Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.74.4.2
      1 /*	$NetBSD: kern_lwp.c,v 1.74.4.2 2007/12/08 18:20:29 mjf Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit or thread of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp", also known as lwp_t.
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing concurrently in the kernel.
     52  *
     53  * Execution states
     54  *
     55  *	At any given time, an LWP has overall state that is described by
     56  *	lwp::l_stat.  The states are broken into two sets below.  The first
     57  *	set is guaranteed to represent the absolute, current state of the
     58  *	LWP:
     59  *
     60  * 	LSONPROC
     61  *
     62  * 		On processor: the LWP is executing on a CPU, either in the
     63  * 		kernel or in user space.
     64  *
     65  * 	LSRUN
     66  *
     67  * 		Runnable: the LWP is parked on a run queue, and may soon be
     68  * 		chosen to run by a idle processor, or by a processor that
     69  * 		has been asked to preempt a currently runnning but lower
     70  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     71  *		then the LWP is not on a run queue, but may be soon.
     72  *
     73  * 	LSIDL
     74  *
     75  * 		Idle: the LWP has been created but has not yet executed,
     76  *		or it has ceased executing a unit of work and is waiting
     77  *		to be started again.
     78  *
     79  * 	LSSUSPENDED:
     80  *
     81  * 		Suspended: the LWP has had its execution suspended by
     82  *		another LWP in the same process using the _lwp_suspend()
     83  *		system call.  User-level LWPs also enter the suspended
     84  *		state when the system is shutting down.
     85  *
     86  *	The second set represent a "statement of intent" on behalf of the
     87  *	LWP.  The LWP may in fact be executing on a processor, may be
     88  *	sleeping or idle. It is expected to take the necessary action to
     89  *	stop executing or become "running" again within	a short timeframe.
     90  *	The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
     91  *	Importantly, in indicates that its state is tied to a CPU.
     92  *
     93  * 	LSZOMB:
     94  *
     95  * 		Dead or dying: the LWP has released most of its resources
     96  *		and is a) about to switch away into oblivion b) has already
     97  *		switched away.  When it switches away, its few remaining
     98  *		resources can be collected.
     99  *
    100  * 	LSSLEEP:
    101  *
    102  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    103  * 		has switched away or will switch away shortly to allow other
    104  *		LWPs to run on the CPU.
    105  *
    106  * 	LSSTOP:
    107  *
    108  * 		Stopped: the LWP has been stopped as a result of a job
    109  * 		control signal, or as a result of the ptrace() interface.
    110  *
    111  * 		Stopped LWPs may run briefly within the kernel to handle
    112  * 		signals that they receive, but will not return to user space
    113  * 		until their process' state is changed away from stopped.
    114  *
    115  * 		Single LWPs within a process can not be set stopped
    116  * 		selectively: all actions that can stop or continue LWPs
    117  * 		occur at the process level.
    118  *
    119  * State transitions
    120  *
    121  *	Note that the LSSTOP state may only be set when returning to
    122  *	user space in userret(), or when sleeping interruptably.  The
    123  *	LSSUSPENDED state may only be set in userret().  Before setting
    124  *	those states, we try to ensure that the LWPs will release all
    125  *	locks that they hold, and at a minimum try to ensure that the
    126  *	LWP can be set runnable again by a signal.
    127  *
    128  *	LWPs may transition states in the following ways:
    129  *
    130  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131  *	            > STOPPED			    > SLEEP
    132  *	            > SUSPENDED			    > STOPPED
    133  *						    > SUSPENDED
    134  *						    > ZOMB
    135  *
    136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  *	            > SLEEP			    > SLEEP
    138  *
    139  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  *		    > RUN		            > SUSPENDED
    141  *		    > STOPPED                       > STOPPED
    142  *		    > SUSPENDED
    143  *
    144  *	Other state transitions are possible with kernel threads (eg
    145  *	ONPROC -> IDL), but only happen under tightly controlled
    146  *	circumstances the side effects are understood.
    147  *
    148  * Locking
    149  *
    150  *	The majority of fields in 'struct lwp' are covered by a single,
    151  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    152  *	each field are documented in sys/lwp.h.
    153  *
    154  *	State transitions must be made with the LWP's general lock held,
    155  * 	and may cause the LWP's lock pointer to change. Manipulation of
    156  *	the general lock is not performed directly, but through calls to
    157  *	lwp_lock(), lwp_relock() and similar.
    158  *
    159  *	States and their associated locks:
    160  *
    161  *	LSONPROC, LSZOMB:
    162  *
    163  *		Always covered by spc_lwplock, which protects running LWPs.
    164  *		This is a per-CPU lock.
    165  *
    166  *	LSIDL, LSRUN:
    167  *
    168  *		Always covered by spc_mutex, which protects the run queues.
    169  *		This may be a per-CPU lock, depending on the scheduler.
    170  *
    171  *	LSSLEEP:
    172  *
    173  *		Covered by a lock associated with the sleep queue that the
    174  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    175  *
    176  *	LSSTOP, LSSUSPENDED:
    177  *
    178  *		If the LWP was previously sleeping (l_wchan != NULL), then
    179  *		l_mutex references the sleep queue lock.  If the LWP was
    180  *		runnable or on the CPU when halted, or has been removed from
    181  *		the sleep queue since halted, then the lock is spc_lwplock.
    182  *
    183  *	The lock order is as follows:
    184  *
    185  *		spc::spc_lwplock ->
    186  *		    sleepq_t::sq_mutex ->
    187  *			tschain_t::tc_mutex ->
    188  *			    spc::spc_mutex
    189  *
    190  *	Each process has an scheduler state lock (proc::p_smutex), and a
    191  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    192  *	so on.  When an LWP is to be entered into or removed from one of the
    193  *	following states, p_mutex must be held and the process wide counters
    194  *	adjusted:
    195  *
    196  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    197  *
    198  *	Note that an LWP is considered running or likely to run soon if in
    199  *	one of the following states.  This affects the value of p_nrlwps:
    200  *
    201  *		LSRUN, LSONPROC, LSSLEEP
    202  *
    203  *	p_smutex does not need to be held when transitioning among these
    204  *	three states.
    205  */
    206 
    207 #include <sys/cdefs.h>
    208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.74.4.2 2007/12/08 18:20:29 mjf Exp $");
    209 
    210 #include "opt_multiprocessor.h"
    211 #include "opt_lockdebug.h"
    212 
    213 #define _LWP_API_PRIVATE
    214 
    215 #include <sys/param.h>
    216 #include <sys/systm.h>
    217 #include <sys/cpu.h>
    218 #include <sys/pool.h>
    219 #include <sys/proc.h>
    220 #include <sys/syscallargs.h>
    221 #include <sys/syscall_stats.h>
    222 #include <sys/kauth.h>
    223 #include <sys/sleepq.h>
    224 #include <sys/lockdebug.h>
    225 #include <sys/kmem.h>
    226 #include <sys/intr.h>
    227 #include <sys/lwpctl.h>
    228 #include <sys/atomic.h>
    229 
    230 #include <uvm/uvm_extern.h>
    231 #include <uvm/uvm_object.h>
    232 
    233 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
    234 
    235 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    236     &pool_allocator_nointr, IPL_NONE);
    237 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    238     &pool_allocator_nointr, IPL_NONE);
    239 
    240 static specificdata_domain_t lwp_specificdata_domain;
    241 
    242 void
    243 lwpinit(void)
    244 {
    245 
    246 	lwp_specificdata_domain = specificdata_domain_create();
    247 	KASSERT(lwp_specificdata_domain != NULL);
    248 	lwp_sys_init();
    249 }
    250 
    251 /*
    252  * Set an suspended.
    253  *
    254  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    255  * LWP before return.
    256  */
    257 int
    258 lwp_suspend(struct lwp *curl, struct lwp *t)
    259 {
    260 	int error;
    261 
    262 	KASSERT(mutex_owned(&t->l_proc->p_smutex));
    263 	KASSERT(lwp_locked(t, NULL));
    264 
    265 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    266 
    267 	/*
    268 	 * If the current LWP has been told to exit, we must not suspend anyone
    269 	 * else or deadlock could occur.  We won't return to userspace.
    270 	 */
    271 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    272 		lwp_unlock(t);
    273 		return (EDEADLK);
    274 	}
    275 
    276 	error = 0;
    277 
    278 	switch (t->l_stat) {
    279 	case LSRUN:
    280 	case LSONPROC:
    281 		t->l_flag |= LW_WSUSPEND;
    282 		lwp_need_userret(t);
    283 		lwp_unlock(t);
    284 		break;
    285 
    286 	case LSSLEEP:
    287 		t->l_flag |= LW_WSUSPEND;
    288 
    289 		/*
    290 		 * Kick the LWP and try to get it to the kernel boundary
    291 		 * so that it will release any locks that it holds.
    292 		 * setrunnable() will release the lock.
    293 		 */
    294 		if ((t->l_flag & LW_SINTR) != 0)
    295 			setrunnable(t);
    296 		else
    297 			lwp_unlock(t);
    298 		break;
    299 
    300 	case LSSUSPENDED:
    301 		lwp_unlock(t);
    302 		break;
    303 
    304 	case LSSTOP:
    305 		t->l_flag |= LW_WSUSPEND;
    306 		setrunnable(t);
    307 		break;
    308 
    309 	case LSIDL:
    310 	case LSZOMB:
    311 		error = EINTR; /* It's what Solaris does..... */
    312 		lwp_unlock(t);
    313 		break;
    314 	}
    315 
    316 	return (error);
    317 }
    318 
    319 /*
    320  * Restart a suspended LWP.
    321  *
    322  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    323  * LWP before return.
    324  */
    325 void
    326 lwp_continue(struct lwp *l)
    327 {
    328 
    329 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
    330 	KASSERT(lwp_locked(l, NULL));
    331 
    332 	/* If rebooting or not suspended, then just bail out. */
    333 	if ((l->l_flag & LW_WREBOOT) != 0) {
    334 		lwp_unlock(l);
    335 		return;
    336 	}
    337 
    338 	l->l_flag &= ~LW_WSUSPEND;
    339 
    340 	if (l->l_stat != LSSUSPENDED) {
    341 		lwp_unlock(l);
    342 		return;
    343 	}
    344 
    345 	/* setrunnable() will release the lock. */
    346 	setrunnable(l);
    347 }
    348 
    349 /*
    350  * Wait for an LWP within the current process to exit.  If 'lid' is
    351  * non-zero, we are waiting for a specific LWP.
    352  *
    353  * Must be called with p->p_smutex held.
    354  */
    355 int
    356 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    357 {
    358 	struct proc *p = l->l_proc;
    359 	struct lwp *l2;
    360 	int nfound, error;
    361 	lwpid_t curlid;
    362 	bool exiting;
    363 
    364 	KASSERT(mutex_owned(&p->p_smutex));
    365 
    366 	p->p_nlwpwait++;
    367 	l->l_waitingfor = lid;
    368 	curlid = l->l_lid;
    369 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    370 
    371 	for (;;) {
    372 		/*
    373 		 * Avoid a race between exit1() and sigexit(): if the
    374 		 * process is dumping core, then we need to bail out: call
    375 		 * into lwp_userret() where we will be suspended until the
    376 		 * deed is done.
    377 		 */
    378 		if ((p->p_sflag & PS_WCORE) != 0) {
    379 			mutex_exit(&p->p_smutex);
    380 			lwp_userret(l);
    381 #ifdef DIAGNOSTIC
    382 			panic("lwp_wait1");
    383 #endif
    384 			/* NOTREACHED */
    385 		}
    386 
    387 		/*
    388 		 * First off, drain any detached LWP that is waiting to be
    389 		 * reaped.
    390 		 */
    391 		while ((l2 = p->p_zomblwp) != NULL) {
    392 			p->p_zomblwp = NULL;
    393 			lwp_free(l2, false, false);/* releases proc mutex */
    394 			mutex_enter(&p->p_smutex);
    395 		}
    396 
    397 		/*
    398 		 * Now look for an LWP to collect.  If the whole process is
    399 		 * exiting, count detached LWPs as eligible to be collected,
    400 		 * but don't drain them here.
    401 		 */
    402 		nfound = 0;
    403 		error = 0;
    404 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    405 			/*
    406 			 * If a specific wait and the target is waiting on
    407 			 * us, then avoid deadlock.  This also traps LWPs
    408 			 * that try to wait on themselves.
    409 			 *
    410 			 * Note that this does not handle more complicated
    411 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    412 			 * can still be killed so it is not a major problem.
    413 			 */
    414 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    415 				error = EDEADLK;
    416 				break;
    417 			}
    418 			if (l2 == l)
    419 				continue;
    420 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    421 				nfound += exiting;
    422 				continue;
    423 			}
    424 			if (lid != 0) {
    425 				if (l2->l_lid != lid)
    426 					continue;
    427 				/*
    428 				 * Mark this LWP as the first waiter, if there
    429 				 * is no other.
    430 				 */
    431 				if (l2->l_waiter == 0)
    432 					l2->l_waiter = curlid;
    433 			} else if (l2->l_waiter != 0) {
    434 				/*
    435 				 * It already has a waiter - so don't
    436 				 * collect it.  If the waiter doesn't
    437 				 * grab it we'll get another chance
    438 				 * later.
    439 				 */
    440 				nfound++;
    441 				continue;
    442 			}
    443 			nfound++;
    444 
    445 			/* No need to lock the LWP in order to see LSZOMB. */
    446 			if (l2->l_stat != LSZOMB)
    447 				continue;
    448 
    449 			/*
    450 			 * We're no longer waiting.  Reset the "first waiter"
    451 			 * pointer on the target, in case it was us.
    452 			 */
    453 			l->l_waitingfor = 0;
    454 			l2->l_waiter = 0;
    455 			p->p_nlwpwait--;
    456 			if (departed)
    457 				*departed = l2->l_lid;
    458 			sched_lwp_collect(l2);
    459 
    460 			/* lwp_free() releases the proc lock. */
    461 			lwp_free(l2, false, false);
    462 			mutex_enter(&p->p_smutex);
    463 			return 0;
    464 		}
    465 
    466 		if (error != 0)
    467 			break;
    468 		if (nfound == 0) {
    469 			error = ESRCH;
    470 			break;
    471 		}
    472 
    473 		/*
    474 		 * The kernel is careful to ensure that it can not deadlock
    475 		 * when exiting - just keep waiting.
    476 		 */
    477 		if (exiting) {
    478 			KASSERT(p->p_nlwps > 1);
    479 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    480 			continue;
    481 		}
    482 
    483 		/*
    484 		 * If all other LWPs are waiting for exits or suspends
    485 		 * and the supply of zombies and potential zombies is
    486 		 * exhausted, then we are about to deadlock.
    487 		 *
    488 		 * If the process is exiting (and this LWP is not the one
    489 		 * that is coordinating the exit) then bail out now.
    490 		 */
    491 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    492 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    493 			error = EDEADLK;
    494 			break;
    495 		}
    496 
    497 		/*
    498 		 * Sit around and wait for something to happen.  We'll be
    499 		 * awoken if any of the conditions examined change: if an
    500 		 * LWP exits, is collected, or is detached.
    501 		 */
    502 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    503 			break;
    504 	}
    505 
    506 	/*
    507 	 * We didn't find any LWPs to collect, we may have received a
    508 	 * signal, or some other condition has caused us to bail out.
    509 	 *
    510 	 * If waiting on a specific LWP, clear the waiters marker: some
    511 	 * other LWP may want it.  Then, kick all the remaining waiters
    512 	 * so that they can re-check for zombies and for deadlock.
    513 	 */
    514 	if (lid != 0) {
    515 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    516 			if (l2->l_lid == lid) {
    517 				if (l2->l_waiter == curlid)
    518 					l2->l_waiter = 0;
    519 				break;
    520 			}
    521 		}
    522 	}
    523 	p->p_nlwpwait--;
    524 	l->l_waitingfor = 0;
    525 	cv_broadcast(&p->p_lwpcv);
    526 
    527 	return error;
    528 }
    529 
    530 /*
    531  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    532  * The new LWP is created in state LSIDL and must be set running,
    533  * suspended, or stopped by the caller.
    534  */
    535 int
    536 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
    537 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    538 	   lwp_t **rnewlwpp, int sclass)
    539 {
    540 	struct lwp *l2, *isfree;
    541 	turnstile_t *ts;
    542 
    543 	/*
    544 	 * First off, reap any detached LWP waiting to be collected.
    545 	 * We can re-use its LWP structure and turnstile.
    546 	 */
    547 	isfree = NULL;
    548 	if (p2->p_zomblwp != NULL) {
    549 		mutex_enter(&p2->p_smutex);
    550 		if ((isfree = p2->p_zomblwp) != NULL) {
    551 			p2->p_zomblwp = NULL;
    552 			lwp_free(isfree, true, false);/* releases proc mutex */
    553 		} else
    554 			mutex_exit(&p2->p_smutex);
    555 	}
    556 	if (isfree == NULL) {
    557 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    558 		memset(l2, 0, sizeof(*l2));
    559 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    560 		SLIST_INIT(&l2->l_pi_lenders);
    561 	} else {
    562 		l2 = isfree;
    563 		ts = l2->l_ts;
    564 		KASSERT(l2->l_inheritedprio == -1);
    565 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    566 		memset(l2, 0, sizeof(*l2));
    567 		l2->l_ts = ts;
    568 	}
    569 
    570 	l2->l_stat = LSIDL;
    571 	l2->l_proc = p2;
    572 	l2->l_refcnt = 1;
    573 	l2->l_class = sclass;
    574 	l2->l_kpriority = l1->l_kpriority;
    575 	l2->l_kpribase = PRI_KERNEL;
    576 	l2->l_priority = l1->l_priority;
    577 	l2->l_inheritedprio = -1;
    578 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    579 	l2->l_cpu = l1->l_cpu;
    580 	l2->l_flag = inmem ? LW_INMEM : 0;
    581 
    582 	if (p2->p_flag & PK_SYSTEM) {
    583 		/*
    584 		 * Mark it as a system process and not a candidate for
    585 		 * swapping.
    586 		 */
    587 		l2->l_flag |= LW_SYSTEM;
    588 	} else {
    589 		/* Look for a CPU to start */
    590 		l2->l_cpu = sched_takecpu(l2);
    591 		l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
    592 	}
    593 
    594 	lwp_initspecific(l2);
    595 	sched_lwp_fork(l1, l2);
    596 	lwp_update_creds(l2);
    597 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    598 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    599 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    600 	cv_init(&l2->l_sigcv, "sigwait");
    601 	l2->l_syncobj = &sched_syncobj;
    602 
    603 	if (rnewlwpp != NULL)
    604 		*rnewlwpp = l2;
    605 
    606 	l2->l_addr = UAREA_TO_USER(uaddr);
    607 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    608 	    (arg != NULL) ? arg : l2);
    609 
    610 	mutex_enter(&p2->p_smutex);
    611 
    612 	if ((flags & LWP_DETACHED) != 0) {
    613 		l2->l_prflag = LPR_DETACHED;
    614 		p2->p_ndlwps++;
    615 	} else
    616 		l2->l_prflag = 0;
    617 
    618 	l2->l_sigmask = l1->l_sigmask;
    619 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    620 	sigemptyset(&l2->l_sigpend.sp_set);
    621 
    622 	p2->p_nlwpid++;
    623 	if (p2->p_nlwpid == 0)
    624 		p2->p_nlwpid++;
    625 	l2->l_lid = p2->p_nlwpid;
    626 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    627 	p2->p_nlwps++;
    628 
    629 	mutex_exit(&p2->p_smutex);
    630 
    631 	mutex_enter(&proclist_lock);
    632 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    633 	mutex_exit(&proclist_lock);
    634 
    635 	SYSCALL_TIME_LWP_INIT(l2);
    636 
    637 	if (p2->p_emul->e_lwp_fork)
    638 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    639 
    640 	return (0);
    641 }
    642 
    643 /*
    644  * Called by MD code when a new LWP begins execution.  Must be called
    645  * with the previous LWP locked (so at splsched), or if there is no
    646  * previous LWP, at splsched.
    647  */
    648 void
    649 lwp_startup(struct lwp *prev, struct lwp *new)
    650 {
    651 
    652 	if (prev != NULL) {
    653 		/*
    654 		 * Normalize the count of the spin-mutexes, it was
    655 		 * increased in mi_switch().  Unmark the state of
    656 		 * context switch - it is finished for previous LWP.
    657 		 */
    658 		curcpu()->ci_mtx_count++;
    659 		membar_exit();
    660 		prev->l_ctxswtch = 0;
    661 	}
    662 	spl0();
    663 	pmap_activate(new);
    664 	LOCKDEBUG_BARRIER(NULL, 0);
    665 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    666 		KERNEL_LOCK(1, new);
    667 	}
    668 }
    669 
    670 /*
    671  * Exit an LWP.
    672  */
    673 void
    674 lwp_exit(struct lwp *l)
    675 {
    676 	struct proc *p = l->l_proc;
    677 	struct lwp *l2;
    678 	bool current;
    679 
    680 	current = (l == curlwp);
    681 
    682 	KASSERT(current || l->l_stat == LSIDL);
    683 
    684 	/*
    685 	 * Verify that we hold no locks other than the kernel lock.
    686 	 */
    687 #ifdef MULTIPROCESSOR
    688 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    689 #else
    690 	LOCKDEBUG_BARRIER(NULL, 0);
    691 #endif
    692 
    693 	/*
    694 	 * If we are the last live LWP in a process, we need to exit the
    695 	 * entire process.  We do so with an exit status of zero, because
    696 	 * it's a "controlled" exit, and because that's what Solaris does.
    697 	 *
    698 	 * We are not quite a zombie yet, but for accounting purposes we
    699 	 * must increment the count of zombies here.
    700 	 *
    701 	 * Note: the last LWP's specificdata will be deleted here.
    702 	 */
    703 	mutex_enter(&p->p_smutex);
    704 	if (p->p_nlwps - p->p_nzlwps == 1) {
    705 		KASSERT(current == true);
    706 		exit1(l, 0);
    707 		/* NOTREACHED */
    708 	}
    709 	p->p_nzlwps++;
    710 	mutex_exit(&p->p_smutex);
    711 
    712 	if (p->p_emul->e_lwp_exit)
    713 		(*p->p_emul->e_lwp_exit)(l);
    714 
    715 	/* Delete the specificdata while it's still safe to sleep. */
    716 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    717 
    718 	/*
    719 	 * Release our cached credentials.
    720 	 */
    721 	kauth_cred_free(l->l_cred);
    722 	callout_destroy(&l->l_timeout_ch);
    723 
    724 	/*
    725 	 * While we can still block, mark the LWP as unswappable to
    726 	 * prevent conflicts with the with the swapper.
    727 	 */
    728 	if (current)
    729 		uvm_lwp_hold(l);
    730 
    731 	/*
    732 	 * Remove the LWP from the global list.
    733 	 */
    734 	mutex_enter(&proclist_lock);
    735 	mutex_enter(&proclist_mutex);
    736 	LIST_REMOVE(l, l_list);
    737 	mutex_exit(&proclist_mutex);
    738 	mutex_exit(&proclist_lock);
    739 
    740 	/*
    741 	 * Get rid of all references to the LWP that others (e.g. procfs)
    742 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    743 	 * mark it waiting for collection in the proc structure.  Note that
    744 	 * before we can do that, we need to free any other dead, deatched
    745 	 * LWP waiting to meet its maker.
    746 	 *
    747 	 * XXXSMP disable preemption.
    748 	 */
    749 	mutex_enter(&p->p_smutex);
    750 	lwp_drainrefs(l);
    751 
    752 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    753 		while ((l2 = p->p_zomblwp) != NULL) {
    754 			p->p_zomblwp = NULL;
    755 			lwp_free(l2, false, false);/* releases proc mutex */
    756 			mutex_enter(&p->p_smutex);
    757 			l->l_refcnt++;
    758 			lwp_drainrefs(l);
    759 		}
    760 		p->p_zomblwp = l;
    761 	}
    762 
    763 	/*
    764 	 * If we find a pending signal for the process and we have been
    765 	 * asked to check for signals, then we loose: arrange to have
    766 	 * all other LWPs in the process check for signals.
    767 	 */
    768 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    769 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    770 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    771 			lwp_lock(l2);
    772 			l2->l_flag |= LW_PENDSIG;
    773 			lwp_unlock(l2);
    774 		}
    775 	}
    776 
    777 	lwp_lock(l);
    778 	l->l_stat = LSZOMB;
    779 	lwp_unlock(l);
    780 	p->p_nrlwps--;
    781 	cv_broadcast(&p->p_lwpcv);
    782 	if (l->l_lwpctl != NULL)
    783 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    784 	mutex_exit(&p->p_smutex);
    785 
    786 	/*
    787 	 * We can no longer block.  At this point, lwp_free() may already
    788 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    789 	 *
    790 	 * Free MD LWP resources.
    791 	 */
    792 #ifndef __NO_CPU_LWP_FREE
    793 	cpu_lwp_free(l, 0);
    794 #endif
    795 
    796 	if (current) {
    797 		pmap_deactivate(l);
    798 
    799 		/*
    800 		 * Release the kernel lock, and switch away into
    801 		 * oblivion.
    802 		 */
    803 #ifdef notyet
    804 		/* XXXSMP hold in lwp_userret() */
    805 		KERNEL_UNLOCK_LAST(l);
    806 #else
    807 		KERNEL_UNLOCK_ALL(l, NULL);
    808 #endif
    809 		lwp_exit_switchaway(l);
    810 	}
    811 }
    812 
    813 void
    814 lwp_exit_switchaway(struct lwp *l)
    815 {
    816 	struct cpu_info *ci;
    817 	struct lwp *idlelwp;
    818 
    819 	/* Unlocked, but is for statistics only. */
    820 	uvmexp.swtch++;
    821 
    822 	(void)splsched();
    823 	l->l_flag &= ~LW_RUNNING;
    824 	ci = curcpu();
    825 	idlelwp = ci->ci_data.cpu_idlelwp;
    826 	idlelwp->l_stat = LSONPROC;
    827 
    828 	/*
    829 	 * cpu_onproc must be updated with the CPU locked, as
    830 	 * aston() may try to set a AST pending on the LWP (and
    831 	 * it does so with the CPU locked).  Otherwise, the LWP
    832 	 * may be destroyed before the AST can be set, leading
    833 	 * to a user-after-free.
    834 	 */
    835 	spc_lock(ci);
    836 	ci->ci_data.cpu_onproc = idlelwp;
    837 	spc_unlock(ci);
    838 	cpu_switchto(NULL, idlelwp, false);
    839 }
    840 
    841 /*
    842  * Free a dead LWP's remaining resources.
    843  *
    844  * XXXLWP limits.
    845  */
    846 void
    847 lwp_free(struct lwp *l, bool recycle, bool last)
    848 {
    849 	struct proc *p = l->l_proc;
    850 	ksiginfoq_t kq;
    851 
    852 	/*
    853 	 * If this was not the last LWP in the process, then adjust
    854 	 * counters and unlock.
    855 	 */
    856 	if (!last) {
    857 		/*
    858 		 * Add the LWP's run time to the process' base value.
    859 		 * This needs to co-incide with coming off p_lwps.
    860 		 */
    861 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    862 		p->p_pctcpu += l->l_pctcpu;
    863 		LIST_REMOVE(l, l_sibling);
    864 		p->p_nlwps--;
    865 		p->p_nzlwps--;
    866 		if ((l->l_prflag & LPR_DETACHED) != 0)
    867 			p->p_ndlwps--;
    868 
    869 		/*
    870 		 * Have any LWPs sleeping in lwp_wait() recheck for
    871 		 * deadlock.
    872 		 */
    873 		cv_broadcast(&p->p_lwpcv);
    874 		mutex_exit(&p->p_smutex);
    875 	}
    876 
    877 #ifdef MULTIPROCESSOR
    878 	/*
    879 	 * In the unlikely event that the LWP is still on the CPU,
    880 	 * then spin until it has switched away.  We need to release
    881 	 * all locks to avoid deadlock against interrupt handlers on
    882 	 * the target CPU.
    883 	 */
    884 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    885 		int count;
    886 		(void)count; /* XXXgcc */
    887 		KERNEL_UNLOCK_ALL(curlwp, &count);
    888 		while ((l->l_flag & LW_RUNNING) != 0 ||
    889 		    l->l_cpu->ci_curlwp == l)
    890 			SPINLOCK_BACKOFF_HOOK;
    891 		KERNEL_LOCK(count, curlwp);
    892 	}
    893 #endif
    894 
    895 	/*
    896 	 * Destroy the LWP's remaining signal information.
    897 	 */
    898 	ksiginfo_queue_init(&kq);
    899 	sigclear(&l->l_sigpend, NULL, &kq);
    900 	ksiginfo_queue_drain(&kq);
    901 	cv_destroy(&l->l_sigcv);
    902 	mutex_destroy(&l->l_swaplock);
    903 
    904 	/*
    905 	 * Free the LWP's turnstile and the LWP structure itself unless the
    906 	 * caller wants to recycle them.  Also, free the scheduler specific data.
    907 	 *
    908 	 * We can't return turnstile0 to the pool (it didn't come from it),
    909 	 * so if it comes up just drop it quietly and move on.
    910 	 *
    911 	 * We don't recycle the VM resources at this time.
    912 	 */
    913 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    914 
    915 	if (l->l_lwpctl != NULL)
    916 		lwp_ctl_free(l);
    917 	sched_lwp_exit(l);
    918 
    919 	if (!recycle && l->l_ts != &turnstile0)
    920 		pool_cache_put(turnstile_cache, l->l_ts);
    921 #ifndef __NO_CPU_LWP_FREE
    922 	cpu_lwp_free2(l);
    923 #endif
    924 	uvm_lwp_exit(l);
    925 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    926 	KASSERT(l->l_inheritedprio == -1);
    927 	if (!recycle)
    928 		pool_put(&lwp_pool, l);
    929 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    930 }
    931 
    932 /*
    933  * Pick a LWP to represent the process for those operations which
    934  * want information about a "process" that is actually associated
    935  * with a LWP.
    936  *
    937  * If 'locking' is false, no locking or lock checks are performed.
    938  * This is intended for use by DDB.
    939  *
    940  * We don't bother locking the LWP here, since code that uses this
    941  * interface is broken by design and an exact match is not required.
    942  */
    943 struct lwp *
    944 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    945 {
    946 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    947 	struct lwp *signalled;
    948 	int cnt;
    949 
    950 	if (locking) {
    951 		KASSERT(mutex_owned(&p->p_smutex));
    952 	}
    953 
    954 	/* Trivial case: only one LWP */
    955 	if (p->p_nlwps == 1) {
    956 		l = LIST_FIRST(&p->p_lwps);
    957 		if (nrlwps)
    958 			*nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
    959 		return l;
    960 	}
    961 
    962 	cnt = 0;
    963 	switch (p->p_stat) {
    964 	case SSTOP:
    965 	case SACTIVE:
    966 		/* Pick the most live LWP */
    967 		onproc = running = sleeping = stopped = suspended = NULL;
    968 		signalled = NULL;
    969 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    970 			if ((l->l_flag & LW_IDLE) != 0) {
    971 				continue;
    972 			}
    973 			if (l->l_lid == p->p_sigctx.ps_lwp)
    974 				signalled = l;
    975 			switch (l->l_stat) {
    976 			case LSONPROC:
    977 				onproc = l;
    978 				cnt++;
    979 				break;
    980 			case LSRUN:
    981 				running = l;
    982 				cnt++;
    983 				break;
    984 			case LSSLEEP:
    985 				sleeping = l;
    986 				break;
    987 			case LSSTOP:
    988 				stopped = l;
    989 				break;
    990 			case LSSUSPENDED:
    991 				suspended = l;
    992 				break;
    993 			}
    994 		}
    995 		if (nrlwps)
    996 			*nrlwps = cnt;
    997 		if (signalled)
    998 			l = signalled;
    999 		else if (onproc)
   1000 			l = onproc;
   1001 		else if (running)
   1002 			l = running;
   1003 		else if (sleeping)
   1004 			l = sleeping;
   1005 		else if (stopped)
   1006 			l = stopped;
   1007 		else if (suspended)
   1008 			l = suspended;
   1009 		else
   1010 			break;
   1011 		return l;
   1012 #ifdef DIAGNOSTIC
   1013 	case SIDL:
   1014 	case SZOMB:
   1015 	case SDYING:
   1016 	case SDEAD:
   1017 		if (locking)
   1018 			mutex_exit(&p->p_smutex);
   1019 		/* We have more than one LWP and we're in SIDL?
   1020 		 * How'd that happen?
   1021 		 */
   1022 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
   1023 		    p->p_pid, p->p_comm, p->p_stat);
   1024 		break;
   1025 	default:
   1026 		if (locking)
   1027 			mutex_exit(&p->p_smutex);
   1028 		panic("Process %d (%s) in unknown state %d",
   1029 		    p->p_pid, p->p_comm, p->p_stat);
   1030 #endif
   1031 	}
   1032 
   1033 	if (locking)
   1034 		mutex_exit(&p->p_smutex);
   1035 	panic("proc_representative_lwp: couldn't find a lwp for process"
   1036 		" %d (%s)", p->p_pid, p->p_comm);
   1037 	/* NOTREACHED */
   1038 	return NULL;
   1039 }
   1040 
   1041 /*
   1042  * Look up a live LWP within the speicifed process, and return it locked.
   1043  *
   1044  * Must be called with p->p_smutex held.
   1045  */
   1046 struct lwp *
   1047 lwp_find(struct proc *p, int id)
   1048 {
   1049 	struct lwp *l;
   1050 
   1051 	KASSERT(mutex_owned(&p->p_smutex));
   1052 
   1053 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1054 		if (l->l_lid == id)
   1055 			break;
   1056 	}
   1057 
   1058 	/*
   1059 	 * No need to lock - all of these conditions will
   1060 	 * be visible with the process level mutex held.
   1061 	 */
   1062 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1063 		l = NULL;
   1064 
   1065 	return l;
   1066 }
   1067 
   1068 /*
   1069  * Update an LWP's cached credentials to mirror the process' master copy.
   1070  *
   1071  * This happens early in the syscall path, on user trap, and on LWP
   1072  * creation.  A long-running LWP can also voluntarily choose to update
   1073  * it's credentials by calling this routine.  This may be called from
   1074  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1075  */
   1076 void
   1077 lwp_update_creds(struct lwp *l)
   1078 {
   1079 	kauth_cred_t oc;
   1080 	struct proc *p;
   1081 
   1082 	p = l->l_proc;
   1083 	oc = l->l_cred;
   1084 
   1085 	mutex_enter(&p->p_mutex);
   1086 	kauth_cred_hold(p->p_cred);
   1087 	l->l_cred = p->p_cred;
   1088 	mutex_exit(&p->p_mutex);
   1089 	if (oc != NULL) {
   1090 		KERNEL_LOCK(1, l);	/* XXXSMP */
   1091 		kauth_cred_free(oc);
   1092 		KERNEL_UNLOCK_ONE(l);	/* XXXSMP */
   1093 	}
   1094 }
   1095 
   1096 /*
   1097  * Verify that an LWP is locked, and optionally verify that the lock matches
   1098  * one we specify.
   1099  */
   1100 int
   1101 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1102 {
   1103 	kmutex_t *cur = l->l_mutex;
   1104 
   1105 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1106 }
   1107 
   1108 /*
   1109  * Lock an LWP.
   1110  */
   1111 void
   1112 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1113 {
   1114 
   1115 	/*
   1116 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1117 	 *
   1118 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1119 	 */
   1120 #if 1
   1121 	while (l->l_mutex != old) {
   1122 #else
   1123 	for (;;) {
   1124 #endif
   1125 		mutex_spin_exit(old);
   1126 		old = l->l_mutex;
   1127 		mutex_spin_enter(old);
   1128 
   1129 		/*
   1130 		 * mutex_enter() will have posted a read barrier.  Re-test
   1131 		 * l->l_mutex.  If it has changed, we need to try again.
   1132 		 */
   1133 #if 1
   1134 	}
   1135 #else
   1136 	} while (__predict_false(l->l_mutex != old));
   1137 #endif
   1138 }
   1139 
   1140 /*
   1141  * Lend a new mutex to an LWP.  The old mutex must be held.
   1142  */
   1143 void
   1144 lwp_setlock(struct lwp *l, kmutex_t *new)
   1145 {
   1146 
   1147 	KASSERT(mutex_owned(l->l_mutex));
   1148 
   1149 	membar_producer();
   1150 	l->l_mutex = new;
   1151 }
   1152 
   1153 /*
   1154  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1155  * must be held.
   1156  */
   1157 void
   1158 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1159 {
   1160 	kmutex_t *old;
   1161 
   1162 	KASSERT(mutex_owned(l->l_mutex));
   1163 
   1164 	old = l->l_mutex;
   1165 	membar_producer();
   1166 	l->l_mutex = new;
   1167 	mutex_spin_exit(old);
   1168 }
   1169 
   1170 /*
   1171  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1172  * locked.
   1173  */
   1174 void
   1175 lwp_relock(struct lwp *l, kmutex_t *new)
   1176 {
   1177 	kmutex_t *old;
   1178 
   1179 	KASSERT(mutex_owned(l->l_mutex));
   1180 
   1181 	old = l->l_mutex;
   1182 	if (old != new) {
   1183 		mutex_spin_enter(new);
   1184 		l->l_mutex = new;
   1185 		mutex_spin_exit(old);
   1186 	}
   1187 }
   1188 
   1189 int
   1190 lwp_trylock(struct lwp *l)
   1191 {
   1192 	kmutex_t *old;
   1193 
   1194 	for (;;) {
   1195 		if (!mutex_tryenter(old = l->l_mutex))
   1196 			return 0;
   1197 		if (__predict_true(l->l_mutex == old))
   1198 			return 1;
   1199 		mutex_spin_exit(old);
   1200 	}
   1201 }
   1202 
   1203 /*
   1204  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1205  * set.
   1206  */
   1207 void
   1208 lwp_userret(struct lwp *l)
   1209 {
   1210 	struct proc *p;
   1211 	void (*hook)(void);
   1212 	int sig;
   1213 
   1214 	p = l->l_proc;
   1215 
   1216 #ifndef __HAVE_FAST_SOFTINTS
   1217 	/* Run pending soft interrupts. */
   1218 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1219 		softint_overlay();
   1220 #endif
   1221 
   1222 	/*
   1223 	 * It should be safe to do this read unlocked on a multiprocessor
   1224 	 * system..
   1225 	 */
   1226 	while ((l->l_flag & LW_USERRET) != 0) {
   1227 		/*
   1228 		 * Process pending signals first, unless the process
   1229 		 * is dumping core or exiting, where we will instead
   1230 		 * enter the L_WSUSPEND case below.
   1231 		 */
   1232 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1233 		    LW_PENDSIG) {
   1234 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1235 			mutex_enter(&p->p_smutex);
   1236 			while ((sig = issignal(l)) != 0)
   1237 				postsig(sig);
   1238 			mutex_exit(&p->p_smutex);
   1239 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1240 		}
   1241 
   1242 		/*
   1243 		 * Core-dump or suspend pending.
   1244 		 *
   1245 		 * In case of core dump, suspend ourselves, so that the
   1246 		 * kernel stack and therefore the userland registers saved
   1247 		 * in the trapframe are around for coredump() to write them
   1248 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1249 		 * will write the core file out once all other LWPs are
   1250 		 * suspended.
   1251 		 */
   1252 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1253 			mutex_enter(&p->p_smutex);
   1254 			p->p_nrlwps--;
   1255 			cv_broadcast(&p->p_lwpcv);
   1256 			lwp_lock(l);
   1257 			l->l_stat = LSSUSPENDED;
   1258 			mutex_exit(&p->p_smutex);
   1259 			mi_switch(l);
   1260 		}
   1261 
   1262 		/* Process is exiting. */
   1263 		if ((l->l_flag & LW_WEXIT) != 0) {
   1264 			KERNEL_LOCK(1, l);
   1265 			lwp_exit(l);
   1266 			KASSERT(0);
   1267 			/* NOTREACHED */
   1268 		}
   1269 
   1270 		/* Call userret hook; used by Linux emulation. */
   1271 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1272 			lwp_lock(l);
   1273 			l->l_flag &= ~LW_WUSERRET;
   1274 			lwp_unlock(l);
   1275 			hook = p->p_userret;
   1276 			p->p_userret = NULL;
   1277 			(*hook)();
   1278 		}
   1279 	}
   1280 }
   1281 
   1282 /*
   1283  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1284  */
   1285 void
   1286 lwp_need_userret(struct lwp *l)
   1287 {
   1288 	KASSERT(lwp_locked(l, NULL));
   1289 
   1290 	/*
   1291 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1292 	 * that the condition will be seen before forcing the LWP to enter
   1293 	 * kernel mode.
   1294 	 */
   1295 	membar_producer();
   1296 	cpu_signotify(l);
   1297 }
   1298 
   1299 /*
   1300  * Add one reference to an LWP.  This will prevent the LWP from
   1301  * exiting, thus keep the lwp structure and PCB around to inspect.
   1302  */
   1303 void
   1304 lwp_addref(struct lwp *l)
   1305 {
   1306 
   1307 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1308 	KASSERT(l->l_stat != LSZOMB);
   1309 	KASSERT(l->l_refcnt != 0);
   1310 
   1311 	l->l_refcnt++;
   1312 }
   1313 
   1314 /*
   1315  * Remove one reference to an LWP.  If this is the last reference,
   1316  * then we must finalize the LWP's death.
   1317  */
   1318 void
   1319 lwp_delref(struct lwp *l)
   1320 {
   1321 	struct proc *p = l->l_proc;
   1322 
   1323 	mutex_enter(&p->p_smutex);
   1324 	KASSERT(l->l_stat != LSZOMB);
   1325 	KASSERT(l->l_refcnt > 0);
   1326 	if (--l->l_refcnt == 0)
   1327 		cv_broadcast(&p->p_lwpcv);
   1328 	mutex_exit(&p->p_smutex);
   1329 }
   1330 
   1331 /*
   1332  * Drain all references to the current LWP.
   1333  */
   1334 void
   1335 lwp_drainrefs(struct lwp *l)
   1336 {
   1337 	struct proc *p = l->l_proc;
   1338 
   1339 	KASSERT(mutex_owned(&p->p_smutex));
   1340 	KASSERT(l->l_refcnt != 0);
   1341 
   1342 	l->l_refcnt--;
   1343 	while (l->l_refcnt != 0)
   1344 		cv_wait(&p->p_lwpcv, &p->p_smutex);
   1345 }
   1346 
   1347 /*
   1348  * lwp_specific_key_create --
   1349  *	Create a key for subsystem lwp-specific data.
   1350  */
   1351 int
   1352 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1353 {
   1354 
   1355 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1356 }
   1357 
   1358 /*
   1359  * lwp_specific_key_delete --
   1360  *	Delete a key for subsystem lwp-specific data.
   1361  */
   1362 void
   1363 lwp_specific_key_delete(specificdata_key_t key)
   1364 {
   1365 
   1366 	specificdata_key_delete(lwp_specificdata_domain, key);
   1367 }
   1368 
   1369 /*
   1370  * lwp_initspecific --
   1371  *	Initialize an LWP's specificdata container.
   1372  */
   1373 void
   1374 lwp_initspecific(struct lwp *l)
   1375 {
   1376 	int error;
   1377 
   1378 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1379 	KASSERT(error == 0);
   1380 }
   1381 
   1382 /*
   1383  * lwp_finispecific --
   1384  *	Finalize an LWP's specificdata container.
   1385  */
   1386 void
   1387 lwp_finispecific(struct lwp *l)
   1388 {
   1389 
   1390 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1391 }
   1392 
   1393 /*
   1394  * lwp_getspecific --
   1395  *	Return lwp-specific data corresponding to the specified key.
   1396  *
   1397  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1398  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1399  *	LWP's specifc data, care must be taken to ensure that doing so
   1400  *	would not cause internal data structure inconsistency (i.e. caller
   1401  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1402  *	or lwp_setspecific() call).
   1403  */
   1404 void *
   1405 lwp_getspecific(specificdata_key_t key)
   1406 {
   1407 
   1408 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1409 						  &curlwp->l_specdataref, key));
   1410 }
   1411 
   1412 void *
   1413 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1414 {
   1415 
   1416 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1417 						  &l->l_specdataref, key));
   1418 }
   1419 
   1420 /*
   1421  * lwp_setspecific --
   1422  *	Set lwp-specific data corresponding to the specified key.
   1423  */
   1424 void
   1425 lwp_setspecific(specificdata_key_t key, void *data)
   1426 {
   1427 
   1428 	specificdata_setspecific(lwp_specificdata_domain,
   1429 				 &curlwp->l_specdataref, key, data);
   1430 }
   1431 
   1432 /*
   1433  * Allocate a new lwpctl structure for a user LWP.
   1434  */
   1435 int
   1436 lwp_ctl_alloc(vaddr_t *uaddr)
   1437 {
   1438 	lcproc_t *lp;
   1439 	u_int bit, i, offset;
   1440 	struct uvm_object *uao;
   1441 	int error;
   1442 	lcpage_t *lcp;
   1443 	proc_t *p;
   1444 	lwp_t *l;
   1445 
   1446 	l = curlwp;
   1447 	p = l->l_proc;
   1448 
   1449 	if (l->l_lcpage != NULL) {
   1450 		lcp = l->l_lcpage;
   1451 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
   1452 		return (EINVAL);
   1453 	}
   1454 
   1455 	/* First time around, allocate header structure for the process. */
   1456 	if ((lp = p->p_lwpctl) == NULL) {
   1457 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1458 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1459 		lp->lp_uao = NULL;
   1460 		TAILQ_INIT(&lp->lp_pages);
   1461 		mutex_enter(&p->p_mutex);
   1462 		if (p->p_lwpctl == NULL) {
   1463 			p->p_lwpctl = lp;
   1464 			mutex_exit(&p->p_mutex);
   1465 		} else {
   1466 			mutex_exit(&p->p_mutex);
   1467 			mutex_destroy(&lp->lp_lock);
   1468 			kmem_free(lp, sizeof(*lp));
   1469 			lp = p->p_lwpctl;
   1470 		}
   1471 	}
   1472 
   1473  	/*
   1474  	 * Set up an anonymous memory region to hold the shared pages.
   1475  	 * Map them into the process' address space.  The user vmspace
   1476  	 * gets the first reference on the UAO.
   1477  	 */
   1478 	mutex_enter(&lp->lp_lock);
   1479 	if (lp->lp_uao == NULL) {
   1480 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1481 		lp->lp_cur = 0;
   1482 		lp->lp_max = LWPCTL_UAREA_SZ;
   1483 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1484 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1485 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1486 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1487 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1488 		if (error != 0) {
   1489 			uao_detach(lp->lp_uao);
   1490 			lp->lp_uao = NULL;
   1491 			mutex_exit(&lp->lp_lock);
   1492 			return error;
   1493 		}
   1494 	}
   1495 
   1496 	/* Get a free block and allocate for this LWP. */
   1497 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1498 		if (lcp->lcp_nfree != 0)
   1499 			break;
   1500 	}
   1501 	if (lcp == NULL) {
   1502 		/* Nothing available - try to set up a free page. */
   1503 		if (lp->lp_cur == lp->lp_max) {
   1504 			mutex_exit(&lp->lp_lock);
   1505 			return ENOMEM;
   1506 		}
   1507 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1508 		if (lcp == NULL) {
   1509 			mutex_exit(&lp->lp_lock);
   1510 			return ENOMEM;
   1511 		}
   1512 		/*
   1513 		 * Wire the next page down in kernel space.  Since this
   1514 		 * is a new mapping, we must add a reference.
   1515 		 */
   1516 		uao = lp->lp_uao;
   1517 		(*uao->pgops->pgo_reference)(uao);
   1518 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1519 		    uao, lp->lp_cur, PAGE_SIZE,
   1520 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1521 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1522 		if (error == 0)
   1523 			error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1524 			    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1525 		if (error != 0) {
   1526 			mutex_exit(&lp->lp_lock);
   1527 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1528 			(*uao->pgops->pgo_detach)(uao);
   1529 			return error;
   1530 		}
   1531 		/* Prepare the page descriptor and link into the list. */
   1532 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1533 		lp->lp_cur += PAGE_SIZE;
   1534 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1535 		lcp->lcp_rotor = 0;
   1536 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1537 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1538 	}
   1539 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1540 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1541 			i = 0;
   1542 	}
   1543 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1544 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1545 	lcp->lcp_rotor = i;
   1546 	lcp->lcp_nfree--;
   1547 	l->l_lcpage = lcp;
   1548 	offset = (i << 5) + bit;
   1549 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1550 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1551 	mutex_exit(&lp->lp_lock);
   1552 
   1553 	l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
   1554 
   1555 	return 0;
   1556 }
   1557 
   1558 /*
   1559  * Free an lwpctl structure back to the per-process list.
   1560  */
   1561 void
   1562 lwp_ctl_free(lwp_t *l)
   1563 {
   1564 	lcproc_t *lp;
   1565 	lcpage_t *lcp;
   1566 	u_int map, offset;
   1567 
   1568 	lp = l->l_proc->p_lwpctl;
   1569 	KASSERT(lp != NULL);
   1570 
   1571 	lcp = l->l_lcpage;
   1572 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1573 	KASSERT(offset < LWPCTL_PER_PAGE);
   1574 
   1575 	mutex_enter(&lp->lp_lock);
   1576 	lcp->lcp_nfree++;
   1577 	map = offset >> 5;
   1578 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1579 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1580 		lcp->lcp_rotor = map;
   1581 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1582 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1583 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1584 	}
   1585 	mutex_exit(&lp->lp_lock);
   1586 }
   1587 
   1588 /*
   1589  * Process is exiting; tear down lwpctl state.  This can only be safely
   1590  * called by the last LWP in the process.
   1591  */
   1592 void
   1593 lwp_ctl_exit(void)
   1594 {
   1595 	lcpage_t *lcp, *next;
   1596 	lcproc_t *lp;
   1597 	proc_t *p;
   1598 	lwp_t *l;
   1599 
   1600 	l = curlwp;
   1601 	l->l_lwpctl = NULL;
   1602 	p = l->l_proc;
   1603 	lp = p->p_lwpctl;
   1604 
   1605 	KASSERT(lp != NULL);
   1606 	KASSERT(p->p_nlwps == 1);
   1607 
   1608 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1609 		next = TAILQ_NEXT(lcp, lcp_chain);
   1610 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1611 		    lcp->lcp_kaddr + PAGE_SIZE);
   1612 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1613 	}
   1614 
   1615 	if (lp->lp_uao != NULL) {
   1616 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1617 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1618 	}
   1619 
   1620 	mutex_destroy(&lp->lp_lock);
   1621 	kmem_free(lp, sizeof(*lp));
   1622 	p->p_lwpctl = NULL;
   1623 }
   1624