Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.73
      1 /*	$NetBSD: kern_lwp.c,v 1.73 2007/10/09 19:00:13 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit or thread of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp", also known as lwp_t.
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing concurrently in the kernel.
     52  *
     53  * Execution states
     54  *
     55  *	At any given time, an LWP has overall state that is described by
     56  *	lwp::l_stat.  The states are broken into two sets below.  The first
     57  *	set is guaranteed to represent the absolute, current state of the
     58  *	LWP:
     59  *
     60  * 	LSONPROC
     61  *
     62  * 		On processor: the LWP is executing on a CPU, either in the
     63  * 		kernel or in user space.
     64  *
     65  * 	LSRUN
     66  *
     67  * 		Runnable: the LWP is parked on a run queue, and may soon be
     68  * 		chosen to run by a idle processor, or by a processor that
     69  * 		has been asked to preempt a currently runnning but lower
     70  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     71  *		then the LWP is not on a run queue, but may be soon.
     72  *
     73  * 	LSIDL
     74  *
     75  * 		Idle: the LWP has been created but has not yet executed,
     76  *		or it has ceased executing a unit of work and is waiting
     77  *		to be started again.
     78  *
     79  * 	LSSUSPENDED:
     80  *
     81  * 		Suspended: the LWP has had its execution suspended by
     82  *		another LWP in the same process using the _lwp_suspend()
     83  *		system call.  User-level LWPs also enter the suspended
     84  *		state when the system is shutting down.
     85  *
     86  *	The second set represent a "statement of intent" on behalf of the
     87  *	LWP.  The LWP may in fact be executing on a processor, may be
     88  *	sleeping or idle. It is expected to take the necessary action to
     89  *	stop executing or become "running" again within	a short timeframe.
     90  *	The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
     91  *	Importantly, in indicates that its state is tied to a CPU.
     92  *
     93  * 	LSZOMB:
     94  *
     95  * 		Dead or dying: the LWP has released most of its resources
     96  *		and is a) about to switch away into oblivion b) has already
     97  *		switched away.  When it switches away, its few remaining
     98  *		resources can be collected.
     99  *
    100  * 	LSSLEEP:
    101  *
    102  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    103  * 		has switched away or will switch away shortly to allow other
    104  *		LWPs to run on the CPU.
    105  *
    106  * 	LSSTOP:
    107  *
    108  * 		Stopped: the LWP has been stopped as a result of a job
    109  * 		control signal, or as a result of the ptrace() interface.
    110  *
    111  * 		Stopped LWPs may run briefly within the kernel to handle
    112  * 		signals that they receive, but will not return to user space
    113  * 		until their process' state is changed away from stopped.
    114  *
    115  * 		Single LWPs within a process can not be set stopped
    116  * 		selectively: all actions that can stop or continue LWPs
    117  * 		occur at the process level.
    118  *
    119  * State transitions
    120  *
    121  *	Note that the LSSTOP state may only be set when returning to
    122  *	user space in userret(), or when sleeping interruptably.  The
    123  *	LSSUSPENDED state may only be set in userret().  Before setting
    124  *	those states, we try to ensure that the LWPs will release all
    125  *	locks that they hold, and at a minimum try to ensure that the
    126  *	LWP can be set runnable again by a signal.
    127  *
    128  *	LWPs may transition states in the following ways:
    129  *
    130  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131  *	            > STOPPED			    > SLEEP
    132  *	            > SUSPENDED			    > STOPPED
    133  *						    > SUSPENDED
    134  *						    > ZOMB
    135  *
    136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  *	            > SLEEP			    > SLEEP
    138  *
    139  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  *		    > RUN		            > SUSPENDED
    141  *		    > STOPPED                       > STOPPED
    142  *		    > SUSPENDED
    143  *
    144  *	Other state transitions are possible with kernel threads (eg
    145  *	ONPROC -> IDL), but only happen under tightly controlled
    146  *	circumstances the side effects are understood.
    147  *
    148  * Locking
    149  *
    150  *	The majority of fields in 'struct lwp' are covered by a single,
    151  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    152  *	each field are documented in sys/lwp.h.
    153  *
    154  *	State transitions must be made with the LWP's general lock held,
    155  * 	and may cause the LWP's lock pointer to change. Manipulation of
    156  *	the general lock is not performed directly, but through calls to
    157  *	lwp_lock(), lwp_relock() and similar.
    158  *
    159  *	States and their associated locks:
    160  *
    161  *	LSIDL, LSZOMB, LSONPROC:
    162  *
    163  *		Always covered by spc_lwplock, which protects running LWPs.
    164  *		This is a per-CPU lock.
    165  *
    166  *	LSRUN:
    167  *
    168  *		Always covered by spc_mutex, which protects the run queues.
    169  *		This may be a per-CPU lock, depending on the scheduler.
    170  *
    171  *	LSSLEEP:
    172  *
    173  *		Covered by a lock associated with the sleep queue that the
    174  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    175  *
    176  *	LSSTOP, LSSUSPENDED:
    177  *
    178  *		If the LWP was previously sleeping (l_wchan != NULL), then
    179  *		l_mutex references the sleep queue lock.  If the LWP was
    180  *		runnable or on the CPU when halted, or has been removed from
    181  *		the sleep queue since halted, then the lock is spc_lwplock.
    182  *
    183  *	The lock order is as follows:
    184  *
    185  *		spc::spc_lwplock ->
    186  *		    sleepq_t::sq_mutex ->
    187  *			tschain_t::tc_mutex ->
    188  *			    spc::spc_mutex
    189  *
    190  *	Each process has an scheduler state lock (proc::p_smutex), and a
    191  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    192  *	so on.  When an LWP is to be entered into or removed from one of the
    193  *	following states, p_mutex must be held and the process wide counters
    194  *	adjusted:
    195  *
    196  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    197  *
    198  *	Note that an LWP is considered running or likely to run soon if in
    199  *	one of the following states.  This affects the value of p_nrlwps:
    200  *
    201  *		LSRUN, LSONPROC, LSSLEEP
    202  *
    203  *	p_smutex does not need to be held when transitioning among these
    204  *	three states.
    205  */
    206 
    207 #include <sys/cdefs.h>
    208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.73 2007/10/09 19:00:13 rmind Exp $");
    209 
    210 #include "opt_multiprocessor.h"
    211 #include "opt_lockdebug.h"
    212 
    213 #define _LWP_API_PRIVATE
    214 
    215 #include <sys/param.h>
    216 #include <sys/systm.h>
    217 #include <sys/cpu.h>
    218 #include <sys/pool.h>
    219 #include <sys/proc.h>
    220 #include <sys/syscallargs.h>
    221 #include <sys/syscall_stats.h>
    222 #include <sys/kauth.h>
    223 #include <sys/sleepq.h>
    224 #include <sys/lockdebug.h>
    225 #include <sys/kmem.h>
    226 
    227 #include <uvm/uvm_extern.h>
    228 
    229 struct lwplist	alllwp;
    230 
    231 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    232     &pool_allocator_nointr, IPL_NONE);
    233 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    234     &pool_allocator_nointr, IPL_NONE);
    235 
    236 static specificdata_domain_t lwp_specificdata_domain;
    237 
    238 #define LWP_DEBUG
    239 
    240 #ifdef LWP_DEBUG
    241 int lwp_debug = 0;
    242 #define DPRINTF(x) if (lwp_debug) printf x
    243 #else
    244 #define DPRINTF(x)
    245 #endif
    246 
    247 void
    248 lwpinit(void)
    249 {
    250 
    251 	lwp_specificdata_domain = specificdata_domain_create();
    252 	KASSERT(lwp_specificdata_domain != NULL);
    253 	lwp_sys_init();
    254 }
    255 
    256 /*
    257  * Set an suspended.
    258  *
    259  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    260  * LWP before return.
    261  */
    262 int
    263 lwp_suspend(struct lwp *curl, struct lwp *t)
    264 {
    265 	int error;
    266 
    267 	KASSERT(mutex_owned(&t->l_proc->p_smutex));
    268 	KASSERT(lwp_locked(t, NULL));
    269 
    270 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    271 
    272 	/*
    273 	 * If the current LWP has been told to exit, we must not suspend anyone
    274 	 * else or deadlock could occur.  We won't return to userspace.
    275 	 */
    276 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    277 		lwp_unlock(t);
    278 		return (EDEADLK);
    279 	}
    280 
    281 	error = 0;
    282 
    283 	switch (t->l_stat) {
    284 	case LSRUN:
    285 	case LSONPROC:
    286 		t->l_flag |= LW_WSUSPEND;
    287 		lwp_need_userret(t);
    288 		lwp_unlock(t);
    289 		break;
    290 
    291 	case LSSLEEP:
    292 		t->l_flag |= LW_WSUSPEND;
    293 
    294 		/*
    295 		 * Kick the LWP and try to get it to the kernel boundary
    296 		 * so that it will release any locks that it holds.
    297 		 * setrunnable() will release the lock.
    298 		 */
    299 		if ((t->l_flag & LW_SINTR) != 0)
    300 			setrunnable(t);
    301 		else
    302 			lwp_unlock(t);
    303 		break;
    304 
    305 	case LSSUSPENDED:
    306 		lwp_unlock(t);
    307 		break;
    308 
    309 	case LSSTOP:
    310 		t->l_flag |= LW_WSUSPEND;
    311 		setrunnable(t);
    312 		break;
    313 
    314 	case LSIDL:
    315 	case LSZOMB:
    316 		error = EINTR; /* It's what Solaris does..... */
    317 		lwp_unlock(t);
    318 		break;
    319 	}
    320 
    321 	return (error);
    322 }
    323 
    324 /*
    325  * Restart a suspended LWP.
    326  *
    327  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    328  * LWP before return.
    329  */
    330 void
    331 lwp_continue(struct lwp *l)
    332 {
    333 
    334 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
    335 	KASSERT(lwp_locked(l, NULL));
    336 
    337 	DPRINTF(("lwp_continue of %d.%d (%s), state %d, wchan %p\n",
    338 	    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm, l->l_stat,
    339 	    l->l_wchan));
    340 
    341 	/* If rebooting or not suspended, then just bail out. */
    342 	if ((l->l_flag & LW_WREBOOT) != 0) {
    343 		lwp_unlock(l);
    344 		return;
    345 	}
    346 
    347 	l->l_flag &= ~LW_WSUSPEND;
    348 
    349 	if (l->l_stat != LSSUSPENDED) {
    350 		lwp_unlock(l);
    351 		return;
    352 	}
    353 
    354 	/* setrunnable() will release the lock. */
    355 	setrunnable(l);
    356 }
    357 
    358 /*
    359  * Wait for an LWP within the current process to exit.  If 'lid' is
    360  * non-zero, we are waiting for a specific LWP.
    361  *
    362  * Must be called with p->p_smutex held.
    363  */
    364 int
    365 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    366 {
    367 	struct proc *p = l->l_proc;
    368 	struct lwp *l2;
    369 	int nfound, error;
    370 	lwpid_t curlid;
    371 	bool exiting;
    372 
    373 	DPRINTF(("lwp_wait1: %d.%d waiting for %d.\n",
    374 	    p->p_pid, l->l_lid, lid));
    375 
    376 	KASSERT(mutex_owned(&p->p_smutex));
    377 
    378 	p->p_nlwpwait++;
    379 	l->l_waitingfor = lid;
    380 	curlid = l->l_lid;
    381 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    382 
    383 	for (;;) {
    384 		/*
    385 		 * Avoid a race between exit1() and sigexit(): if the
    386 		 * process is dumping core, then we need to bail out: call
    387 		 * into lwp_userret() where we will be suspended until the
    388 		 * deed is done.
    389 		 */
    390 		if ((p->p_sflag & PS_WCORE) != 0) {
    391 			mutex_exit(&p->p_smutex);
    392 			lwp_userret(l);
    393 #ifdef DIAGNOSTIC
    394 			panic("lwp_wait1");
    395 #endif
    396 			/* NOTREACHED */
    397 		}
    398 
    399 		/*
    400 		 * First off, drain any detached LWP that is waiting to be
    401 		 * reaped.
    402 		 */
    403 		while ((l2 = p->p_zomblwp) != NULL) {
    404 			p->p_zomblwp = NULL;
    405 			lwp_free(l2, false, false);/* releases proc mutex */
    406 			mutex_enter(&p->p_smutex);
    407 		}
    408 
    409 		/*
    410 		 * Now look for an LWP to collect.  If the whole process is
    411 		 * exiting, count detached LWPs as eligible to be collected,
    412 		 * but don't drain them here.
    413 		 */
    414 		nfound = 0;
    415 		error = 0;
    416 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    417 			/*
    418 			 * If a specific wait and the target is waiting on
    419 			 * us, then avoid deadlock.  This also traps LWPs
    420 			 * that try to wait on themselves.
    421 			 *
    422 			 * Note that this does not handle more complicated
    423 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    424 			 * can still be killed so it is not a major problem.
    425 			 */
    426 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    427 				error = EDEADLK;
    428 				break;
    429 			}
    430 			if (l2 == l)
    431 				continue;
    432 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    433 				nfound += exiting;
    434 				continue;
    435 			}
    436 			if (lid != 0) {
    437 				if (l2->l_lid != lid)
    438 					continue;
    439 				/*
    440 				 * Mark this LWP as the first waiter, if there
    441 				 * is no other.
    442 				 */
    443 				if (l2->l_waiter == 0)
    444 					l2->l_waiter = curlid;
    445 			} else if (l2->l_waiter != 0) {
    446 				/*
    447 				 * It already has a waiter - so don't
    448 				 * collect it.  If the waiter doesn't
    449 				 * grab it we'll get another chance
    450 				 * later.
    451 				 */
    452 				nfound++;
    453 				continue;
    454 			}
    455 			nfound++;
    456 
    457 			/* No need to lock the LWP in order to see LSZOMB. */
    458 			if (l2->l_stat != LSZOMB)
    459 				continue;
    460 
    461 			/*
    462 			 * We're no longer waiting.  Reset the "first waiter"
    463 			 * pointer on the target, in case it was us.
    464 			 */
    465 			l->l_waitingfor = 0;
    466 			l2->l_waiter = 0;
    467 			p->p_nlwpwait--;
    468 			if (departed)
    469 				*departed = l2->l_lid;
    470 
    471 			/* lwp_free() releases the proc lock. */
    472 			lwp_free(l2, false, false);
    473 			mutex_enter(&p->p_smutex);
    474 			return 0;
    475 		}
    476 
    477 		if (error != 0)
    478 			break;
    479 		if (nfound == 0) {
    480 			error = ESRCH;
    481 			break;
    482 		}
    483 
    484 		/*
    485 		 * The kernel is careful to ensure that it can not deadlock
    486 		 * when exiting - just keep waiting.
    487 		 */
    488 		if (exiting) {
    489 			KASSERT(p->p_nlwps > 1);
    490 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    491 			continue;
    492 		}
    493 
    494 		/*
    495 		 * If all other LWPs are waiting for exits or suspends
    496 		 * and the supply of zombies and potential zombies is
    497 		 * exhausted, then we are about to deadlock.
    498 		 *
    499 		 * If the process is exiting (and this LWP is not the one
    500 		 * that is coordinating the exit) then bail out now.
    501 		 */
    502 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    503 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    504 			error = EDEADLK;
    505 			break;
    506 		}
    507 
    508 		/*
    509 		 * Sit around and wait for something to happen.  We'll be
    510 		 * awoken if any of the conditions examined change: if an
    511 		 * LWP exits, is collected, or is detached.
    512 		 */
    513 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    514 			break;
    515 	}
    516 
    517 	/*
    518 	 * We didn't find any LWPs to collect, we may have received a
    519 	 * signal, or some other condition has caused us to bail out.
    520 	 *
    521 	 * If waiting on a specific LWP, clear the waiters marker: some
    522 	 * other LWP may want it.  Then, kick all the remaining waiters
    523 	 * so that they can re-check for zombies and for deadlock.
    524 	 */
    525 	if (lid != 0) {
    526 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    527 			if (l2->l_lid == lid) {
    528 				if (l2->l_waiter == curlid)
    529 					l2->l_waiter = 0;
    530 				break;
    531 			}
    532 		}
    533 	}
    534 	p->p_nlwpwait--;
    535 	l->l_waitingfor = 0;
    536 	cv_broadcast(&p->p_lwpcv);
    537 
    538 	return error;
    539 }
    540 
    541 /*
    542  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    543  * The new LWP is created in state LSIDL and must be set running,
    544  * suspended, or stopped by the caller.
    545  */
    546 int
    547 newlwp(struct lwp *l1, struct proc *p2, vaddr_t uaddr, bool inmem,
    548     int flags, void *stack, size_t stacksize,
    549     void (*func)(void *), void *arg, struct lwp **rnewlwpp)
    550 {
    551 	struct lwp *l2, *isfree;
    552 	turnstile_t *ts;
    553 
    554 	/*
    555 	 * First off, reap any detached LWP waiting to be collected.
    556 	 * We can re-use its LWP structure and turnstile.
    557 	 */
    558 	isfree = NULL;
    559 	if (p2->p_zomblwp != NULL) {
    560 		mutex_enter(&p2->p_smutex);
    561 		if ((isfree = p2->p_zomblwp) != NULL) {
    562 			p2->p_zomblwp = NULL;
    563 			lwp_free(isfree, true, false);/* releases proc mutex */
    564 		} else
    565 			mutex_exit(&p2->p_smutex);
    566 	}
    567 	if (isfree == NULL) {
    568 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    569 		memset(l2, 0, sizeof(*l2));
    570 		l2->l_ts = pool_cache_get(&turnstile_cache, PR_WAITOK);
    571 		SLIST_INIT(&l2->l_pi_lenders);
    572 	} else {
    573 		l2 = isfree;
    574 		ts = l2->l_ts;
    575 		KASSERT(l2->l_inheritedprio == MAXPRI);
    576 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    577 		memset(l2, 0, sizeof(*l2));
    578 		l2->l_ts = ts;
    579 	}
    580 
    581 	l2->l_stat = LSIDL;
    582 	l2->l_proc = p2;
    583 	l2->l_refcnt = 1;
    584 	l2->l_priority = l1->l_priority;
    585 	l2->l_usrpri = l1->l_usrpri;
    586 	l2->l_inheritedprio = MAXPRI;
    587 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    588 	l2->l_cpu = l1->l_cpu;
    589 	l2->l_flag = inmem ? LW_INMEM : 0;
    590 
    591 	if (p2->p_flag & PK_SYSTEM) {
    592 		/*
    593 		 * Mark it as a system process and not a candidate for
    594 		 * swapping.
    595 		 */
    596 		l2->l_flag |= LW_SYSTEM;
    597 	} else {
    598 		/* Look for a CPU to start */
    599 		l2->l_cpu = sched_takecpu(l2);
    600 		l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
    601 	}
    602 
    603 	lwp_initspecific(l2);
    604 	sched_lwp_fork(l2);
    605 	lwp_update_creds(l2);
    606 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    607 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    608 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    609 	cv_init(&l2->l_sigcv, "sigwait");
    610 	l2->l_syncobj = &sched_syncobj;
    611 
    612 	if (rnewlwpp != NULL)
    613 		*rnewlwpp = l2;
    614 
    615 	l2->l_addr = UAREA_TO_USER(uaddr);
    616 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    617 	    (arg != NULL) ? arg : l2);
    618 
    619 	mutex_enter(&p2->p_smutex);
    620 
    621 	if ((flags & LWP_DETACHED) != 0) {
    622 		l2->l_prflag = LPR_DETACHED;
    623 		p2->p_ndlwps++;
    624 	} else
    625 		l2->l_prflag = 0;
    626 
    627 	l2->l_sigmask = l1->l_sigmask;
    628 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    629 	sigemptyset(&l2->l_sigpend.sp_set);
    630 
    631 	p2->p_nlwpid++;
    632 	if (p2->p_nlwpid == 0)
    633 		p2->p_nlwpid++;
    634 	l2->l_lid = p2->p_nlwpid;
    635 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    636 	p2->p_nlwps++;
    637 
    638 	mutex_exit(&p2->p_smutex);
    639 
    640 	mutex_enter(&proclist_lock);
    641 	mutex_enter(&proclist_mutex);
    642 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    643 	mutex_exit(&proclist_mutex);
    644 	mutex_exit(&proclist_lock);
    645 
    646 	SYSCALL_TIME_LWP_INIT(l2);
    647 
    648 	if (p2->p_emul->e_lwp_fork)
    649 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    650 
    651 	return (0);
    652 }
    653 
    654 /*
    655  * Called by MD code when a new LWP begins execution.  Must be called
    656  * with the previous LWP locked (so at splsched), or if there is no
    657  * previous LWP, at splsched.
    658  */
    659 void
    660 lwp_startup(struct lwp *prev, struct lwp *new)
    661 {
    662 
    663 	if (prev != NULL) {
    664 		lwp_unlock(prev);
    665 	}
    666 	spl0();
    667 	pmap_activate(new);
    668 	LOCKDEBUG_BARRIER(NULL, 0);
    669 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    670 		KERNEL_LOCK(1, new);
    671 	}
    672 }
    673 
    674 /*
    675  * Exit an LWP.
    676  */
    677 void
    678 lwp_exit(struct lwp *l)
    679 {
    680 	struct proc *p = l->l_proc;
    681 	struct lwp *l2;
    682 	bool current;
    683 
    684 	current = (l == curlwp);
    685 
    686 	DPRINTF(("lwp_exit: %d.%d exiting.\n", p->p_pid, l->l_lid));
    687 	DPRINTF((" nlwps: %d nzlwps: %d\n", p->p_nlwps, p->p_nzlwps));
    688 	KASSERT(current || l->l_stat == LSIDL);
    689 
    690 	/*
    691 	 * Verify that we hold no locks other than the kernel lock.
    692 	 */
    693 #ifdef MULTIPROCESSOR
    694 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    695 #else
    696 	LOCKDEBUG_BARRIER(NULL, 0);
    697 #endif
    698 
    699 	/*
    700 	 * If we are the last live LWP in a process, we need to exit the
    701 	 * entire process.  We do so with an exit status of zero, because
    702 	 * it's a "controlled" exit, and because that's what Solaris does.
    703 	 *
    704 	 * We are not quite a zombie yet, but for accounting purposes we
    705 	 * must increment the count of zombies here.
    706 	 *
    707 	 * Note: the last LWP's specificdata will be deleted here.
    708 	 */
    709 	mutex_enter(&p->p_smutex);
    710 	if (p->p_nlwps - p->p_nzlwps == 1) {
    711 		KASSERT(current == true);
    712 		DPRINTF(("lwp_exit: %d.%d calling exit1()\n",
    713 		    p->p_pid, l->l_lid));
    714 		exit1(l, 0);
    715 		/* NOTREACHED */
    716 	}
    717 	p->p_nzlwps++;
    718 	mutex_exit(&p->p_smutex);
    719 
    720 	if (p->p_emul->e_lwp_exit)
    721 		(*p->p_emul->e_lwp_exit)(l);
    722 
    723 	/* Delete the specificdata while it's still safe to sleep. */
    724 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    725 
    726 	/*
    727 	 * Release our cached credentials.
    728 	 */
    729 	kauth_cred_free(l->l_cred);
    730 	callout_destroy(&l->l_timeout_ch);
    731 
    732 	/*
    733 	 * While we can still block, mark the LWP as unswappable to
    734 	 * prevent conflicts with the with the swapper.
    735 	 */
    736 	if (current)
    737 		uvm_lwp_hold(l);
    738 
    739 	/*
    740 	 * Remove the LWP from the global list.
    741 	 */
    742 	mutex_enter(&proclist_lock);
    743 	mutex_enter(&proclist_mutex);
    744 	LIST_REMOVE(l, l_list);
    745 	mutex_exit(&proclist_mutex);
    746 	mutex_exit(&proclist_lock);
    747 
    748 	/*
    749 	 * Get rid of all references to the LWP that others (e.g. procfs)
    750 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    751 	 * mark it waiting for collection in the proc structure.  Note that
    752 	 * before we can do that, we need to free any other dead, deatched
    753 	 * LWP waiting to meet its maker.
    754 	 *
    755 	 * XXXSMP disable preemption.
    756 	 */
    757 	mutex_enter(&p->p_smutex);
    758 	lwp_drainrefs(l);
    759 
    760 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    761 		while ((l2 = p->p_zomblwp) != NULL) {
    762 			p->p_zomblwp = NULL;
    763 			lwp_free(l2, false, false);/* releases proc mutex */
    764 			mutex_enter(&p->p_smutex);
    765 			l->l_refcnt++;
    766 			lwp_drainrefs(l);
    767 		}
    768 		p->p_zomblwp = l;
    769 	}
    770 
    771 	/*
    772 	 * If we find a pending signal for the process and we have been
    773 	 * asked to check for signals, then we loose: arrange to have
    774 	 * all other LWPs in the process check for signals.
    775 	 */
    776 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    777 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    778 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    779 			lwp_lock(l2);
    780 			l2->l_flag |= LW_PENDSIG;
    781 			lwp_unlock(l2);
    782 		}
    783 	}
    784 
    785 	lwp_lock(l);
    786 	l->l_stat = LSZOMB;
    787 	lwp_unlock(l);
    788 	p->p_nrlwps--;
    789 	cv_broadcast(&p->p_lwpcv);
    790 	mutex_exit(&p->p_smutex);
    791 
    792 	/*
    793 	 * We can no longer block.  At this point, lwp_free() may already
    794 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    795 	 *
    796 	 * Free MD LWP resources.
    797 	 */
    798 #ifndef __NO_CPU_LWP_FREE
    799 	cpu_lwp_free(l, 0);
    800 #endif
    801 
    802 	if (current) {
    803 		pmap_deactivate(l);
    804 
    805 		/*
    806 		 * Release the kernel lock, and switch away into
    807 		 * oblivion.
    808 		 */
    809 #ifdef notyet
    810 		/* XXXSMP hold in lwp_userret() */
    811 		KERNEL_UNLOCK_LAST(l);
    812 #else
    813 		KERNEL_UNLOCK_ALL(l, NULL);
    814 #endif
    815 		lwp_exit_switchaway(l);
    816 	}
    817 }
    818 
    819 void
    820 lwp_exit_switchaway(struct lwp *l)
    821 {
    822 	struct cpu_info *ci;
    823 	struct lwp *idlelwp;
    824 
    825 	/* Unlocked, but is for statistics only. */
    826 	uvmexp.swtch++;
    827 
    828 	(void)splsched();
    829 	l->l_flag &= ~LW_RUNNING;
    830 	ci = curcpu();
    831 	idlelwp = ci->ci_data.cpu_idlelwp;
    832 	idlelwp->l_stat = LSONPROC;
    833 	cpu_switchto(NULL, idlelwp);
    834 }
    835 
    836 /*
    837  * Free a dead LWP's remaining resources.
    838  *
    839  * XXXLWP limits.
    840  */
    841 void
    842 lwp_free(struct lwp *l, bool recycle, bool last)
    843 {
    844 	struct proc *p = l->l_proc;
    845 	ksiginfoq_t kq;
    846 
    847 	/*
    848 	 * If this was not the last LWP in the process, then adjust
    849 	 * counters and unlock.
    850 	 */
    851 	if (!last) {
    852 		/*
    853 		 * Add the LWP's run time to the process' base value.
    854 		 * This needs to co-incide with coming off p_lwps.
    855 		 */
    856 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    857 		p->p_pctcpu += l->l_pctcpu;
    858 		LIST_REMOVE(l, l_sibling);
    859 		p->p_nlwps--;
    860 		p->p_nzlwps--;
    861 		if ((l->l_prflag & LPR_DETACHED) != 0)
    862 			p->p_ndlwps--;
    863 
    864 		/*
    865 		 * Have any LWPs sleeping in lwp_wait() recheck for
    866 		 * deadlock.
    867 		 */
    868 		cv_broadcast(&p->p_lwpcv);
    869 		mutex_exit(&p->p_smutex);
    870 	}
    871 
    872 #ifdef MULTIPROCESSOR
    873 	/*
    874 	 * In the unlikely event that the LWP is still on the CPU,
    875 	 * then spin until it has switched away.  We need to release
    876 	 * all locks to avoid deadlock against interrupt handlers on
    877 	 * the target CPU.
    878 	 */
    879 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    880 		int count;
    881 		(void)count; /* XXXgcc */
    882 		KERNEL_UNLOCK_ALL(curlwp, &count);
    883 		while ((l->l_flag & LW_RUNNING) != 0 ||
    884 		    l->l_cpu->ci_curlwp == l)
    885 			SPINLOCK_BACKOFF_HOOK;
    886 		KERNEL_LOCK(count, curlwp);
    887 	}
    888 #endif
    889 
    890 	/*
    891 	 * Destroy the LWP's remaining signal information.
    892 	 */
    893 	ksiginfo_queue_init(&kq);
    894 	sigclear(&l->l_sigpend, NULL, &kq);
    895 	ksiginfo_queue_drain(&kq);
    896 	cv_destroy(&l->l_sigcv);
    897 	mutex_destroy(&l->l_swaplock);
    898 
    899 	/*
    900 	 * Free the LWP's turnstile and the LWP structure itself unless the
    901 	 * caller wants to recycle them.  Also, free the scheduler specific data.
    902 	 *
    903 	 * We can't return turnstile0 to the pool (it didn't come from it),
    904 	 * so if it comes up just drop it quietly and move on.
    905 	 *
    906 	 * We don't recycle the VM resources at this time.
    907 	 */
    908 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    909 
    910 	sched_lwp_exit(l);
    911 
    912 	if (!recycle && l->l_ts != &turnstile0)
    913 		pool_cache_put(&turnstile_cache, l->l_ts);
    914 #ifndef __NO_CPU_LWP_FREE
    915 	cpu_lwp_free2(l);
    916 #endif
    917 	uvm_lwp_exit(l);
    918 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    919 	KASSERT(l->l_inheritedprio == MAXPRI);
    920 	if (!recycle)
    921 		pool_put(&lwp_pool, l);
    922 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    923 }
    924 
    925 /*
    926  * Pick a LWP to represent the process for those operations which
    927  * want information about a "process" that is actually associated
    928  * with a LWP.
    929  *
    930  * If 'locking' is false, no locking or lock checks are performed.
    931  * This is intended for use by DDB.
    932  *
    933  * We don't bother locking the LWP here, since code that uses this
    934  * interface is broken by design and an exact match is not required.
    935  */
    936 struct lwp *
    937 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    938 {
    939 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    940 	struct lwp *signalled;
    941 	int cnt;
    942 
    943 	if (locking) {
    944 		KASSERT(mutex_owned(&p->p_smutex));
    945 	}
    946 
    947 	/* Trivial case: only one LWP */
    948 	if (p->p_nlwps == 1) {
    949 		l = LIST_FIRST(&p->p_lwps);
    950 		if (nrlwps)
    951 			*nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
    952 		return l;
    953 	}
    954 
    955 	cnt = 0;
    956 	switch (p->p_stat) {
    957 	case SSTOP:
    958 	case SACTIVE:
    959 		/* Pick the most live LWP */
    960 		onproc = running = sleeping = stopped = suspended = NULL;
    961 		signalled = NULL;
    962 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    963 			if ((l->l_flag & LW_IDLE) != 0) {
    964 				continue;
    965 			}
    966 			if (l->l_lid == p->p_sigctx.ps_lwp)
    967 				signalled = l;
    968 			switch (l->l_stat) {
    969 			case LSONPROC:
    970 				onproc = l;
    971 				cnt++;
    972 				break;
    973 			case LSRUN:
    974 				running = l;
    975 				cnt++;
    976 				break;
    977 			case LSSLEEP:
    978 				sleeping = l;
    979 				break;
    980 			case LSSTOP:
    981 				stopped = l;
    982 				break;
    983 			case LSSUSPENDED:
    984 				suspended = l;
    985 				break;
    986 			}
    987 		}
    988 		if (nrlwps)
    989 			*nrlwps = cnt;
    990 		if (signalled)
    991 			l = signalled;
    992 		else if (onproc)
    993 			l = onproc;
    994 		else if (running)
    995 			l = running;
    996 		else if (sleeping)
    997 			l = sleeping;
    998 		else if (stopped)
    999 			l = stopped;
   1000 		else if (suspended)
   1001 			l = suspended;
   1002 		else
   1003 			break;
   1004 		return l;
   1005 #ifdef DIAGNOSTIC
   1006 	case SIDL:
   1007 	case SZOMB:
   1008 	case SDYING:
   1009 	case SDEAD:
   1010 		if (locking)
   1011 			mutex_exit(&p->p_smutex);
   1012 		/* We have more than one LWP and we're in SIDL?
   1013 		 * How'd that happen?
   1014 		 */
   1015 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
   1016 		    p->p_pid, p->p_comm, p->p_stat);
   1017 		break;
   1018 	default:
   1019 		if (locking)
   1020 			mutex_exit(&p->p_smutex);
   1021 		panic("Process %d (%s) in unknown state %d",
   1022 		    p->p_pid, p->p_comm, p->p_stat);
   1023 #endif
   1024 	}
   1025 
   1026 	if (locking)
   1027 		mutex_exit(&p->p_smutex);
   1028 	panic("proc_representative_lwp: couldn't find a lwp for process"
   1029 		" %d (%s)", p->p_pid, p->p_comm);
   1030 	/* NOTREACHED */
   1031 	return NULL;
   1032 }
   1033 
   1034 /*
   1035  * Look up a live LWP within the speicifed process, and return it locked.
   1036  *
   1037  * Must be called with p->p_smutex held.
   1038  */
   1039 struct lwp *
   1040 lwp_find(struct proc *p, int id)
   1041 {
   1042 	struct lwp *l;
   1043 
   1044 	KASSERT(mutex_owned(&p->p_smutex));
   1045 
   1046 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1047 		if (l->l_lid == id)
   1048 			break;
   1049 	}
   1050 
   1051 	/*
   1052 	 * No need to lock - all of these conditions will
   1053 	 * be visible with the process level mutex held.
   1054 	 */
   1055 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1056 		l = NULL;
   1057 
   1058 	return l;
   1059 }
   1060 
   1061 /*
   1062  * Update an LWP's cached credentials to mirror the process' master copy.
   1063  *
   1064  * This happens early in the syscall path, on user trap, and on LWP
   1065  * creation.  A long-running LWP can also voluntarily choose to update
   1066  * it's credentials by calling this routine.  This may be called from
   1067  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1068  */
   1069 void
   1070 lwp_update_creds(struct lwp *l)
   1071 {
   1072 	kauth_cred_t oc;
   1073 	struct proc *p;
   1074 
   1075 	p = l->l_proc;
   1076 	oc = l->l_cred;
   1077 
   1078 	mutex_enter(&p->p_mutex);
   1079 	kauth_cred_hold(p->p_cred);
   1080 	l->l_cred = p->p_cred;
   1081 	mutex_exit(&p->p_mutex);
   1082 	if (oc != NULL) {
   1083 		KERNEL_LOCK(1, l);	/* XXXSMP */
   1084 		kauth_cred_free(oc);
   1085 		KERNEL_UNLOCK_ONE(l);	/* XXXSMP */
   1086 	}
   1087 }
   1088 
   1089 /*
   1090  * Verify that an LWP is locked, and optionally verify that the lock matches
   1091  * one we specify.
   1092  */
   1093 int
   1094 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1095 {
   1096 	kmutex_t *cur = l->l_mutex;
   1097 
   1098 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1099 }
   1100 
   1101 /*
   1102  * Lock an LWP.
   1103  */
   1104 void
   1105 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1106 {
   1107 
   1108 	/*
   1109 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1110 	 *
   1111 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1112 	 */
   1113 #if 1
   1114 	while (l->l_mutex != old) {
   1115 #else
   1116 	for (;;) {
   1117 #endif
   1118 		mutex_spin_exit(old);
   1119 		old = l->l_mutex;
   1120 		mutex_spin_enter(old);
   1121 
   1122 		/*
   1123 		 * mutex_enter() will have posted a read barrier.  Re-test
   1124 		 * l->l_mutex.  If it has changed, we need to try again.
   1125 		 */
   1126 #if 1
   1127 	}
   1128 #else
   1129 	} while (__predict_false(l->l_mutex != old));
   1130 #endif
   1131 }
   1132 
   1133 /*
   1134  * Lend a new mutex to an LWP.  The old mutex must be held.
   1135  */
   1136 void
   1137 lwp_setlock(struct lwp *l, kmutex_t *new)
   1138 {
   1139 
   1140 	KASSERT(mutex_owned(l->l_mutex));
   1141 
   1142 	mb_write();
   1143 	l->l_mutex = new;
   1144 }
   1145 
   1146 /*
   1147  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1148  * must be held.
   1149  */
   1150 void
   1151 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1152 {
   1153 	kmutex_t *old;
   1154 
   1155 	KASSERT(mutex_owned(l->l_mutex));
   1156 
   1157 	old = l->l_mutex;
   1158 	mb_write();
   1159 	l->l_mutex = new;
   1160 	mutex_spin_exit(old);
   1161 }
   1162 
   1163 /*
   1164  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1165  * locked.
   1166  */
   1167 void
   1168 lwp_relock(struct lwp *l, kmutex_t *new)
   1169 {
   1170 	kmutex_t *old;
   1171 
   1172 	KASSERT(mutex_owned(l->l_mutex));
   1173 
   1174 	old = l->l_mutex;
   1175 	if (old != new) {
   1176 		mutex_spin_enter(new);
   1177 		l->l_mutex = new;
   1178 		mutex_spin_exit(old);
   1179 	}
   1180 }
   1181 
   1182 int
   1183 lwp_trylock(struct lwp *l)
   1184 {
   1185 	kmutex_t *old;
   1186 
   1187 	for (;;) {
   1188 		if (!mutex_tryenter(old = l->l_mutex))
   1189 			return 0;
   1190 		if (__predict_true(l->l_mutex == old))
   1191 			return 1;
   1192 		mutex_spin_exit(old);
   1193 	}
   1194 }
   1195 
   1196 /*
   1197  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1198  * set.
   1199  */
   1200 void
   1201 lwp_userret(struct lwp *l)
   1202 {
   1203 	struct proc *p;
   1204 	void (*hook)(void);
   1205 	int sig;
   1206 
   1207 	p = l->l_proc;
   1208 
   1209 	/*
   1210 	 * It should be safe to do this read unlocked on a multiprocessor
   1211 	 * system..
   1212 	 */
   1213 	while ((l->l_flag & LW_USERRET) != 0) {
   1214 		/*
   1215 		 * Process pending signals first, unless the process
   1216 		 * is dumping core or exiting, where we will instead
   1217 		 * enter the L_WSUSPEND case below.
   1218 		 */
   1219 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1220 		    LW_PENDSIG) {
   1221 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1222 			mutex_enter(&p->p_smutex);
   1223 			while ((sig = issignal(l)) != 0)
   1224 				postsig(sig);
   1225 			mutex_exit(&p->p_smutex);
   1226 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1227 		}
   1228 
   1229 		/*
   1230 		 * Core-dump or suspend pending.
   1231 		 *
   1232 		 * In case of core dump, suspend ourselves, so that the
   1233 		 * kernel stack and therefore the userland registers saved
   1234 		 * in the trapframe are around for coredump() to write them
   1235 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1236 		 * will write the core file out once all other LWPs are
   1237 		 * suspended.
   1238 		 */
   1239 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1240 			mutex_enter(&p->p_smutex);
   1241 			p->p_nrlwps--;
   1242 			cv_broadcast(&p->p_lwpcv);
   1243 			lwp_lock(l);
   1244 			l->l_stat = LSSUSPENDED;
   1245 			mutex_exit(&p->p_smutex);
   1246 			mi_switch(l);
   1247 		}
   1248 
   1249 		/* Process is exiting. */
   1250 		if ((l->l_flag & LW_WEXIT) != 0) {
   1251 			KERNEL_LOCK(1, l);
   1252 			lwp_exit(l);
   1253 			KASSERT(0);
   1254 			/* NOTREACHED */
   1255 		}
   1256 
   1257 		/* Call userret hook; used by Linux emulation. */
   1258 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1259 			lwp_lock(l);
   1260 			l->l_flag &= ~LW_WUSERRET;
   1261 			lwp_unlock(l);
   1262 			hook = p->p_userret;
   1263 			p->p_userret = NULL;
   1264 			(*hook)();
   1265 		}
   1266 	}
   1267 }
   1268 
   1269 /*
   1270  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1271  */
   1272 void
   1273 lwp_need_userret(struct lwp *l)
   1274 {
   1275 	KASSERT(lwp_locked(l, NULL));
   1276 
   1277 	/*
   1278 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1279 	 * that the condition will be seen before forcing the LWP to enter
   1280 	 * kernel mode.
   1281 	 */
   1282 	mb_write();
   1283 	cpu_signotify(l);
   1284 }
   1285 
   1286 /*
   1287  * Add one reference to an LWP.  This will prevent the LWP from
   1288  * exiting, thus keep the lwp structure and PCB around to inspect.
   1289  */
   1290 void
   1291 lwp_addref(struct lwp *l)
   1292 {
   1293 
   1294 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1295 	KASSERT(l->l_stat != LSZOMB);
   1296 	KASSERT(l->l_refcnt != 0);
   1297 
   1298 	l->l_refcnt++;
   1299 }
   1300 
   1301 /*
   1302  * Remove one reference to an LWP.  If this is the last reference,
   1303  * then we must finalize the LWP's death.
   1304  */
   1305 void
   1306 lwp_delref(struct lwp *l)
   1307 {
   1308 	struct proc *p = l->l_proc;
   1309 
   1310 	mutex_enter(&p->p_smutex);
   1311 	KASSERT(l->l_stat != LSZOMB);
   1312 	KASSERT(l->l_refcnt > 0);
   1313 	if (--l->l_refcnt == 0)
   1314 		cv_broadcast(&p->p_refcv);
   1315 	mutex_exit(&p->p_smutex);
   1316 }
   1317 
   1318 /*
   1319  * Drain all references to the current LWP.
   1320  */
   1321 void
   1322 lwp_drainrefs(struct lwp *l)
   1323 {
   1324 	struct proc *p = l->l_proc;
   1325 
   1326 	KASSERT(mutex_owned(&p->p_smutex));
   1327 	KASSERT(l->l_refcnt != 0);
   1328 
   1329 	l->l_refcnt--;
   1330 	while (l->l_refcnt != 0)
   1331 		cv_wait(&p->p_refcv, &p->p_smutex);
   1332 }
   1333 
   1334 /*
   1335  * lwp_specific_key_create --
   1336  *	Create a key for subsystem lwp-specific data.
   1337  */
   1338 int
   1339 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1340 {
   1341 
   1342 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1343 }
   1344 
   1345 /*
   1346  * lwp_specific_key_delete --
   1347  *	Delete a key for subsystem lwp-specific data.
   1348  */
   1349 void
   1350 lwp_specific_key_delete(specificdata_key_t key)
   1351 {
   1352 
   1353 	specificdata_key_delete(lwp_specificdata_domain, key);
   1354 }
   1355 
   1356 /*
   1357  * lwp_initspecific --
   1358  *	Initialize an LWP's specificdata container.
   1359  */
   1360 void
   1361 lwp_initspecific(struct lwp *l)
   1362 {
   1363 	int error;
   1364 
   1365 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1366 	KASSERT(error == 0);
   1367 }
   1368 
   1369 /*
   1370  * lwp_finispecific --
   1371  *	Finalize an LWP's specificdata container.
   1372  */
   1373 void
   1374 lwp_finispecific(struct lwp *l)
   1375 {
   1376 
   1377 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1378 }
   1379 
   1380 /*
   1381  * lwp_getspecific --
   1382  *	Return lwp-specific data corresponding to the specified key.
   1383  *
   1384  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1385  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1386  *	LWP's specifc data, care must be taken to ensure that doing so
   1387  *	would not cause internal data structure inconsistency (i.e. caller
   1388  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1389  *	or lwp_setspecific() call).
   1390  */
   1391 void *
   1392 lwp_getspecific(specificdata_key_t key)
   1393 {
   1394 
   1395 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1396 						  &curlwp->l_specdataref, key));
   1397 }
   1398 
   1399 void *
   1400 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1401 {
   1402 
   1403 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1404 						  &l->l_specdataref, key));
   1405 }
   1406 
   1407 /*
   1408  * lwp_setspecific --
   1409  *	Set lwp-specific data corresponding to the specified key.
   1410  */
   1411 void
   1412 lwp_setspecific(specificdata_key_t key, void *data)
   1413 {
   1414 
   1415 	specificdata_setspecific(lwp_specificdata_domain,
   1416 				 &curlwp->l_specdataref, key, data);
   1417 }
   1418