Home | History | Annotate | Line # | Download | only in kern
kern_lwp.c revision 1.79
      1 /*	$NetBSD: kern_lwp.c,v 1.79 2007/11/13 08:38:06 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Overview
     41  *
     42  *	Lightweight processes (LWPs) are the basic unit or thread of
     43  *	execution within the kernel.  The core state of an LWP is described
     44  *	by "struct lwp", also known as lwp_t.
     45  *
     46  *	Each LWP is contained within a process (described by "struct proc"),
     47  *	Every process contains at least one LWP, but may contain more.  The
     48  *	process describes attributes shared among all of its LWPs such as a
     49  *	private address space, global execution state (stopped, active,
     50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
     51  *	machine, multiple LWPs be executing concurrently in the kernel.
     52  *
     53  * Execution states
     54  *
     55  *	At any given time, an LWP has overall state that is described by
     56  *	lwp::l_stat.  The states are broken into two sets below.  The first
     57  *	set is guaranteed to represent the absolute, current state of the
     58  *	LWP:
     59  *
     60  * 	LSONPROC
     61  *
     62  * 		On processor: the LWP is executing on a CPU, either in the
     63  * 		kernel or in user space.
     64  *
     65  * 	LSRUN
     66  *
     67  * 		Runnable: the LWP is parked on a run queue, and may soon be
     68  * 		chosen to run by a idle processor, or by a processor that
     69  * 		has been asked to preempt a currently runnning but lower
     70  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
     71  *		then the LWP is not on a run queue, but may be soon.
     72  *
     73  * 	LSIDL
     74  *
     75  * 		Idle: the LWP has been created but has not yet executed,
     76  *		or it has ceased executing a unit of work and is waiting
     77  *		to be started again.
     78  *
     79  * 	LSSUSPENDED:
     80  *
     81  * 		Suspended: the LWP has had its execution suspended by
     82  *		another LWP in the same process using the _lwp_suspend()
     83  *		system call.  User-level LWPs also enter the suspended
     84  *		state when the system is shutting down.
     85  *
     86  *	The second set represent a "statement of intent" on behalf of the
     87  *	LWP.  The LWP may in fact be executing on a processor, may be
     88  *	sleeping or idle. It is expected to take the necessary action to
     89  *	stop executing or become "running" again within	a short timeframe.
     90  *	The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
     91  *	Importantly, in indicates that its state is tied to a CPU.
     92  *
     93  * 	LSZOMB:
     94  *
     95  * 		Dead or dying: the LWP has released most of its resources
     96  *		and is a) about to switch away into oblivion b) has already
     97  *		switched away.  When it switches away, its few remaining
     98  *		resources can be collected.
     99  *
    100  * 	LSSLEEP:
    101  *
    102  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
    103  * 		has switched away or will switch away shortly to allow other
    104  *		LWPs to run on the CPU.
    105  *
    106  * 	LSSTOP:
    107  *
    108  * 		Stopped: the LWP has been stopped as a result of a job
    109  * 		control signal, or as a result of the ptrace() interface.
    110  *
    111  * 		Stopped LWPs may run briefly within the kernel to handle
    112  * 		signals that they receive, but will not return to user space
    113  * 		until their process' state is changed away from stopped.
    114  *
    115  * 		Single LWPs within a process can not be set stopped
    116  * 		selectively: all actions that can stop or continue LWPs
    117  * 		occur at the process level.
    118  *
    119  * State transitions
    120  *
    121  *	Note that the LSSTOP state may only be set when returning to
    122  *	user space in userret(), or when sleeping interruptably.  The
    123  *	LSSUSPENDED state may only be set in userret().  Before setting
    124  *	those states, we try to ensure that the LWPs will release all
    125  *	locks that they hold, and at a minimum try to ensure that the
    126  *	LWP can be set runnable again by a signal.
    127  *
    128  *	LWPs may transition states in the following ways:
    129  *
    130  *	 RUN -------> ONPROC		ONPROC -----> RUN
    131  *	            > STOPPED			    > SLEEP
    132  *	            > SUSPENDED			    > STOPPED
    133  *						    > SUSPENDED
    134  *						    > ZOMB
    135  *
    136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
    137  *	            > SLEEP			    > SLEEP
    138  *
    139  *	 SLEEP -----> ONPROC		IDL --------> RUN
    140  *		    > RUN		            > SUSPENDED
    141  *		    > STOPPED                       > STOPPED
    142  *		    > SUSPENDED
    143  *
    144  *	Other state transitions are possible with kernel threads (eg
    145  *	ONPROC -> IDL), but only happen under tightly controlled
    146  *	circumstances the side effects are understood.
    147  *
    148  * Locking
    149  *
    150  *	The majority of fields in 'struct lwp' are covered by a single,
    151  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
    152  *	each field are documented in sys/lwp.h.
    153  *
    154  *	State transitions must be made with the LWP's general lock held,
    155  * 	and may cause the LWP's lock pointer to change. Manipulation of
    156  *	the general lock is not performed directly, but through calls to
    157  *	lwp_lock(), lwp_relock() and similar.
    158  *
    159  *	States and their associated locks:
    160  *
    161  *	LSONPROC, LSZOMB:
    162  *
    163  *		Always covered by spc_lwplock, which protects running LWPs.
    164  *		This is a per-CPU lock.
    165  *
    166  *	LSIDL, LSRUN:
    167  *
    168  *		Always covered by spc_mutex, which protects the run queues.
    169  *		This may be a per-CPU lock, depending on the scheduler.
    170  *
    171  *	LSSLEEP:
    172  *
    173  *		Covered by a lock associated with the sleep queue that the
    174  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
    175  *
    176  *	LSSTOP, LSSUSPENDED:
    177  *
    178  *		If the LWP was previously sleeping (l_wchan != NULL), then
    179  *		l_mutex references the sleep queue lock.  If the LWP was
    180  *		runnable or on the CPU when halted, or has been removed from
    181  *		the sleep queue since halted, then the lock is spc_lwplock.
    182  *
    183  *	The lock order is as follows:
    184  *
    185  *		spc::spc_lwplock ->
    186  *		    sleepq_t::sq_mutex ->
    187  *			tschain_t::tc_mutex ->
    188  *			    spc::spc_mutex
    189  *
    190  *	Each process has an scheduler state lock (proc::p_smutex), and a
    191  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
    192  *	so on.  When an LWP is to be entered into or removed from one of the
    193  *	following states, p_mutex must be held and the process wide counters
    194  *	adjusted:
    195  *
    196  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
    197  *
    198  *	Note that an LWP is considered running or likely to run soon if in
    199  *	one of the following states.  This affects the value of p_nrlwps:
    200  *
    201  *		LSRUN, LSONPROC, LSSLEEP
    202  *
    203  *	p_smutex does not need to be held when transitioning among these
    204  *	three states.
    205  */
    206 
    207 #include <sys/cdefs.h>
    208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.79 2007/11/13 08:38:06 yamt Exp $");
    209 
    210 #include "opt_multiprocessor.h"
    211 #include "opt_lockdebug.h"
    212 
    213 #define _LWP_API_PRIVATE
    214 
    215 #include <sys/param.h>
    216 #include <sys/systm.h>
    217 #include <sys/cpu.h>
    218 #include <sys/pool.h>
    219 #include <sys/proc.h>
    220 #include <sys/syscallargs.h>
    221 #include <sys/syscall_stats.h>
    222 #include <sys/kauth.h>
    223 #include <sys/sleepq.h>
    224 #include <sys/lockdebug.h>
    225 #include <sys/kmem.h>
    226 #include <sys/intr.h>
    227 #include <sys/lwpctl.h>
    228 
    229 #include <uvm/uvm_extern.h>
    230 
    231 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
    232 
    233 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
    234     &pool_allocator_nointr, IPL_NONE);
    235 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
    236     &pool_allocator_nointr, IPL_NONE);
    237 
    238 static specificdata_domain_t lwp_specificdata_domain;
    239 
    240 void
    241 lwpinit(void)
    242 {
    243 
    244 	lwp_specificdata_domain = specificdata_domain_create();
    245 	KASSERT(lwp_specificdata_domain != NULL);
    246 	lwp_sys_init();
    247 }
    248 
    249 /*
    250  * Set an suspended.
    251  *
    252  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    253  * LWP before return.
    254  */
    255 int
    256 lwp_suspend(struct lwp *curl, struct lwp *t)
    257 {
    258 	int error;
    259 
    260 	KASSERT(mutex_owned(&t->l_proc->p_smutex));
    261 	KASSERT(lwp_locked(t, NULL));
    262 
    263 	KASSERT(curl != t || curl->l_stat == LSONPROC);
    264 
    265 	/*
    266 	 * If the current LWP has been told to exit, we must not suspend anyone
    267 	 * else or deadlock could occur.  We won't return to userspace.
    268 	 */
    269 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
    270 		lwp_unlock(t);
    271 		return (EDEADLK);
    272 	}
    273 
    274 	error = 0;
    275 
    276 	switch (t->l_stat) {
    277 	case LSRUN:
    278 	case LSONPROC:
    279 		t->l_flag |= LW_WSUSPEND;
    280 		lwp_need_userret(t);
    281 		lwp_unlock(t);
    282 		break;
    283 
    284 	case LSSLEEP:
    285 		t->l_flag |= LW_WSUSPEND;
    286 
    287 		/*
    288 		 * Kick the LWP and try to get it to the kernel boundary
    289 		 * so that it will release any locks that it holds.
    290 		 * setrunnable() will release the lock.
    291 		 */
    292 		if ((t->l_flag & LW_SINTR) != 0)
    293 			setrunnable(t);
    294 		else
    295 			lwp_unlock(t);
    296 		break;
    297 
    298 	case LSSUSPENDED:
    299 		lwp_unlock(t);
    300 		break;
    301 
    302 	case LSSTOP:
    303 		t->l_flag |= LW_WSUSPEND;
    304 		setrunnable(t);
    305 		break;
    306 
    307 	case LSIDL:
    308 	case LSZOMB:
    309 		error = EINTR; /* It's what Solaris does..... */
    310 		lwp_unlock(t);
    311 		break;
    312 	}
    313 
    314 	return (error);
    315 }
    316 
    317 /*
    318  * Restart a suspended LWP.
    319  *
    320  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
    321  * LWP before return.
    322  */
    323 void
    324 lwp_continue(struct lwp *l)
    325 {
    326 
    327 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
    328 	KASSERT(lwp_locked(l, NULL));
    329 
    330 	/* If rebooting or not suspended, then just bail out. */
    331 	if ((l->l_flag & LW_WREBOOT) != 0) {
    332 		lwp_unlock(l);
    333 		return;
    334 	}
    335 
    336 	l->l_flag &= ~LW_WSUSPEND;
    337 
    338 	if (l->l_stat != LSSUSPENDED) {
    339 		lwp_unlock(l);
    340 		return;
    341 	}
    342 
    343 	/* setrunnable() will release the lock. */
    344 	setrunnable(l);
    345 }
    346 
    347 /*
    348  * Wait for an LWP within the current process to exit.  If 'lid' is
    349  * non-zero, we are waiting for a specific LWP.
    350  *
    351  * Must be called with p->p_smutex held.
    352  */
    353 int
    354 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
    355 {
    356 	struct proc *p = l->l_proc;
    357 	struct lwp *l2;
    358 	int nfound, error;
    359 	lwpid_t curlid;
    360 	bool exiting;
    361 
    362 	KASSERT(mutex_owned(&p->p_smutex));
    363 
    364 	p->p_nlwpwait++;
    365 	l->l_waitingfor = lid;
    366 	curlid = l->l_lid;
    367 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
    368 
    369 	for (;;) {
    370 		/*
    371 		 * Avoid a race between exit1() and sigexit(): if the
    372 		 * process is dumping core, then we need to bail out: call
    373 		 * into lwp_userret() where we will be suspended until the
    374 		 * deed is done.
    375 		 */
    376 		if ((p->p_sflag & PS_WCORE) != 0) {
    377 			mutex_exit(&p->p_smutex);
    378 			lwp_userret(l);
    379 #ifdef DIAGNOSTIC
    380 			panic("lwp_wait1");
    381 #endif
    382 			/* NOTREACHED */
    383 		}
    384 
    385 		/*
    386 		 * First off, drain any detached LWP that is waiting to be
    387 		 * reaped.
    388 		 */
    389 		while ((l2 = p->p_zomblwp) != NULL) {
    390 			p->p_zomblwp = NULL;
    391 			lwp_free(l2, false, false);/* releases proc mutex */
    392 			mutex_enter(&p->p_smutex);
    393 		}
    394 
    395 		/*
    396 		 * Now look for an LWP to collect.  If the whole process is
    397 		 * exiting, count detached LWPs as eligible to be collected,
    398 		 * but don't drain them here.
    399 		 */
    400 		nfound = 0;
    401 		error = 0;
    402 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    403 			/*
    404 			 * If a specific wait and the target is waiting on
    405 			 * us, then avoid deadlock.  This also traps LWPs
    406 			 * that try to wait on themselves.
    407 			 *
    408 			 * Note that this does not handle more complicated
    409 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
    410 			 * can still be killed so it is not a major problem.
    411 			 */
    412 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
    413 				error = EDEADLK;
    414 				break;
    415 			}
    416 			if (l2 == l)
    417 				continue;
    418 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
    419 				nfound += exiting;
    420 				continue;
    421 			}
    422 			if (lid != 0) {
    423 				if (l2->l_lid != lid)
    424 					continue;
    425 				/*
    426 				 * Mark this LWP as the first waiter, if there
    427 				 * is no other.
    428 				 */
    429 				if (l2->l_waiter == 0)
    430 					l2->l_waiter = curlid;
    431 			} else if (l2->l_waiter != 0) {
    432 				/*
    433 				 * It already has a waiter - so don't
    434 				 * collect it.  If the waiter doesn't
    435 				 * grab it we'll get another chance
    436 				 * later.
    437 				 */
    438 				nfound++;
    439 				continue;
    440 			}
    441 			nfound++;
    442 
    443 			/* No need to lock the LWP in order to see LSZOMB. */
    444 			if (l2->l_stat != LSZOMB)
    445 				continue;
    446 
    447 			/*
    448 			 * We're no longer waiting.  Reset the "first waiter"
    449 			 * pointer on the target, in case it was us.
    450 			 */
    451 			l->l_waitingfor = 0;
    452 			l2->l_waiter = 0;
    453 			p->p_nlwpwait--;
    454 			if (departed)
    455 				*departed = l2->l_lid;
    456 			sched_lwp_collect(l2);
    457 
    458 			/* lwp_free() releases the proc lock. */
    459 			lwp_free(l2, false, false);
    460 			mutex_enter(&p->p_smutex);
    461 			return 0;
    462 		}
    463 
    464 		if (error != 0)
    465 			break;
    466 		if (nfound == 0) {
    467 			error = ESRCH;
    468 			break;
    469 		}
    470 
    471 		/*
    472 		 * The kernel is careful to ensure that it can not deadlock
    473 		 * when exiting - just keep waiting.
    474 		 */
    475 		if (exiting) {
    476 			KASSERT(p->p_nlwps > 1);
    477 			cv_wait(&p->p_lwpcv, &p->p_smutex);
    478 			continue;
    479 		}
    480 
    481 		/*
    482 		 * If all other LWPs are waiting for exits or suspends
    483 		 * and the supply of zombies and potential zombies is
    484 		 * exhausted, then we are about to deadlock.
    485 		 *
    486 		 * If the process is exiting (and this LWP is not the one
    487 		 * that is coordinating the exit) then bail out now.
    488 		 */
    489 		if ((p->p_sflag & PS_WEXIT) != 0 ||
    490 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
    491 			error = EDEADLK;
    492 			break;
    493 		}
    494 
    495 		/*
    496 		 * Sit around and wait for something to happen.  We'll be
    497 		 * awoken if any of the conditions examined change: if an
    498 		 * LWP exits, is collected, or is detached.
    499 		 */
    500 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
    501 			break;
    502 	}
    503 
    504 	/*
    505 	 * We didn't find any LWPs to collect, we may have received a
    506 	 * signal, or some other condition has caused us to bail out.
    507 	 *
    508 	 * If waiting on a specific LWP, clear the waiters marker: some
    509 	 * other LWP may want it.  Then, kick all the remaining waiters
    510 	 * so that they can re-check for zombies and for deadlock.
    511 	 */
    512 	if (lid != 0) {
    513 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    514 			if (l2->l_lid == lid) {
    515 				if (l2->l_waiter == curlid)
    516 					l2->l_waiter = 0;
    517 				break;
    518 			}
    519 		}
    520 	}
    521 	p->p_nlwpwait--;
    522 	l->l_waitingfor = 0;
    523 	cv_broadcast(&p->p_lwpcv);
    524 
    525 	return error;
    526 }
    527 
    528 /*
    529  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
    530  * The new LWP is created in state LSIDL and must be set running,
    531  * suspended, or stopped by the caller.
    532  */
    533 int
    534 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
    535 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
    536 	   lwp_t **rnewlwpp, int sclass)
    537 {
    538 	struct lwp *l2, *isfree;
    539 	turnstile_t *ts;
    540 
    541 	/*
    542 	 * First off, reap any detached LWP waiting to be collected.
    543 	 * We can re-use its LWP structure and turnstile.
    544 	 */
    545 	isfree = NULL;
    546 	if (p2->p_zomblwp != NULL) {
    547 		mutex_enter(&p2->p_smutex);
    548 		if ((isfree = p2->p_zomblwp) != NULL) {
    549 			p2->p_zomblwp = NULL;
    550 			lwp_free(isfree, true, false);/* releases proc mutex */
    551 		} else
    552 			mutex_exit(&p2->p_smutex);
    553 	}
    554 	if (isfree == NULL) {
    555 		l2 = pool_get(&lwp_pool, PR_WAITOK);
    556 		memset(l2, 0, sizeof(*l2));
    557 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
    558 		SLIST_INIT(&l2->l_pi_lenders);
    559 	} else {
    560 		l2 = isfree;
    561 		ts = l2->l_ts;
    562 		KASSERT(l2->l_inheritedprio == -1);
    563 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
    564 		memset(l2, 0, sizeof(*l2));
    565 		l2->l_ts = ts;
    566 	}
    567 
    568 	l2->l_stat = LSIDL;
    569 	l2->l_proc = p2;
    570 	l2->l_refcnt = 1;
    571 	l2->l_class = sclass;
    572 	l2->l_kpriority = l1->l_kpriority;
    573 	l2->l_priority = l1->l_priority;
    574 	l2->l_inheritedprio = -1;
    575 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
    576 	l2->l_cpu = l1->l_cpu;
    577 	l2->l_flag = inmem ? LW_INMEM : 0;
    578 
    579 	if (p2->p_flag & PK_SYSTEM) {
    580 		/*
    581 		 * Mark it as a system process and not a candidate for
    582 		 * swapping.
    583 		 */
    584 		l2->l_flag |= LW_SYSTEM;
    585 	} else {
    586 		/* Look for a CPU to start */
    587 		l2->l_cpu = sched_takecpu(l2);
    588 		l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
    589 	}
    590 
    591 	lwp_initspecific(l2);
    592 	sched_lwp_fork(l1, l2);
    593 	lwp_update_creds(l2);
    594 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
    595 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
    596 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
    597 	cv_init(&l2->l_sigcv, "sigwait");
    598 	l2->l_syncobj = &sched_syncobj;
    599 
    600 	if (rnewlwpp != NULL)
    601 		*rnewlwpp = l2;
    602 
    603 	l2->l_addr = UAREA_TO_USER(uaddr);
    604 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
    605 	    (arg != NULL) ? arg : l2);
    606 
    607 	mutex_enter(&p2->p_smutex);
    608 
    609 	if ((flags & LWP_DETACHED) != 0) {
    610 		l2->l_prflag = LPR_DETACHED;
    611 		p2->p_ndlwps++;
    612 	} else
    613 		l2->l_prflag = 0;
    614 
    615 	l2->l_sigmask = l1->l_sigmask;
    616 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
    617 	sigemptyset(&l2->l_sigpend.sp_set);
    618 
    619 	p2->p_nlwpid++;
    620 	if (p2->p_nlwpid == 0)
    621 		p2->p_nlwpid++;
    622 	l2->l_lid = p2->p_nlwpid;
    623 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
    624 	p2->p_nlwps++;
    625 
    626 	mutex_exit(&p2->p_smutex);
    627 
    628 	mutex_enter(&proclist_lock);
    629 	mutex_enter(&proclist_mutex);
    630 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
    631 	mutex_exit(&proclist_mutex);
    632 	mutex_exit(&proclist_lock);
    633 
    634 	SYSCALL_TIME_LWP_INIT(l2);
    635 
    636 	if (p2->p_emul->e_lwp_fork)
    637 		(*p2->p_emul->e_lwp_fork)(l1, l2);
    638 
    639 	return (0);
    640 }
    641 
    642 /*
    643  * Called by MD code when a new LWP begins execution.  Must be called
    644  * with the previous LWP locked (so at splsched), or if there is no
    645  * previous LWP, at splsched.
    646  */
    647 void
    648 lwp_startup(struct lwp *prev, struct lwp *new)
    649 {
    650 
    651 	if (prev != NULL) {
    652 		lwp_unlock(prev);
    653 	}
    654 	spl0();
    655 	pmap_activate(new);
    656 	LOCKDEBUG_BARRIER(NULL, 0);
    657 	if ((new->l_pflag & LP_MPSAFE) == 0) {
    658 		KERNEL_LOCK(1, new);
    659 	}
    660 }
    661 
    662 /*
    663  * Exit an LWP.
    664  */
    665 void
    666 lwp_exit(struct lwp *l)
    667 {
    668 	struct proc *p = l->l_proc;
    669 	struct lwp *l2;
    670 	bool current;
    671 
    672 	current = (l == curlwp);
    673 
    674 	KASSERT(current || l->l_stat == LSIDL);
    675 
    676 	/*
    677 	 * Verify that we hold no locks other than the kernel lock.
    678 	 */
    679 #ifdef MULTIPROCESSOR
    680 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
    681 #else
    682 	LOCKDEBUG_BARRIER(NULL, 0);
    683 #endif
    684 
    685 	/*
    686 	 * If we are the last live LWP in a process, we need to exit the
    687 	 * entire process.  We do so with an exit status of zero, because
    688 	 * it's a "controlled" exit, and because that's what Solaris does.
    689 	 *
    690 	 * We are not quite a zombie yet, but for accounting purposes we
    691 	 * must increment the count of zombies here.
    692 	 *
    693 	 * Note: the last LWP's specificdata will be deleted here.
    694 	 */
    695 	mutex_enter(&p->p_smutex);
    696 	if (p->p_nlwps - p->p_nzlwps == 1) {
    697 		KASSERT(current == true);
    698 		exit1(l, 0);
    699 		/* NOTREACHED */
    700 	}
    701 	p->p_nzlwps++;
    702 	mutex_exit(&p->p_smutex);
    703 
    704 	if (p->p_emul->e_lwp_exit)
    705 		(*p->p_emul->e_lwp_exit)(l);
    706 
    707 	/* Delete the specificdata while it's still safe to sleep. */
    708 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
    709 
    710 	/*
    711 	 * Release our cached credentials.
    712 	 */
    713 	kauth_cred_free(l->l_cred);
    714 	callout_destroy(&l->l_timeout_ch);
    715 
    716 	/*
    717 	 * While we can still block, mark the LWP as unswappable to
    718 	 * prevent conflicts with the with the swapper.
    719 	 */
    720 	if (current)
    721 		uvm_lwp_hold(l);
    722 
    723 	/*
    724 	 * Remove the LWP from the global list.
    725 	 */
    726 	mutex_enter(&proclist_lock);
    727 	mutex_enter(&proclist_mutex);
    728 	LIST_REMOVE(l, l_list);
    729 	mutex_exit(&proclist_mutex);
    730 	mutex_exit(&proclist_lock);
    731 
    732 	/*
    733 	 * Get rid of all references to the LWP that others (e.g. procfs)
    734 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
    735 	 * mark it waiting for collection in the proc structure.  Note that
    736 	 * before we can do that, we need to free any other dead, deatched
    737 	 * LWP waiting to meet its maker.
    738 	 *
    739 	 * XXXSMP disable preemption.
    740 	 */
    741 	mutex_enter(&p->p_smutex);
    742 	lwp_drainrefs(l);
    743 
    744 	if ((l->l_prflag & LPR_DETACHED) != 0) {
    745 		while ((l2 = p->p_zomblwp) != NULL) {
    746 			p->p_zomblwp = NULL;
    747 			lwp_free(l2, false, false);/* releases proc mutex */
    748 			mutex_enter(&p->p_smutex);
    749 			l->l_refcnt++;
    750 			lwp_drainrefs(l);
    751 		}
    752 		p->p_zomblwp = l;
    753 	}
    754 
    755 	/*
    756 	 * If we find a pending signal for the process and we have been
    757 	 * asked to check for signals, then we loose: arrange to have
    758 	 * all other LWPs in the process check for signals.
    759 	 */
    760 	if ((l->l_flag & LW_PENDSIG) != 0 &&
    761 	    firstsig(&p->p_sigpend.sp_set) != 0) {
    762 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
    763 			lwp_lock(l2);
    764 			l2->l_flag |= LW_PENDSIG;
    765 			lwp_unlock(l2);
    766 		}
    767 	}
    768 
    769 	lwp_lock(l);
    770 	l->l_stat = LSZOMB;
    771 	lwp_unlock(l);
    772 	p->p_nrlwps--;
    773 	cv_broadcast(&p->p_lwpcv);
    774 	if (l->l_lwpctl != NULL)
    775 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    776 	mutex_exit(&p->p_smutex);
    777 
    778 	/*
    779 	 * We can no longer block.  At this point, lwp_free() may already
    780 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
    781 	 *
    782 	 * Free MD LWP resources.
    783 	 */
    784 #ifndef __NO_CPU_LWP_FREE
    785 	cpu_lwp_free(l, 0);
    786 #endif
    787 
    788 	if (current) {
    789 		pmap_deactivate(l);
    790 
    791 		/*
    792 		 * Release the kernel lock, and switch away into
    793 		 * oblivion.
    794 		 */
    795 #ifdef notyet
    796 		/* XXXSMP hold in lwp_userret() */
    797 		KERNEL_UNLOCK_LAST(l);
    798 #else
    799 		KERNEL_UNLOCK_ALL(l, NULL);
    800 #endif
    801 		lwp_exit_switchaway(l);
    802 	}
    803 }
    804 
    805 void
    806 lwp_exit_switchaway(struct lwp *l)
    807 {
    808 	struct cpu_info *ci;
    809 	struct lwp *idlelwp;
    810 
    811 	/* Unlocked, but is for statistics only. */
    812 	uvmexp.swtch++;
    813 
    814 	(void)splsched();
    815 	l->l_flag &= ~LW_RUNNING;
    816 	ci = curcpu();
    817 	idlelwp = ci->ci_data.cpu_idlelwp;
    818 	idlelwp->l_stat = LSONPROC;
    819 
    820 	/*
    821 	 * cpu_onproc must be updated with the CPU locked, as
    822 	 * aston() may try to set a AST pending on the LWP (and
    823 	 * it does so with the CPU locked).  Otherwise, the LWP
    824 	 * may be destroyed before the AST can be set, leading
    825 	 * to a user-after-free.
    826 	 */
    827 	spc_lock(ci);
    828 	ci->ci_data.cpu_onproc = idlelwp;
    829 	spc_unlock(ci);
    830 	cpu_switchto(NULL, idlelwp, false);
    831 }
    832 
    833 /*
    834  * Free a dead LWP's remaining resources.
    835  *
    836  * XXXLWP limits.
    837  */
    838 void
    839 lwp_free(struct lwp *l, bool recycle, bool last)
    840 {
    841 	struct proc *p = l->l_proc;
    842 	ksiginfoq_t kq;
    843 
    844 	/*
    845 	 * If this was not the last LWP in the process, then adjust
    846 	 * counters and unlock.
    847 	 */
    848 	if (!last) {
    849 		/*
    850 		 * Add the LWP's run time to the process' base value.
    851 		 * This needs to co-incide with coming off p_lwps.
    852 		 */
    853 		timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
    854 		p->p_pctcpu += l->l_pctcpu;
    855 		LIST_REMOVE(l, l_sibling);
    856 		p->p_nlwps--;
    857 		p->p_nzlwps--;
    858 		if ((l->l_prflag & LPR_DETACHED) != 0)
    859 			p->p_ndlwps--;
    860 
    861 		/*
    862 		 * Have any LWPs sleeping in lwp_wait() recheck for
    863 		 * deadlock.
    864 		 */
    865 		cv_broadcast(&p->p_lwpcv);
    866 		mutex_exit(&p->p_smutex);
    867 	}
    868 
    869 #ifdef MULTIPROCESSOR
    870 	/*
    871 	 * In the unlikely event that the LWP is still on the CPU,
    872 	 * then spin until it has switched away.  We need to release
    873 	 * all locks to avoid deadlock against interrupt handlers on
    874 	 * the target CPU.
    875 	 */
    876 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
    877 		int count;
    878 		(void)count; /* XXXgcc */
    879 		KERNEL_UNLOCK_ALL(curlwp, &count);
    880 		while ((l->l_flag & LW_RUNNING) != 0 ||
    881 		    l->l_cpu->ci_curlwp == l)
    882 			SPINLOCK_BACKOFF_HOOK;
    883 		KERNEL_LOCK(count, curlwp);
    884 	}
    885 #endif
    886 
    887 	/*
    888 	 * Destroy the LWP's remaining signal information.
    889 	 */
    890 	ksiginfo_queue_init(&kq);
    891 	sigclear(&l->l_sigpend, NULL, &kq);
    892 	ksiginfo_queue_drain(&kq);
    893 	cv_destroy(&l->l_sigcv);
    894 	mutex_destroy(&l->l_swaplock);
    895 
    896 	/*
    897 	 * Free the LWP's turnstile and the LWP structure itself unless the
    898 	 * caller wants to recycle them.  Also, free the scheduler specific data.
    899 	 *
    900 	 * We can't return turnstile0 to the pool (it didn't come from it),
    901 	 * so if it comes up just drop it quietly and move on.
    902 	 *
    903 	 * We don't recycle the VM resources at this time.
    904 	 */
    905 	KERNEL_LOCK(1, curlwp);		/* XXXSMP */
    906 
    907 	if (l->l_lwpctl != NULL)
    908 		lwp_ctl_free(l);
    909 	sched_lwp_exit(l);
    910 
    911 	if (!recycle && l->l_ts != &turnstile0)
    912 		pool_cache_put(turnstile_cache, l->l_ts);
    913 #ifndef __NO_CPU_LWP_FREE
    914 	cpu_lwp_free2(l);
    915 #endif
    916 	uvm_lwp_exit(l);
    917 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
    918 	KASSERT(l->l_inheritedprio == -1);
    919 	if (!recycle)
    920 		pool_put(&lwp_pool, l);
    921 	KERNEL_UNLOCK_ONE(curlwp);	/* XXXSMP */
    922 }
    923 
    924 /*
    925  * Pick a LWP to represent the process for those operations which
    926  * want information about a "process" that is actually associated
    927  * with a LWP.
    928  *
    929  * If 'locking' is false, no locking or lock checks are performed.
    930  * This is intended for use by DDB.
    931  *
    932  * We don't bother locking the LWP here, since code that uses this
    933  * interface is broken by design and an exact match is not required.
    934  */
    935 struct lwp *
    936 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
    937 {
    938 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
    939 	struct lwp *signalled;
    940 	int cnt;
    941 
    942 	if (locking) {
    943 		KASSERT(mutex_owned(&p->p_smutex));
    944 	}
    945 
    946 	/* Trivial case: only one LWP */
    947 	if (p->p_nlwps == 1) {
    948 		l = LIST_FIRST(&p->p_lwps);
    949 		if (nrlwps)
    950 			*nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
    951 		return l;
    952 	}
    953 
    954 	cnt = 0;
    955 	switch (p->p_stat) {
    956 	case SSTOP:
    957 	case SACTIVE:
    958 		/* Pick the most live LWP */
    959 		onproc = running = sleeping = stopped = suspended = NULL;
    960 		signalled = NULL;
    961 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    962 			if ((l->l_flag & LW_IDLE) != 0) {
    963 				continue;
    964 			}
    965 			if (l->l_lid == p->p_sigctx.ps_lwp)
    966 				signalled = l;
    967 			switch (l->l_stat) {
    968 			case LSONPROC:
    969 				onproc = l;
    970 				cnt++;
    971 				break;
    972 			case LSRUN:
    973 				running = l;
    974 				cnt++;
    975 				break;
    976 			case LSSLEEP:
    977 				sleeping = l;
    978 				break;
    979 			case LSSTOP:
    980 				stopped = l;
    981 				break;
    982 			case LSSUSPENDED:
    983 				suspended = l;
    984 				break;
    985 			}
    986 		}
    987 		if (nrlwps)
    988 			*nrlwps = cnt;
    989 		if (signalled)
    990 			l = signalled;
    991 		else if (onproc)
    992 			l = onproc;
    993 		else if (running)
    994 			l = running;
    995 		else if (sleeping)
    996 			l = sleeping;
    997 		else if (stopped)
    998 			l = stopped;
    999 		else if (suspended)
   1000 			l = suspended;
   1001 		else
   1002 			break;
   1003 		return l;
   1004 #ifdef DIAGNOSTIC
   1005 	case SIDL:
   1006 	case SZOMB:
   1007 	case SDYING:
   1008 	case SDEAD:
   1009 		if (locking)
   1010 			mutex_exit(&p->p_smutex);
   1011 		/* We have more than one LWP and we're in SIDL?
   1012 		 * How'd that happen?
   1013 		 */
   1014 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
   1015 		    p->p_pid, p->p_comm, p->p_stat);
   1016 		break;
   1017 	default:
   1018 		if (locking)
   1019 			mutex_exit(&p->p_smutex);
   1020 		panic("Process %d (%s) in unknown state %d",
   1021 		    p->p_pid, p->p_comm, p->p_stat);
   1022 #endif
   1023 	}
   1024 
   1025 	if (locking)
   1026 		mutex_exit(&p->p_smutex);
   1027 	panic("proc_representative_lwp: couldn't find a lwp for process"
   1028 		" %d (%s)", p->p_pid, p->p_comm);
   1029 	/* NOTREACHED */
   1030 	return NULL;
   1031 }
   1032 
   1033 /*
   1034  * Look up a live LWP within the speicifed process, and return it locked.
   1035  *
   1036  * Must be called with p->p_smutex held.
   1037  */
   1038 struct lwp *
   1039 lwp_find(struct proc *p, int id)
   1040 {
   1041 	struct lwp *l;
   1042 
   1043 	KASSERT(mutex_owned(&p->p_smutex));
   1044 
   1045 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1046 		if (l->l_lid == id)
   1047 			break;
   1048 	}
   1049 
   1050 	/*
   1051 	 * No need to lock - all of these conditions will
   1052 	 * be visible with the process level mutex held.
   1053 	 */
   1054 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
   1055 		l = NULL;
   1056 
   1057 	return l;
   1058 }
   1059 
   1060 /*
   1061  * Update an LWP's cached credentials to mirror the process' master copy.
   1062  *
   1063  * This happens early in the syscall path, on user trap, and on LWP
   1064  * creation.  A long-running LWP can also voluntarily choose to update
   1065  * it's credentials by calling this routine.  This may be called from
   1066  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
   1067  */
   1068 void
   1069 lwp_update_creds(struct lwp *l)
   1070 {
   1071 	kauth_cred_t oc;
   1072 	struct proc *p;
   1073 
   1074 	p = l->l_proc;
   1075 	oc = l->l_cred;
   1076 
   1077 	mutex_enter(&p->p_mutex);
   1078 	kauth_cred_hold(p->p_cred);
   1079 	l->l_cred = p->p_cred;
   1080 	mutex_exit(&p->p_mutex);
   1081 	if (oc != NULL) {
   1082 		KERNEL_LOCK(1, l);	/* XXXSMP */
   1083 		kauth_cred_free(oc);
   1084 		KERNEL_UNLOCK_ONE(l);	/* XXXSMP */
   1085 	}
   1086 }
   1087 
   1088 /*
   1089  * Verify that an LWP is locked, and optionally verify that the lock matches
   1090  * one we specify.
   1091  */
   1092 int
   1093 lwp_locked(struct lwp *l, kmutex_t *mtx)
   1094 {
   1095 	kmutex_t *cur = l->l_mutex;
   1096 
   1097 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
   1098 }
   1099 
   1100 /*
   1101  * Lock an LWP.
   1102  */
   1103 void
   1104 lwp_lock_retry(struct lwp *l, kmutex_t *old)
   1105 {
   1106 
   1107 	/*
   1108 	 * XXXgcc ignoring kmutex_t * volatile on i386
   1109 	 *
   1110 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
   1111 	 */
   1112 #if 1
   1113 	while (l->l_mutex != old) {
   1114 #else
   1115 	for (;;) {
   1116 #endif
   1117 		mutex_spin_exit(old);
   1118 		old = l->l_mutex;
   1119 		mutex_spin_enter(old);
   1120 
   1121 		/*
   1122 		 * mutex_enter() will have posted a read barrier.  Re-test
   1123 		 * l->l_mutex.  If it has changed, we need to try again.
   1124 		 */
   1125 #if 1
   1126 	}
   1127 #else
   1128 	} while (__predict_false(l->l_mutex != old));
   1129 #endif
   1130 }
   1131 
   1132 /*
   1133  * Lend a new mutex to an LWP.  The old mutex must be held.
   1134  */
   1135 void
   1136 lwp_setlock(struct lwp *l, kmutex_t *new)
   1137 {
   1138 
   1139 	KASSERT(mutex_owned(l->l_mutex));
   1140 
   1141 	mb_write();
   1142 	l->l_mutex = new;
   1143 }
   1144 
   1145 /*
   1146  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
   1147  * must be held.
   1148  */
   1149 void
   1150 lwp_unlock_to(struct lwp *l, kmutex_t *new)
   1151 {
   1152 	kmutex_t *old;
   1153 
   1154 	KASSERT(mutex_owned(l->l_mutex));
   1155 
   1156 	old = l->l_mutex;
   1157 	mb_write();
   1158 	l->l_mutex = new;
   1159 	mutex_spin_exit(old);
   1160 }
   1161 
   1162 /*
   1163  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
   1164  * locked.
   1165  */
   1166 void
   1167 lwp_relock(struct lwp *l, kmutex_t *new)
   1168 {
   1169 	kmutex_t *old;
   1170 
   1171 	KASSERT(mutex_owned(l->l_mutex));
   1172 
   1173 	old = l->l_mutex;
   1174 	if (old != new) {
   1175 		mutex_spin_enter(new);
   1176 		l->l_mutex = new;
   1177 		mutex_spin_exit(old);
   1178 	}
   1179 }
   1180 
   1181 int
   1182 lwp_trylock(struct lwp *l)
   1183 {
   1184 	kmutex_t *old;
   1185 
   1186 	for (;;) {
   1187 		if (!mutex_tryenter(old = l->l_mutex))
   1188 			return 0;
   1189 		if (__predict_true(l->l_mutex == old))
   1190 			return 1;
   1191 		mutex_spin_exit(old);
   1192 	}
   1193 }
   1194 
   1195 /*
   1196  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
   1197  * set.
   1198  */
   1199 void
   1200 lwp_userret(struct lwp *l)
   1201 {
   1202 	struct proc *p;
   1203 	void (*hook)(void);
   1204 	int sig;
   1205 
   1206 	p = l->l_proc;
   1207 
   1208 #ifndef __HAVE_FAST_SOFTINTS
   1209 	/* Run pending soft interrupts. */
   1210 	if (l->l_cpu->ci_data.cpu_softints != 0)
   1211 		softint_overlay();
   1212 #endif
   1213 
   1214 	/*
   1215 	 * It should be safe to do this read unlocked on a multiprocessor
   1216 	 * system..
   1217 	 */
   1218 	while ((l->l_flag & LW_USERRET) != 0) {
   1219 		/*
   1220 		 * Process pending signals first, unless the process
   1221 		 * is dumping core or exiting, where we will instead
   1222 		 * enter the L_WSUSPEND case below.
   1223 		 */
   1224 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
   1225 		    LW_PENDSIG) {
   1226 			KERNEL_LOCK(1, l);	/* XXXSMP pool_put() below */
   1227 			mutex_enter(&p->p_smutex);
   1228 			while ((sig = issignal(l)) != 0)
   1229 				postsig(sig);
   1230 			mutex_exit(&p->p_smutex);
   1231 			KERNEL_UNLOCK_LAST(l);	/* XXXSMP */
   1232 		}
   1233 
   1234 		/*
   1235 		 * Core-dump or suspend pending.
   1236 		 *
   1237 		 * In case of core dump, suspend ourselves, so that the
   1238 		 * kernel stack and therefore the userland registers saved
   1239 		 * in the trapframe are around for coredump() to write them
   1240 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
   1241 		 * will write the core file out once all other LWPs are
   1242 		 * suspended.
   1243 		 */
   1244 		if ((l->l_flag & LW_WSUSPEND) != 0) {
   1245 			mutex_enter(&p->p_smutex);
   1246 			p->p_nrlwps--;
   1247 			cv_broadcast(&p->p_lwpcv);
   1248 			lwp_lock(l);
   1249 			l->l_stat = LSSUSPENDED;
   1250 			mutex_exit(&p->p_smutex);
   1251 			mi_switch(l);
   1252 		}
   1253 
   1254 		/* Process is exiting. */
   1255 		if ((l->l_flag & LW_WEXIT) != 0) {
   1256 			KERNEL_LOCK(1, l);
   1257 			lwp_exit(l);
   1258 			KASSERT(0);
   1259 			/* NOTREACHED */
   1260 		}
   1261 
   1262 		/* Call userret hook; used by Linux emulation. */
   1263 		if ((l->l_flag & LW_WUSERRET) != 0) {
   1264 			lwp_lock(l);
   1265 			l->l_flag &= ~LW_WUSERRET;
   1266 			lwp_unlock(l);
   1267 			hook = p->p_userret;
   1268 			p->p_userret = NULL;
   1269 			(*hook)();
   1270 		}
   1271 	}
   1272 }
   1273 
   1274 /*
   1275  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
   1276  */
   1277 void
   1278 lwp_need_userret(struct lwp *l)
   1279 {
   1280 	KASSERT(lwp_locked(l, NULL));
   1281 
   1282 	/*
   1283 	 * Since the tests in lwp_userret() are done unlocked, make sure
   1284 	 * that the condition will be seen before forcing the LWP to enter
   1285 	 * kernel mode.
   1286 	 */
   1287 	mb_write();
   1288 	cpu_signotify(l);
   1289 }
   1290 
   1291 /*
   1292  * Add one reference to an LWP.  This will prevent the LWP from
   1293  * exiting, thus keep the lwp structure and PCB around to inspect.
   1294  */
   1295 void
   1296 lwp_addref(struct lwp *l)
   1297 {
   1298 
   1299 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
   1300 	KASSERT(l->l_stat != LSZOMB);
   1301 	KASSERT(l->l_refcnt != 0);
   1302 
   1303 	l->l_refcnt++;
   1304 }
   1305 
   1306 /*
   1307  * Remove one reference to an LWP.  If this is the last reference,
   1308  * then we must finalize the LWP's death.
   1309  */
   1310 void
   1311 lwp_delref(struct lwp *l)
   1312 {
   1313 	struct proc *p = l->l_proc;
   1314 
   1315 	mutex_enter(&p->p_smutex);
   1316 	KASSERT(l->l_stat != LSZOMB);
   1317 	KASSERT(l->l_refcnt > 0);
   1318 	if (--l->l_refcnt == 0)
   1319 		cv_broadcast(&p->p_lwpcv);
   1320 	mutex_exit(&p->p_smutex);
   1321 }
   1322 
   1323 /*
   1324  * Drain all references to the current LWP.
   1325  */
   1326 void
   1327 lwp_drainrefs(struct lwp *l)
   1328 {
   1329 	struct proc *p = l->l_proc;
   1330 
   1331 	KASSERT(mutex_owned(&p->p_smutex));
   1332 	KASSERT(l->l_refcnt != 0);
   1333 
   1334 	l->l_refcnt--;
   1335 	while (l->l_refcnt != 0)
   1336 		cv_wait(&p->p_lwpcv, &p->p_smutex);
   1337 }
   1338 
   1339 /*
   1340  * lwp_specific_key_create --
   1341  *	Create a key for subsystem lwp-specific data.
   1342  */
   1343 int
   1344 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
   1345 {
   1346 
   1347 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
   1348 }
   1349 
   1350 /*
   1351  * lwp_specific_key_delete --
   1352  *	Delete a key for subsystem lwp-specific data.
   1353  */
   1354 void
   1355 lwp_specific_key_delete(specificdata_key_t key)
   1356 {
   1357 
   1358 	specificdata_key_delete(lwp_specificdata_domain, key);
   1359 }
   1360 
   1361 /*
   1362  * lwp_initspecific --
   1363  *	Initialize an LWP's specificdata container.
   1364  */
   1365 void
   1366 lwp_initspecific(struct lwp *l)
   1367 {
   1368 	int error;
   1369 
   1370 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
   1371 	KASSERT(error == 0);
   1372 }
   1373 
   1374 /*
   1375  * lwp_finispecific --
   1376  *	Finalize an LWP's specificdata container.
   1377  */
   1378 void
   1379 lwp_finispecific(struct lwp *l)
   1380 {
   1381 
   1382 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
   1383 }
   1384 
   1385 /*
   1386  * lwp_getspecific --
   1387  *	Return lwp-specific data corresponding to the specified key.
   1388  *
   1389  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
   1390  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
   1391  *	LWP's specifc data, care must be taken to ensure that doing so
   1392  *	would not cause internal data structure inconsistency (i.e. caller
   1393  *	can guarantee that the target LWP is not inside an lwp_getspecific()
   1394  *	or lwp_setspecific() call).
   1395  */
   1396 void *
   1397 lwp_getspecific(specificdata_key_t key)
   1398 {
   1399 
   1400 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1401 						  &curlwp->l_specdataref, key));
   1402 }
   1403 
   1404 void *
   1405 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
   1406 {
   1407 
   1408 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
   1409 						  &l->l_specdataref, key));
   1410 }
   1411 
   1412 /*
   1413  * lwp_setspecific --
   1414  *	Set lwp-specific data corresponding to the specified key.
   1415  */
   1416 void
   1417 lwp_setspecific(specificdata_key_t key, void *data)
   1418 {
   1419 
   1420 	specificdata_setspecific(lwp_specificdata_domain,
   1421 				 &curlwp->l_specdataref, key, data);
   1422 }
   1423 
   1424 /*
   1425  * Allocate a new lwpctl structure for a user LWP.
   1426  */
   1427 int
   1428 lwp_ctl_alloc(vaddr_t *uaddr)
   1429 {
   1430 	lcproc_t *lp;
   1431 	u_int bit, i, offset;
   1432 	struct uvm_object *uao;
   1433 	int error;
   1434 	lcpage_t *lcp;
   1435 	proc_t *p;
   1436 	lwp_t *l;
   1437 
   1438 	l = curlwp;
   1439 	p = l->l_proc;
   1440 
   1441 	if (l->l_lcpage != NULL)
   1442 		return (EINVAL);
   1443 
   1444 	/* First time around, allocate header structure for the process. */
   1445 	if ((lp = p->p_lwpctl) == NULL) {
   1446 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
   1447 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
   1448 		lp->lp_uao = NULL;
   1449 		TAILQ_INIT(&lp->lp_pages);
   1450 		mutex_enter(&p->p_mutex);
   1451 		if (p->p_lwpctl == NULL) {
   1452 			p->p_lwpctl = lp;
   1453 			mutex_exit(&p->p_mutex);
   1454 		} else {
   1455 			mutex_exit(&p->p_mutex);
   1456 			mutex_destroy(&lp->lp_lock);
   1457 			kmem_free(lp, sizeof(*lp));
   1458 			lp = p->p_lwpctl;
   1459 		}
   1460 	}
   1461 
   1462  	/*
   1463  	 * Set up an anonymous memory region to hold the shared pages.
   1464  	 * Map them into the process' address space.  The user vmspace
   1465  	 * gets the first reference on the UAO.
   1466  	 */
   1467 	mutex_enter(&lp->lp_lock);
   1468 	if (lp->lp_uao == NULL) {
   1469 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
   1470 		lp->lp_cur = 0;
   1471 		lp->lp_max = LWPCTL_UAREA_SZ;
   1472 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
   1473 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
   1474 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
   1475 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
   1476 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
   1477 		if (error != 0) {
   1478 			uao_detach(lp->lp_uao);
   1479 			lp->lp_uao = NULL;
   1480 			mutex_exit(&lp->lp_lock);
   1481 			return error;
   1482 		}
   1483 	}
   1484 
   1485 	/* Get a free block and allocate for this LWP. */
   1486 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
   1487 		if (lcp->lcp_nfree != 0)
   1488 			break;
   1489 	}
   1490 	if (lcp == NULL) {
   1491 		/* Nothing available - try to set up a free page. */
   1492 		if (lp->lp_cur == lp->lp_max) {
   1493 			mutex_exit(&lp->lp_lock);
   1494 			return ENOMEM;
   1495 		}
   1496 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
   1497 		if (lcp == NULL) {
   1498 			mutex_exit(&lp->lp_lock);
   1499 			return ENOMEM;
   1500 		}
   1501 		/*
   1502 		 * Wire the next page down in kernel space.  Since this
   1503 		 * is a new mapping, we must add a reference.
   1504 		 */
   1505 		uao = lp->lp_uao;
   1506 		(*uao->pgops->pgo_reference)(uao);
   1507 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
   1508 		    uao, lp->lp_cur, PAGE_SIZE,
   1509 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
   1510 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
   1511 		if (error == 0)
   1512 			error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
   1513 			    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
   1514 		if (error != 0) {
   1515 			mutex_exit(&lp->lp_lock);
   1516 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1517 			(*uao->pgops->pgo_detach)(uao);
   1518 			return error;
   1519 		}
   1520 		/* Prepare the page descriptor and link into the list. */
   1521 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
   1522 		lp->lp_cur += PAGE_SIZE;
   1523 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
   1524 		lcp->lcp_rotor = 0;
   1525 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
   1526 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1527 	}
   1528 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
   1529 		if (++i >= LWPCTL_BITMAP_ENTRIES)
   1530 			i = 0;
   1531 	}
   1532 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
   1533 	lcp->lcp_bitmap[i] ^= (1 << bit);
   1534 	lcp->lcp_rotor = i;
   1535 	lcp->lcp_nfree--;
   1536 	l->l_lcpage = lcp;
   1537 	offset = (i << 5) + bit;
   1538 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
   1539 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
   1540 	mutex_exit(&lp->lp_lock);
   1541 
   1542 	l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
   1543 
   1544 	return 0;
   1545 }
   1546 
   1547 /*
   1548  * Free an lwpctl structure back to the per-process list.
   1549  */
   1550 void
   1551 lwp_ctl_free(lwp_t *l)
   1552 {
   1553 	lcproc_t *lp;
   1554 	lcpage_t *lcp;
   1555 	u_int map, offset;
   1556 
   1557 	lp = l->l_proc->p_lwpctl;
   1558 	KASSERT(lp != NULL);
   1559 
   1560 	lcp = l->l_lcpage;
   1561 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
   1562 	KASSERT(offset < LWPCTL_PER_PAGE);
   1563 
   1564 	mutex_enter(&lp->lp_lock);
   1565 	lcp->lcp_nfree++;
   1566 	map = offset >> 5;
   1567 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
   1568 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
   1569 		lcp->lcp_rotor = map;
   1570 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
   1571 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
   1572 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
   1573 	}
   1574 	mutex_exit(&lp->lp_lock);
   1575 }
   1576 
   1577 /*
   1578  * Process is exiting; tear down lwpctl state.  This can only be safely
   1579  * called by the last LWP in the process.
   1580  */
   1581 void
   1582 lwp_ctl_exit(void)
   1583 {
   1584 	lcpage_t *lcp, *next;
   1585 	lcproc_t *lp;
   1586 	proc_t *p;
   1587 	lwp_t *l;
   1588 
   1589 	l = curlwp;
   1590 	l->l_lwpctl = NULL;
   1591 	p = l->l_proc;
   1592 	lp = p->p_lwpctl;
   1593 
   1594 	KASSERT(lp != NULL);
   1595 	KASSERT(p->p_nlwps == 1);
   1596 
   1597 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
   1598 		next = TAILQ_NEXT(lcp, lcp_chain);
   1599 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
   1600 		    lcp->lcp_kaddr + PAGE_SIZE);
   1601 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
   1602 	}
   1603 
   1604 	if (lp->lp_uao != NULL) {
   1605 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
   1606 		    lp->lp_uva + LWPCTL_UAREA_SZ);
   1607 	}
   1608 
   1609 	mutex_destroy(&lp->lp_lock);
   1610 	kmem_free(lp, sizeof(*lp));
   1611 	p->p_lwpctl = NULL;
   1612 }
   1613