    454 			}
    455 			nfound++;
    456 
    457 			/* No need to lock the LWP in order to see LSZOMB. */
    458 			if (l2->l_stat != LSZOMB)
    459 				continue;
    460 
    461 			/*
    462 			 * We're no longer waiting.  Reset the "first waiter"
    463 			 * pointer on the target, in case it was us.
    464 			 */
    465 			l->l_waitingfor = 0;
    466 			l2->l_waiter = 0;
    467 			p->p_nlwpwait--;
    468 			if (departed)
    469 				*departed = l2->l_lid;
    470 
    471 			/* lwp_free() releases the proc lock. */
    472 			lwp_free(l2, false, false);
    473 			mutex_enter(&p->p_smutex);
    474 			return 0;
    475 		}
    476 
    477 		if (error != 0)
    478 			break;
    479 		if (nfound == 0) {
    480 			error = ESRCH;
    481 			break;
    482 		}
    483 
    484 		/*
    485 		 * The kernel is careful to ensure that it can not deadlock
    486 		 * when exiting - just keep waiting.
    487 		 */
    488 		if (exiting) {
    489 			KASSERT(p->p_nlwps > 1);
    490 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    491 			continue;
    492 		}
    493 
    494 		/*
    495 		 * If all other LWPs are waiting for exits or suspends
    496 		 * and the supply of zombies and potential zombies is
    497 		 * exhausted, then we are about to deadlock.
    498 		 *
    499 		 * If the process is exiting (and this LWP is not the one
    500 		 * that is coordinating the exit) then bail out now.
    501 		 */
    502 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    503 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    504 			error = EDEADLK;
    505 			break;
    506 		}
    507 
    508 		/*
    509 		 * Sit around and wait for something to happen.  We'll be
    510 		 * awoken if any of the conditions examined change: if an
    511 		 * LWP exits, is collected, or is detached.
    512 		 */
    513 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    514 			break;
    515 	}
    516 
    517 	/*
    518 	 * We didn't find any LWPs to collect, we may have received a
    519 	 * signal, or some other condition has caused us to bail out.
    520 	 *
    521 	 * If waiting on a specific LWP, clear the waiters marker: some
    522 	 * other LWP may want it.  Then, kick all the remaining waiters
    523 	 * so that they can re-check for zombies and for deadlock.
    524 	 */
    525 	if (lid != 0) {
    526 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    527 			if (l2->l_lid == lid) {
    528 				if (l2->l_waiter == curlid)
    529 					l2->l_waiter = 0;
    530 				break;
    531 			}
    532 		}
    533 	}
    534 	p->p_nlwpwait--;
    535 	l->l_waitingfor = 0;
    536 	cv_broadcast(&p->p_lwpcv);
    537 
    538 	return error;
    539 }
    540 
    541 /*
    542  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    543  * The new LWP is created in state LSIDL and must be set running,
    544  * suspended, or stopped by the caller.
    545  */
    546 int
    547 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
    548     int flags, void *stack, size_t stacksize,
    549     void (*func)(void *), void *arg, struct lwp **rnewlwpp)
    550 {
    551 	struct lwp *l2, *isfree;
    552 	turnstile_t *ts;
    553 
    554 	/*
    555 	 * First off, reap any detached LWP waiting to be collected.
    556 	 * We can re-use its LWP structure and turnstile.
    557 	 */
    558 	isfree = NULL;
    559 	if (p2->p_zomblwp != NULL) {
    560 		mutex_enter(&p2->p_smutex);
    561 		if ((isfree = p2->p_zomblwp) != NULL) {
    562 			p2->p_zomblwp = NULL;
    563 			lwp_free(isfree, true, false);/* releases proc mutex */
    564 		} else
    565 			mutex_exit(&p2->p_smutex);
    566 	}
    567 	if (isfree == NULL) {
    568 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    569 		memset(l2, 0, sizeof(*l2));
    570 		l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
    571 		SLIST_INIT(&l2->l_pi_lenders);
    572 	} else {
    573 		l2 = isfree;
    574 		ts = l2->l_ts;
    575 		KASSERT(l2->l_inheritedprio == MAXPRI);
    576 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    577 		memset(l2, 0, sizeof(*l2));
    578 		l2->l_ts = ts;
    579 	}
    580 
    581 	l2->l_stat = LSIDL;
    582 	l2->l_proc = p2;
    583 	l2->l_refcnt = 1;
    584 	l2->l_priority = l1->l_priority;
    585 	l2->l_usrpri = l1->l_usrpri;
    586 	l2->l_inheritedprio = MAXPRI;
    587 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    588 	l2->l_cpu = l1->l_cpu;
    589 	l2->l_flag = inmem ? LW_INMEM : 0;
    590 	lwp_initspecific(l2);
    591 	sched_lwp_fork(l2);
    592 
    593 	if (p2->p_flag & PK_SYSTEM) {
    594 		/*
    595 		 * Mark it as a system process and not a candidate for
    596 		 * swapping.
    597 		 */
    598 		l2->l_flag |= LW_SYSTEM;
    599 	}
    600 
    601 	lwp_update_creds(l2);
    602 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    603 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    604 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    605 	cv_init(&l2->l_sigcv, "sigwait");
    606 	l2->l_syncobj = &sched_syncobj;
    607 
    608 	if (rnewlwpp != NULL)
    609 		*rnewlwpp = l2;
    610 
    611 	l2->l_addr = UAREA_TO_USER(uaddr);
    612 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    613 	    (arg != NULL) ? arg : l2);
    614 
    615 	mutex_enter(&p2->p_smutex);
    616 
    617 	if ((flags & LWP_DETACHED) != 0) {
    618 		l2->l_prflag = LPR_DETACHED;
    619 		p2->p_ndlwps++;
    620 	} else
    621 		l2->l_prflag = 0;
    622 
    623 	l2->l_sigmask = l1->l_sigmask;
    624 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    625 	sigemptyset(&l2->l_sigpend.sp_set);
    626 
    627 	p2->p_nlwpid++;
    628 	if (p2->p_nlwpid == 0)
    629 		p2->p_nlwpid++;
    630 	l2->l_lid = p2->p_nlwpid;
    631 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    632 	p2->p_nlwps++;
    633 
    634 	mutex_exit(&p2->p_smutex);
    635 
    636 	mutex_enter(&proclist_lock);
    637 	mutex_enter(&proclist_mutex);
    638 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    639 	mutex_exit(&proclist_mutex);
    640 	mutex_exit(&proclist_lock);
    641 
    642 	SYSCALL_TIME_LWP_INIT(l2);
    643 
    644 	if (p2->p_emul->e_lwp_fork)
    645 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    646 
    647 	return (0);
    648 }
    649 
    650 /*
    651  * Called by MD code when a new LWP begins execution.  Must be called
    652  * with the previous LWP locked (so at splsched), or if there is no
    653  * previous LWP, at splsched.
    654  */
    655 void
    656 lwp_startup(struct lwp *prev, struct lwp *new)
    657 {
    658 
    659 	if (prev != NULL) {
    660 		lwp_unlock(prev);
    661 	}
    662 	spl0();
    663 	pmap_activate(new);
    664 	LOCKDEBUG_BARRIER(NULL, 0);
    665 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    666 		KERNEL_LOCK(1, new);
    667 	}
    668 }
    669 
    670 /*
    671  * Exit an LWP.
    672  */
    673 void
    674 lwp_exit(struct lwp *l)
    675 {
    676 	struct proc *p = l->l_proc;
    677 	struct lwp *l2;
    678 	bool current;
    679 
    680 	current = (l == curlwp);
    681 
    682 	DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
    683 	DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
    684 	KASSERT(current || l->l_stat == LSIDL);
    685 
    686 	/*
    687 	 * Verify that we hold no locks other than the kernel lock.
    688 	 */
    689 #ifdef MULTIPROCESSOR
    690 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    691 #else
    692 	LOCKDEBUG_BARRIER(NULL, 0);
    693 #endif
    694 
    695 	/*
    696 	 * If we are the last live LWP in a process, we need to exit the
    697 	 * entire process.  We do so with an exit status of zero, because
    698 	 * it's a "controlled" exit, and because that's what Solaris does.
    699 	 *
    700 	 * We are not quite a zombie yet, but for accounting purposes we
    701 	 * must increment the count of zombies here.
    702 	 *
    703 	 * Note: the last LWP's specificdata will be deleted here.
    704 	 */
    705 	mutex_enter(&p->p_smutex);
    706 	if (p->p_nlwps - p->p_nzlwps == 1) {
    707 		KASSERT(current == true);
    708 		DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
    709 		    p->p_pid, l->l_lid));
    710 		exit1(l, 0);
    711 		/* NOTREACHED */
    712 	}
    713 	p->p_nzlwps++;
    714 	mutex_exit(&p->p_smutex);
    715 
    716 	if (p->p_emul->e_lwp_exit)
    717 		(*p->p_emul->e_lwp_exit)(l);
    718 
    719 	/* Delete the specificdata while it's still safe to sleep. */
    720 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    721 
    722 	/*
    723 	 * Release our cached credentials.
    724 	 */
    725 	kauth_cred_free(l->l_cred);
    726 	callout_destroy(&l->l_timeout_ch);
    727 
    728 	/*
    729 	 * While we can still block, mark the LWP as unswappable to
    730 	 * prevent conflicts with the with the swapper.
    731 	 */
    732 	if (current)
    733 		uvm_lwp_hold(l);
    734 
    735 	/*
    736 	 * Remove the LWP from the global list.
    737 	 */
    738 	mutex_enter(&proclist_lock);
    739 	mutex_enter(&proclist_mutex);
    740 	LIST_REMOVE(l, l_list);
    741 	mutex_exit(&proclist_mutex);
    742 	mutex_exit(&proclist_lock);
    743 
    744 	/*
    745 	 * Get rid of all references to the LWP that others (e.g. procfs)
    746 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    747 	 * mark it waiting for collection in the proc structure.  Note that
    748 	 * before we can do that, we need to free any other dead, deatched
    749 	 * LWP waiting to meet its maker.
    750 	 *
    751 	 * XXXSMP disable preemption.
    752 	 */
    753 	mutex_enter(&p->p_smutex);
    754 	lwp_drainrefs(l);
    755 
    756 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    757 		while ((l2 = p->p_zomblwp) != NULL) {
    758 			p->p_zomblwp = NULL;
    759 			lwp_free(l2, false, false);/* releases proc mutex */
    760 			mutex_enter(&p->p_smutex);
    761 			l->l_refcnt++;
    762 			lwp_drainrefs(l);
    763 		}
    764 		p->p_zomblwp = l;
    765 	}
    766 
    767 	/*
    768 	 * If we find a pending signal for the process and we have been
    769 	 * asked to check for signals, then we loose: arrange to have
    770 	 * all other LWPs in the process check for signals.
    771 	 */
    772 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    773 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    774 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    775 			lwp_lock(l2);
    776 			l2->l_flag |= LW_PENDSIG;
    777 			lwp_unlock(l2);
    778 		}
    779 	}
    780 
    781 	lwp_lock(l);
    782 	l->l_stat = LSZOMB;
    783 	lwp_unlock(l);
    784 	p->p_nrlwps--;
    785 	cv_broadcast(&p->p_lwpcv);
    786 	mutex_exit(&p->p_smutex);
    787 
    788 	/*
    789 	 * We can no longer block.  At this point, lwp_free() may already
    790 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    791 	 *
    792 	 * Free MD LWP resources.
    793 	 */
    794 #ifndef __NO_CPU_LWP_FREE
    795 	cpu_lwp_free(l, 0);
    796 #endif
    797 
    798 	if (current) {
    799 		pmap_deactivate(l);
    800 
    801 		/*
    802 		 * Release the kernel lock, and switch away into
    803 		 * oblivion.
    804 		 */
    805 #ifdef notyet
    806 		/* XXXSMP hold in lwp_userret() */
    807 		KERNEL_UNLOCK_LAST(l);
    808 #else
    809 		KERNEL_UNLOCK_ALL(l, NULL);
    810 #endif
    811 		lwp_exit_switchaway(l);
    812 	}
    813 }
    814 
    815 void
    816 lwp_exit_switchaway(struct lwp *l)
    817 {
    818 	struct cpu_info *ci;
    819 	struct lwp *idlelwp;
    820 
    821 	/* Unlocked, but is for statistics only. */
    822 	uvmexp.swtch++;
    823 
    824 	(void)splsched();
    825 	l->l_flag &= ~LW_RUNNING;
    826 	ci = curcpu();
    827 	idlelwp = ci->ci_data.cpu_idlelwp;
    828 	idlelwp->l_stat = LSONPROC;
    829 	cpu_switchto(NULL, idlelwp);
    830 }
    831 
    832 /*
    833  * Free a dead LWP's remaining resources.
    834  *
    835  * XXXLWP limits.
    836  */
    837 void
    838 lwp_free(struct lwp *l, bool recycle, bool last)
    839 {
    840 	struct proc *p = l->l_proc;
    841 	ksiginfoq_t kq;
    842 
    843 	/*
    844 	 * If this was not the last LWP in the process, then adjust
    845 	 * counters and unlock.
    846 	 */
    847 	if (!last) {
    848 		/*
    849 		 * Add the LWP's run time to the process' base value.
    850 		 * This needs to co-incide with coming off p_lwps.
    851 		 */
    852 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    853 		p->p_pctcpu += l->l_pctcpu;
    854 		LIST_REMOVE(l, l_sibling);
    855 		p->p_nlwps--;
    856 		p->p_nzlwps--;
    857 		if ((l->l_prflag & LPR_DETACHED) != 0)
    858 			p->p_ndlwps--;
    859 
    860 		/*
    861 		 * Have any LWPs sleeping in lwp_wait() recheck for
    862 		 * deadlock.
    863 		 */
    864 		cv_broadcast(&p->p_lwpcv);
    865 		mutex_exit(&p->p_smutex);
    866 	}
    867 
    868 #ifdef MULTIPROCESSOR
    869 	/*
    870 	 * In the unlikely event that the LWP is still on the CPU,
    871 	 * then spin until it has switched away.  We need to release
    872 	 * all locks to avoid deadlock against interrupt handlers on
    873 	 * the target CPU.
    874 	 */
    875 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    876 		int count;
    877 		(void)count; /* XXXgcc */
    878 		KERNEL_UNLOCK_ALL(curlwp, &count);
    879 		while ((l->l_flag & LW_RUNNING) != 0 ||
    880 		    l->l_cpu->ci_curlwp == l)
    881 			SPINLOCK_BACKOFF_HOOK;
    882 		KERNEL_LOCK(count, curlwp);
    883 	}
    884 #endif
    885 
    886 	/*
    887 	 * Destroy the LWP's remaining signal information.
    888 	 */
    889 	ksiginfo_queue_init(&kq);
    890 	sigclear(&l->l_sigpend, NULL, &kq);
    891 	ksiginfo_queue_drain(&kq);
    892 	cv_destroy(&l->l_sigcv);
    893 	mutex_destroy(&l->l_swaplock);
    894 
    895 	/*
    896 	 * Free the LWP's turnstile and the LWP structure itself unless the
    897 	 * caller wants to recycle them.  Also, free the scheduler specific data.
    898 	 *
    899 	 * We can't return turnstile0 to the pool (it didn't come from it),
    900 	 * so if it comes up just drop it quietly and move on.
    901 	 *
    902 	 * We don't recycle the VM resources at this time.
    903 	 */
    904 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    905 
    906 	sched_lwp_exit(l);
    907 
    908 	if (!recycle && l->l_ts != &turnstile0)
    909 		pool_cache_put(&turnstile_cache, l->l_ts);
    910 #ifndef __NO_CPU_LWP_FREE
    911 	cpu_lwp_free2(l);
    912 #endif
    913 	uvm_lwp_exit(l);
    914 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    915 	KASSERT(l->l_inheritedprio == MAXPRI);
    916 	if (!recycle)
    917 		pool_put(&lwp_pool, l);
    918 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    919 }
    920 
    921 /*
    922  * Pick a LWP to represent the process for those operations which
    923  * want information about a "process" that is actually associated
    924  * with a LWP.
    925  *
    926  * If 'locking' is false, no locking or lock checks are performed.
    927  * This is intended for use by DDB.
    928  *
    929  * We don't bother locking the LWP here, since code that uses this
    930  * interface is broken by design and an exact match is not required.
    931  */
    932 struct lwp *
    933 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    934 {
    935 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    936 	struct lwp *signalled;
    937 	int cnt;
    938 
    939 	if (locking) {
    940 		KASSERT(mutex_owned(&p->p_smutex));
    941 	}
    942 
    943 	/* Trivial case: only one LWP */
    944 	if (p->p_nlwps == 1) {
    945 		l = LIST_FIRST(&p->p_lwps);
    946 		if (nrlwps)
    947 			*nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
    948 		return l;
    949 	}
    950 
    951 	cnt = 0;
    952 	switch (p->p_stat) {
    953 	case SSTOP:
    954 	case SACTIVE:
    955 		/* Pick the most live LWP */
    956 		onproc = running = sleeping = stopped = suspended = NULL;
    957 		signalled = NULL;
    958 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    959 			if ((l->l_flag & LW_IDLE) != 0) {
    960 				continue;
    961 			}
    962 			if (l->l_lid == p->p_sigctx.ps_lwp)
    963 				signalled = l;
    964 			switch (l->l_stat) {
    965 			case LSONPROC:
    966 				onproc = l;
    967 				cnt++;
    968 				break;
    969 			case LSRUN:
    970 				running = l;
    971 				cnt++;
    972 				break;
    973 			case LSSLEEP:
    974 				sleeping = l;
    975 				break;
    976 			case LSSTOP:
    977 				stopped = l;
    978 				break;
    979 			case LSSUSPENDED:
    980 				suspended = l;
    981 				break;
    982 			}
    983 		}
    984 		if (nrlwps)
    985 			*nrlwps = cnt;
    986 		if (signalled)
    987 			l = signalled;
    988 		else if (onproc)
    989 			l = onproc;
    990 		else if (running)
    991 			l = running;
    992 		else if (sleeping)
    993 			l = sleeping;
    994 		else if (stopped)
    995 			l = stopped;
    996 		else if (suspended)
    997 			l = suspended;
    998 		else
    999 			break;
   1000 		return l;
   1001 #ifdef DIAGNOSTIC
   1002 	case SIDL:
   1003 	case SZOMB:
   1004 	case SDYING:
   1005 	case SDEAD:
   1006 		if (locking)
   1007 			mutex_exit(&p->p_smutex);
   1008 		/* We have more than one LWP and we're in SIDL?
   1009 		 * How'd that happen?
   1010 		 */
   1011 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
   1012 		    p->p_pid, p->p_comm, p->p_stat);
   1013 		break;
   1014 	default:
   1015 		if (locking)
   1016 			mutex_exit(&p->p_smutex);
   1017 		panic("Process %d (%s) in unknown state %d",
   1018 		    p->p_pid, p->p_comm, p->p_stat);
   1019 #endif
   1020 	}
   1021 
   1022 	if (locking)
   1023 		mutex_exit(&p->p_smutex);
   1024 	panic("proc_representative_lwp: couldn't find a lwp for process"
   1025 		" %d (%s)", p->p_pid, p->p_comm);
   1026 	/* NOTREACHED */
   1027 	return NULL;
   1028 }
   1029 
   1030 /*
   1031  * Look up a live LWP within the speicifed process, and return it locked.
   1032  *
   1033  * Must be called with p->p_smutex held.
   1034  */
   1035 struct lwp *
   1036 lwp_find(struct proc *p, int id)
   1037 {
   1038 	struct lwp *l;
   1039 
   1040 	KASSERT(mutex_owned(&p->p_smutex));
   1041 
   1042 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1043 		if (l->l_lid == id)
   1044 			break;
   1045 	}
   1046 
   1047 	/*
   1048 	 * No need to lock - all of these conditions will
   1049 	 * be visible with the process level mutex held.
   1050 	 */
   1051 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1052 		l = NULL;
   1053 
   1054 	return l;
   1055 }
   1056 
   1057 /*
   1058  * Update an LWP's cached credentials to mirror the process' master copy.
   1059  *
   1060  * This happens early in the syscall path, on user trap, and on LWP
   1061  * creation.  A long-running LWP can also voluntarily choose to update
   1062  * it's credentials by calling this routine.  This may be called from
   1063  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1064  */
   1065 void
   1066 lwp_update_creds(struct lwp *l)
   1067 {
   1068 	kauth_cred_t oc;
   1069 	struct proc *p;
   1070 
   1071 	p = l->l_proc;
   1072 	oc = l->l_cred;
   1073 
   1074 	mutex_enter(&p->p_mutex);
   1075 	kauth_cred_hold(p->p_cred);
   1076 	l->l_cred = p->p_cred;
   1077 	mutex_exit(&p->p_mutex);
   1078 	if (oc != NULL) {
   1079 		KERNEL_LOCK(1, l);	/* XXXSMP */
   1080 		kauth_cred_free(oc);
   1081 		KERNEL_UNLOCK_ONE(l);	/* XXXSMP */
   1082 	}
   1083 }
   1084 
   1085 /*
   1086  * Verify that an LWP is locked, and optionally verify that the lock matches
   1087  * one we specify.
   1088  */
   1089 int
   1090 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1091 {
   1092 	kmutex_t *cur = l->l_mutex;
   1093 
   1094 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1095 }
   1096 
   1097 /*
   1098  * Lock an LWP.
   1099  */
   1100 void
   1101 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1102 {
   1103 
   1104 	/*
   1105 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1106 	 *
   1107 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1108 	 */
   1109 #if 1
   1110 	while (l->l_mutex != old) {
   1111 #else
   1112 	for (;;) {
   1113 #endif
   1114 		mutex_spin_exit(old);
   1115 		old = l->l_mutex;
   1116 		mutex_spin_enter(old);
   1117 
   1118 		/*
   1119 		 * mutex_enter() will have posted a read barrier.  Re-test
   1120 		 * l->l_mutex.  If it has changed, we need to try again.
   1121 		 */
   1122 #if 1
   1123 	}
   1124 #else
   1125 	} while (__predict_false(l->l_mutex != old));
   1126 #endif
   1127 }
   1128 
   1129 /*
   1130  * Lend a new mutex to an LWP.  The old mutex must be held.
   1131  */
   1132 void
   1133 lwp_setlock(struct lwp *l, kmutex_t *new)
   1134 {
   1135 
   1136 	KASSERT(mutex_owned(l->l_mutex));
   1137 
   1138 	mb_write();
   1139 	l->l_mutex = new;
   1140 }
   1141 
   1142 /*
   1143  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1144  * must be held.
   1145  */
   1146 void
   1147 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1148 {
   1149 	kmutex_t *old;
   1150 
   1151 	KASSERT(mutex_owned(l->l_mutex));
   1152 
   1153 	old = l->l_mutex;
   1154 	mb_write();
   1155 	l->l_mutex = new;
   1156 	mutex_spin_exit(old);
   1157 }
   1158 
   1159 /*
   1160  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1161  * locked.
   1162  */
   1163 void
   1164 lwp_relock(struct lwp *l, kmutex_t *new)
   1165 {
   1166 	kmutex_t *old;
   1167 
   1168 	KASSERT(mutex_owned(l->l_mutex));
   1169 
   1170 	old = l->l_mutex;
   1171 	if (old != new) {
   1172 		mutex_spin_enter(new);
   1173 		l->l_mutex = new;
   1174 		mutex_spin_exit(old);
   1175 	}
   1176 }
   1177 
   1178 int
   1179 lwp_trylock(struct lwp *l)
   1180 {
   1181 	kmutex_t *old;
   1182 
   1183 	for (;;) {
   1184 		if (!mutex_tryenter(old = l->l_mutex))
   1185 			return 0;
   1186 		if (__predict_true(l->l_mutex == old))
   1187 			return 1;
   1188 		mutex_spin_exit(old);
   1189 	}
   1190 }
   1191 
   1192 /*
   1193  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1194  * set.
   1195  */
   1196 void
   1197 lwp_userret(struct lwp *l)
   1198 {
   1199 	struct proc *p;
   1200 	void (*hook)(void);
   1201 	int sig;
   1202 
   1203 	p = l->l_proc;
   1204 
   1205 	/*
   1206 	 * It should be safe to do this read unlocked on a multiprocessor
   1207 	 * system..
   1208 	 */
   1209 	while ((l->l_flag & LW_USERRET) != 0) {
   1210 		/*
   1211 		 * Process pending signals first, unless the process
   1212 		 * is dumping core or exiting, where we will instead
   1213 		 * enter the L_WSUSPEND case below.
   1214 		 */
   1215 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1216 		    LW_PENDSIG) {
   1217 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1218 			mutex_enter(&p->p_smutex);
   1219 			while ((sig = issignal(l)) != 0)
   1220 				postsig(sig);
   1221 			mutex_exit(&p->p_smutex);
   1222 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1223 		}
   1224 
   1225 		/*
   1226 		 * Core-dump or suspend pending.
   1227 		 *
   1228 		 * In case of core dump, suspend ourselves, so that the
   1229 		 * kernel stack and therefore the userland registers saved
   1230 		 * in the trapframe are around for coredump() to write them
   1231 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1232 		 * will write the core file out once all other LWPs are
   1233 		 * suspended.
   1234 		 */
   1235 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1236 			mutex_enter(&p->p_smutex);
   1237 			p->p_nrlwps--;
   1238 			cv_broadcast(&p->p_lwpcv);
   1239 			lwp_lock(l);
   1240 			l->l_stat = LSSUSPENDED;
   1241 			mutex_exit(&p->p_smutex);
   1242 			mi_switch(l);
   1243 		}
   1244 
   1245 		/* Process is exiting. */
   1246 		if ((l->l_flag & LW_WEXIT) != 0) {
   1247 			KERNEL_LOCK(1, l);
   1248 			lwp_exit(l);
   1249 			KASSERT(0);
   1250 			/* NOTREACHED */
   1251 		}
   1252 
   1253 		/* Call userret hook; used by Linux emulation. */
   1254 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1255 			lwp_lock(l);
   1256 			l->l_flag &= ~LW_WUSERRET;
   1257 			lwp_unlock(l);
   1258 			hook = p->p_userret;
   1259 			p->p_userret = NULL;
   1260 			(*hook)();
   1261 		}
   1262 	}
   1263 }
   1264 
   1265 /*
   1266  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1267  */
   1268 void
   1269 lwp_need_userret(struct lwp *l)
   1270 {
   1271 	KASSERT(lwp_locked(l, NULL));
   1272 
   1273 	/*
   1274 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1275 	 * that the condition will be seen before forcing the LWP to enter
   1276 	 * kernel mode.
   1277 	 */
   1278 	mb_write();
   1279 	cpu_signotify(l);
   1280 }
   1281 
   1282 /*
   1283  * Add one reference to an LWP.  This will prevent the LWP from
   1284  * exiting, thus keep the lwp structure and PCB around to inspect.
   1285  */
   1286 void
   1287 lwp_addref(struct lwp *l)
   1288 {
   1289 
   1290 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1291 	KASSERT(l->l_stat != LSZOMB);
   1292 	KASSERT(l->l_refcnt != 0);
   1293 
   1294 	l->l_refcnt++;
   1295 }
   1296 
   1297 /*
   1298  * Remove one reference to an LWP.  If this is the last reference,
   1299  * then we must finalize the LWP's death.
   1300  */
   1301 void
   1302 lwp_delref(struct lwp *l)
   1303 {
   1304 	struct proc *p = l->l_proc;
   1305 
   1306 	mutex_enter(&p->p_smutex);
   1307 	KASSERT(l->l_stat != LSZOMB);
   1308 	KASSERT(l->l_refcnt > 0);
   1309 	if (--l->l_refcnt == 0)
   1310 		cv_broadcast(&p->p_refcv);
   1311 	mutex_exit(&p->p_smutex);
   1312 }
   1313 
   1314 /*
   1315  * Drain all references to the current LWP.
   1316  */
   1317 void
   1318 lwp_drainrefs(struct lwp *l)
   1319 {
   1320 	struct proc *p = l->l_proc;
   1321 
   1322 	KASSERT(mutex_owned(&p->p_smutex));
   1323 	KASSERT(l->l_refcnt != 0);
   1324 
   1325 	l->l_refcnt--;
   1326 	while (l->l_refcnt != 0)
   1327 		cv_wait(&p->p_refcv, &p->p_smutex);
   1328 }
   1329 
   1330 /*
   1331  * lwp_specific_key_create --
   1332  *	Create a key for subsystem lwp-specific data.
   1333  */
   1334 int
   1335 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1336 {
   1337 
   1338 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1339 }
   1340 
   1341 /*
   1342  * lwp_specific_key_delete --
   1343  *	Delete a key for subsystem lwp-specific data.
   1344  */
   1345 void
   1346 lwp_specific_key_delete(specificdata_key_t key)
   1347 {
   1348 
   1349 	specificdata_key_delete(lwp_specificdata_domain, key);
   1350 }
   1351 
   1352 /*
   1353  * lwp_initspecific --
   1354  *	Initialize an LWP's specificdata container.
   1355  */
   1356 void
   1357 lwp_initspecific(struct lwp *l)
   1358 {
   1359 	int error;
   1360 
   1361 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1362 	KASSERT(error == 0);
   1363 }
   1364 
   1365 /*
   1366  * lwp_finispecific --
   1367  *	Finalize an LWP's specificdata container.
   1368  */
   1369 void
   1370 lwp_finispecific(struct lwp *l)
   1371 {
   1372 
   1373 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1374 }
   1375 
   1376 /*
   1377  * lwp_getspecific --
   1378  *	Return lwp-specific data corresponding to the specified key.
   1379  *
   1380  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1381  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1382  *	LWP's specifc data, care must be taken to ensure that doing so
   1383  *	would not cause internal data structure inconsistency (i.e. caller
   1384  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1385  *	or lwp_setspecific() call).
   1386  */
   1387 void *
   1388 lwp_getspecific(specificdata_key_t key)
   1389 {
   1390 
   1391 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1392 						  &curlwp->l_specdataref, key));
   1393 }
   1394 
   1395 void *
   1396 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1397 {
   1398 
   1399 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1400 						  &l->l_specdataref, key));
   1401 }
   1402 
   1403 /*
   1404  * lwp_setspecific --
   1405  *	Set lwp-specific data corresponding to the specified key.
   1406  */
   1407 void
   1408 lwp_setspecific(specificdata_key_t key, void *data)
   1409 {
   1410 
   1411 	specificdata_setspecific(lwp_specificdata_domain,
   1412 				 &curlwp->l_specdataref, key, data);
   1413 }
   1414