kern_lwp.c revision 1.83.2.1 1 /* $NetBSD: kern_lwp.c,v 1.83.2.1 2007/12/04 13:03:14 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit or thread of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp", also known as lwp_t.
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing concurrently in the kernel.
52 *
53 * Execution states
54 *
55 * At any given time, an LWP has overall state that is described by
56 * lwp::l_stat. The states are broken into two sets below. The first
57 * set is guaranteed to represent the absolute, current state of the
58 * LWP:
59 *
60 * LSONPROC
61 *
62 * On processor: the LWP is executing on a CPU, either in the
63 * kernel or in user space.
64 *
65 * LSRUN
66 *
67 * Runnable: the LWP is parked on a run queue, and may soon be
68 * chosen to run by a idle processor, or by a processor that
69 * has been asked to preempt a currently runnning but lower
70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 * then the LWP is not on a run queue, but may be soon.
72 *
73 * LSIDL
74 *
75 * Idle: the LWP has been created but has not yet executed,
76 * or it has ceased executing a unit of work and is waiting
77 * to be started again.
78 *
79 * LSSUSPENDED:
80 *
81 * Suspended: the LWP has had its execution suspended by
82 * another LWP in the same process using the _lwp_suspend()
83 * system call. User-level LWPs also enter the suspended
84 * state when the system is shutting down.
85 *
86 * The second set represent a "statement of intent" on behalf of the
87 * LWP. The LWP may in fact be executing on a processor, may be
88 * sleeping or idle. It is expected to take the necessary action to
89 * stop executing or become "running" again within a short timeframe.
90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91 * Importantly, in indicates that its state is tied to a CPU.
92 *
93 * LSZOMB:
94 *
95 * Dead or dying: the LWP has released most of its resources
96 * and is a) about to switch away into oblivion b) has already
97 * switched away. When it switches away, its few remaining
98 * resources can be collected.
99 *
100 * LSSLEEP:
101 *
102 * Sleeping: the LWP has entered itself onto a sleep queue, and
103 * has switched away or will switch away shortly to allow other
104 * LWPs to run on the CPU.
105 *
106 * LSSTOP:
107 *
108 * Stopped: the LWP has been stopped as a result of a job
109 * control signal, or as a result of the ptrace() interface.
110 *
111 * Stopped LWPs may run briefly within the kernel to handle
112 * signals that they receive, but will not return to user space
113 * until their process' state is changed away from stopped.
114 *
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP state may only be set when returning to
122 * user space in userret(), or when sleeping interruptably. The
123 * LSSUSPENDED state may only be set in userret(). Before setting
124 * those states, we try to ensure that the LWPs will release all
125 * locks that they hold, and at a minimum try to ensure that the
126 * LWP can be set runnable again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Other state transitions are possible with kernel threads (eg
145 * ONPROC -> IDL), but only happen under tightly controlled
146 * circumstances the side effects are understood.
147 *
148 * Locking
149 *
150 * The majority of fields in 'struct lwp' are covered by a single,
151 * general spin lock pointed to by lwp::l_mutex. The locks covering
152 * each field are documented in sys/lwp.h.
153 *
154 * State transitions must be made with the LWP's general lock held,
155 * and may cause the LWP's lock pointer to change. Manipulation of
156 * the general lock is not performed directly, but through calls to
157 * lwp_lock(), lwp_relock() and similar.
158 *
159 * States and their associated locks:
160 *
161 * LSONPROC, LSZOMB:
162 *
163 * Always covered by spc_lwplock, which protects running LWPs.
164 * This is a per-CPU lock.
165 *
166 * LSIDL, LSRUN:
167 *
168 * Always covered by spc_mutex, which protects the run queues.
169 * This may be a per-CPU lock, depending on the scheduler.
170 *
171 * LSSLEEP:
172 *
173 * Covered by a lock associated with the sleep queue that the
174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175 *
176 * LSSTOP, LSSUSPENDED:
177 *
178 * If the LWP was previously sleeping (l_wchan != NULL), then
179 * l_mutex references the sleep queue lock. If the LWP was
180 * runnable or on the CPU when halted, or has been removed from
181 * the sleep queue since halted, then the lock is spc_lwplock.
182 *
183 * The lock order is as follows:
184 *
185 * spc::spc_lwplock ->
186 * sleepq_t::sq_mutex ->
187 * tschain_t::tc_mutex ->
188 * spc::spc_mutex
189 *
190 * Each process has an scheduler state lock (proc::p_smutex), and a
191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192 * so on. When an LWP is to be entered into or removed from one of the
193 * following states, p_mutex must be held and the process wide counters
194 * adjusted:
195 *
196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197 *
198 * Note that an LWP is considered running or likely to run soon if in
199 * one of the following states. This affects the value of p_nrlwps:
200 *
201 * LSRUN, LSONPROC, LSSLEEP
202 *
203 * p_smutex does not need to be held when transitioning among these
204 * three states.
205 */
206
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.83.2.1 2007/12/04 13:03:14 ad Exp $");
209
210 #include "opt_multiprocessor.h"
211 #include "opt_lockdebug.h"
212
213 #define _LWP_API_PRIVATE
214
215 #include <sys/param.h>
216 #include <sys/systm.h>
217 #include <sys/cpu.h>
218 #include <sys/pool.h>
219 #include <sys/proc.h>
220 #include <sys/syscallargs.h>
221 #include <sys/syscall_stats.h>
222 #include <sys/kauth.h>
223 #include <sys/sleepq.h>
224 #include <sys/lockdebug.h>
225 #include <sys/kmem.h>
226 #include <sys/intr.h>
227 #include <sys/lwpctl.h>
228 #include <sys/atomic.h>
229
230 #include <uvm/uvm_extern.h>
231 #include <uvm/uvm_object.h>
232
233 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
234
235 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
236 &pool_allocator_nointr, IPL_NONE);
237 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
238 &pool_allocator_nointr, IPL_NONE);
239
240 static specificdata_domain_t lwp_specificdata_domain;
241
242 void
243 lwpinit(void)
244 {
245
246 lwp_specificdata_domain = specificdata_domain_create();
247 KASSERT(lwp_specificdata_domain != NULL);
248 lwp_sys_init();
249 }
250
251 /*
252 * Set an suspended.
253 *
254 * Must be called with p_smutex held, and the LWP locked. Will unlock the
255 * LWP before return.
256 */
257 int
258 lwp_suspend(struct lwp *curl, struct lwp *t)
259 {
260 int error;
261
262 KASSERT(mutex_owned(&t->l_proc->p_smutex));
263 KASSERT(lwp_locked(t, NULL));
264
265 KASSERT(curl != t || curl->l_stat == LSONPROC);
266
267 /*
268 * If the current LWP has been told to exit, we must not suspend anyone
269 * else or deadlock could occur. We won't return to userspace.
270 */
271 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
272 lwp_unlock(t);
273 return (EDEADLK);
274 }
275
276 error = 0;
277
278 switch (t->l_stat) {
279 case LSRUN:
280 case LSONPROC:
281 t->l_flag |= LW_WSUSPEND;
282 lwp_need_userret(t);
283 lwp_unlock(t);
284 break;
285
286 case LSSLEEP:
287 t->l_flag |= LW_WSUSPEND;
288
289 /*
290 * Kick the LWP and try to get it to the kernel boundary
291 * so that it will release any locks that it holds.
292 * setrunnable() will release the lock.
293 */
294 if ((t->l_flag & LW_SINTR) != 0)
295 setrunnable(t);
296 else
297 lwp_unlock(t);
298 break;
299
300 case LSSUSPENDED:
301 lwp_unlock(t);
302 break;
303
304 case LSSTOP:
305 t->l_flag |= LW_WSUSPEND;
306 setrunnable(t);
307 break;
308
309 case LSIDL:
310 case LSZOMB:
311 error = EINTR; /* It's what Solaris does..... */
312 lwp_unlock(t);
313 break;
314 }
315
316 return (error);
317 }
318
319 /*
320 * Restart a suspended LWP.
321 *
322 * Must be called with p_smutex held, and the LWP locked. Will unlock the
323 * LWP before return.
324 */
325 void
326 lwp_continue(struct lwp *l)
327 {
328
329 KASSERT(mutex_owned(&l->l_proc->p_smutex));
330 KASSERT(lwp_locked(l, NULL));
331
332 /* If rebooting or not suspended, then just bail out. */
333 if ((l->l_flag & LW_WREBOOT) != 0) {
334 lwp_unlock(l);
335 return;
336 }
337
338 l->l_flag &= ~LW_WSUSPEND;
339
340 if (l->l_stat != LSSUSPENDED) {
341 lwp_unlock(l);
342 return;
343 }
344
345 /* setrunnable() will release the lock. */
346 setrunnable(l);
347 }
348
349 /*
350 * Wait for an LWP within the current process to exit. If 'lid' is
351 * non-zero, we are waiting for a specific LWP.
352 *
353 * Must be called with p->p_smutex held.
354 */
355 int
356 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
357 {
358 struct proc *p = l->l_proc;
359 struct lwp *l2;
360 int nfound, error;
361 lwpid_t curlid;
362 bool exiting;
363
364 KASSERT(mutex_owned(&p->p_smutex));
365
366 p->p_nlwpwait++;
367 l->l_waitingfor = lid;
368 curlid = l->l_lid;
369 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
370
371 for (;;) {
372 /*
373 * Avoid a race between exit1() and sigexit(): if the
374 * process is dumping core, then we need to bail out: call
375 * into lwp_userret() where we will be suspended until the
376 * deed is done.
377 */
378 if ((p->p_sflag & PS_WCORE) != 0) {
379 mutex_exit(&p->p_smutex);
380 lwp_userret(l);
381 #ifdef DIAGNOSTIC
382 panic("lwp_wait1");
383 #endif
384 /* NOTREACHED */
385 }
386
387 /*
388 * First off, drain any detached LWP that is waiting to be
389 * reaped.
390 */
391 while ((l2 = p->p_zomblwp) != NULL) {
392 p->p_zomblwp = NULL;
393 lwp_free(l2, false, false);/* releases proc mutex */
394 mutex_enter(&p->p_smutex);
395 }
396
397 /*
398 * Now look for an LWP to collect. If the whole process is
399 * exiting, count detached LWPs as eligible to be collected,
400 * but don't drain them here.
401 */
402 nfound = 0;
403 error = 0;
404 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
405 /*
406 * If a specific wait and the target is waiting on
407 * us, then avoid deadlock. This also traps LWPs
408 * that try to wait on themselves.
409 *
410 * Note that this does not handle more complicated
411 * cycles, like: t1 -> t2 -> t3 -> t1. The process
412 * can still be killed so it is not a major problem.
413 */
414 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
415 error = EDEADLK;
416 break;
417 }
418 if (l2 == l)
419 continue;
420 if ((l2->l_prflag & LPR_DETACHED) != 0) {
421 nfound += exiting;
422 continue;
423 }
424 if (lid != 0) {
425 if (l2->l_lid != lid)
426 continue;
427 /*
428 * Mark this LWP as the first waiter, if there
429 * is no other.
430 */
431 if (l2->l_waiter == 0)
432 l2->l_waiter = curlid;
433 } else if (l2->l_waiter != 0) {
434 /*
435 * It already has a waiter - so don't
436 * collect it. If the waiter doesn't
437 * grab it we'll get another chance
438 * later.
439 */
440 nfound++;
441 continue;
442 }
443 nfound++;
444
445 /* No need to lock the LWP in order to see LSZOMB. */
446 if (l2->l_stat != LSZOMB)
447 continue;
448
449 /*
450 * We're no longer waiting. Reset the "first waiter"
451 * pointer on the target, in case it was us.
452 */
453 l->l_waitingfor = 0;
454 l2->l_waiter = 0;
455 p->p_nlwpwait--;
456 if (departed)
457 *departed = l2->l_lid;
458 sched_lwp_collect(l2);
459
460 /* lwp_free() releases the proc lock. */
461 lwp_free(l2, false, false);
462 mutex_enter(&p->p_smutex);
463 return 0;
464 }
465
466 if (error != 0)
467 break;
468 if (nfound == 0) {
469 error = ESRCH;
470 break;
471 }
472
473 /*
474 * The kernel is careful to ensure that it can not deadlock
475 * when exiting - just keep waiting.
476 */
477 if (exiting) {
478 KASSERT(p->p_nlwps > 1);
479 cv_wait(&p->p_lwpcv, &p->p_smutex);
480 continue;
481 }
482
483 /*
484 * If all other LWPs are waiting for exits or suspends
485 * and the supply of zombies and potential zombies is
486 * exhausted, then we are about to deadlock.
487 *
488 * If the process is exiting (and this LWP is not the one
489 * that is coordinating the exit) then bail out now.
490 */
491 if ((p->p_sflag & PS_WEXIT) != 0 ||
492 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
493 error = EDEADLK;
494 break;
495 }
496
497 /*
498 * Sit around and wait for something to happen. We'll be
499 * awoken if any of the conditions examined change: if an
500 * LWP exits, is collected, or is detached.
501 */
502 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
503 break;
504 }
505
506 /*
507 * We didn't find any LWPs to collect, we may have received a
508 * signal, or some other condition has caused us to bail out.
509 *
510 * If waiting on a specific LWP, clear the waiters marker: some
511 * other LWP may want it. Then, kick all the remaining waiters
512 * so that they can re-check for zombies and for deadlock.
513 */
514 if (lid != 0) {
515 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
516 if (l2->l_lid == lid) {
517 if (l2->l_waiter == curlid)
518 l2->l_waiter = 0;
519 break;
520 }
521 }
522 }
523 p->p_nlwpwait--;
524 l->l_waitingfor = 0;
525 cv_broadcast(&p->p_lwpcv);
526
527 return error;
528 }
529
530 /*
531 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
532 * The new LWP is created in state LSIDL and must be set running,
533 * suspended, or stopped by the caller.
534 */
535 int
536 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
537 void *stack, size_t stacksize, void (*func)(void *), void *arg,
538 lwp_t **rnewlwpp, int sclass)
539 {
540 struct lwp *l2, *isfree;
541 turnstile_t *ts;
542
543 /*
544 * First off, reap any detached LWP waiting to be collected.
545 * We can re-use its LWP structure and turnstile.
546 */
547 isfree = NULL;
548 if (p2->p_zomblwp != NULL) {
549 mutex_enter(&p2->p_smutex);
550 if ((isfree = p2->p_zomblwp) != NULL) {
551 p2->p_zomblwp = NULL;
552 lwp_free(isfree, true, false);/* releases proc mutex */
553 } else
554 mutex_exit(&p2->p_smutex);
555 }
556 if (isfree == NULL) {
557 l2 = pool_get(&lwp_pool, PR_WAITOK);
558 memset(l2, 0, sizeof(*l2));
559 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
560 SLIST_INIT(&l2->l_pi_lenders);
561 } else {
562 l2 = isfree;
563 ts = l2->l_ts;
564 KASSERT(l2->l_inheritedprio == -1);
565 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
566 memset(l2, 0, sizeof(*l2));
567 l2->l_ts = ts;
568 }
569
570 l2->l_stat = LSIDL;
571 l2->l_proc = p2;
572 l2->l_refcnt = 1;
573 l2->l_class = sclass;
574 l2->l_kpriority = l1->l_kpriority;
575 l2->l_kpribase = PRI_KERNEL;
576 l2->l_priority = l1->l_priority;
577 l2->l_inheritedprio = -1;
578 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
579 l2->l_cpu = l1->l_cpu;
580 l2->l_flag = inmem ? LW_INMEM : 0;
581 l2->l_pflag = LP_MPSAFE;
582
583 if (p2->p_flag & PK_SYSTEM) {
584 /*
585 * Mark it as a system process and not a candidate for
586 * swapping.
587 */
588 l2->l_flag |= LW_SYSTEM;
589 } else {
590 /* Look for a CPU to start */
591 l2->l_cpu = sched_takecpu(l2);
592 l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
593 }
594
595 lwp_initspecific(l2);
596 sched_lwp_fork(l1, l2);
597 lwp_update_creds(l2);
598 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
599 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
600 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
601 cv_init(&l2->l_sigcv, "sigwait");
602 l2->l_syncobj = &sched_syncobj;
603
604 if (rnewlwpp != NULL)
605 *rnewlwpp = l2;
606
607 l2->l_addr = UAREA_TO_USER(uaddr);
608 uvm_lwp_fork(l1, l2, stack, stacksize, func,
609 (arg != NULL) ? arg : l2);
610
611 mutex_enter(&p2->p_smutex);
612
613 if ((flags & LWP_DETACHED) != 0) {
614 l2->l_prflag = LPR_DETACHED;
615 p2->p_ndlwps++;
616 } else
617 l2->l_prflag = 0;
618
619 l2->l_sigmask = l1->l_sigmask;
620 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
621 sigemptyset(&l2->l_sigpend.sp_set);
622
623 p2->p_nlwpid++;
624 if (p2->p_nlwpid == 0)
625 p2->p_nlwpid++;
626 l2->l_lid = p2->p_nlwpid;
627 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
628 p2->p_nlwps++;
629
630 mutex_exit(&p2->p_smutex);
631
632 mutex_enter(&proclist_lock);
633 LIST_INSERT_HEAD(&alllwp, l2, l_list);
634 mutex_exit(&proclist_lock);
635
636 SYSCALL_TIME_LWP_INIT(l2);
637
638 if (p2->p_emul->e_lwp_fork)
639 (*p2->p_emul->e_lwp_fork)(l1, l2);
640
641 return (0);
642 }
643
644 /*
645 * Called by MD code when a new LWP begins execution. Must be called
646 * with the previous LWP locked (so at splsched), or if there is no
647 * previous LWP, at splsched.
648 */
649 void
650 lwp_startup(struct lwp *prev, struct lwp *new)
651 {
652
653 if (prev != NULL) {
654 /*
655 * Normalize the count of the spin-mutexes, it was
656 * increased in mi_switch(). Unmark the state of
657 * context switch - it is finished for previous LWP.
658 */
659 curcpu()->ci_mtx_count++;
660 membar_exit();
661 prev->l_ctxswtch = 0;
662 }
663 spl0();
664 pmap_activate(new);
665 LOCKDEBUG_BARRIER(NULL, 0);
666 if ((new->l_pflag & LP_MPSAFE) == 0) {
667 KERNEL_LOCK(1, new);
668 }
669 }
670
671 /*
672 * Exit an LWP.
673 */
674 void
675 lwp_exit(struct lwp *l)
676 {
677 struct proc *p = l->l_proc;
678 struct lwp *l2;
679 bool current;
680
681 current = (l == curlwp);
682
683 KASSERT(current || l->l_stat == LSIDL);
684
685 /*
686 * Verify that we hold no locks other than the kernel lock.
687 */
688 #ifdef MULTIPROCESSOR
689 LOCKDEBUG_BARRIER(&kernel_lock, 0);
690 #else
691 LOCKDEBUG_BARRIER(NULL, 0);
692 #endif
693
694 /*
695 * If we are the last live LWP in a process, we need to exit the
696 * entire process. We do so with an exit status of zero, because
697 * it's a "controlled" exit, and because that's what Solaris does.
698 *
699 * We are not quite a zombie yet, but for accounting purposes we
700 * must increment the count of zombies here.
701 *
702 * Note: the last LWP's specificdata will be deleted here.
703 */
704 mutex_enter(&p->p_smutex);
705 if (p->p_nlwps - p->p_nzlwps == 1) {
706 KASSERT(current == true);
707 exit1(l, 0);
708 /* NOTREACHED */
709 }
710 p->p_nzlwps++;
711 mutex_exit(&p->p_smutex);
712
713 if (p->p_emul->e_lwp_exit)
714 (*p->p_emul->e_lwp_exit)(l);
715
716 /* Delete the specificdata while it's still safe to sleep. */
717 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
718
719 /*
720 * Release our cached credentials.
721 */
722 kauth_cred_free(l->l_cred);
723 callout_destroy(&l->l_timeout_ch);
724
725 /*
726 * While we can still block, mark the LWP as unswappable to
727 * prevent conflicts with the with the swapper.
728 */
729 if (current)
730 uvm_lwp_hold(l);
731
732 /*
733 * Remove the LWP from the global list.
734 */
735 mutex_enter(&proclist_lock);
736 mutex_enter(&proclist_mutex);
737 LIST_REMOVE(l, l_list);
738 mutex_exit(&proclist_mutex);
739 mutex_exit(&proclist_lock);
740
741 /*
742 * Get rid of all references to the LWP that others (e.g. procfs)
743 * may have, and mark the LWP as a zombie. If the LWP is detached,
744 * mark it waiting for collection in the proc structure. Note that
745 * before we can do that, we need to free any other dead, deatched
746 * LWP waiting to meet its maker.
747 *
748 * XXXSMP disable preemption.
749 */
750 mutex_enter(&p->p_smutex);
751 lwp_drainrefs(l);
752
753 if ((l->l_prflag & LPR_DETACHED) != 0) {
754 while ((l2 = p->p_zomblwp) != NULL) {
755 p->p_zomblwp = NULL;
756 lwp_free(l2, false, false);/* releases proc mutex */
757 mutex_enter(&p->p_smutex);
758 l->l_refcnt++;
759 lwp_drainrefs(l);
760 }
761 p->p_zomblwp = l;
762 }
763
764 /*
765 * If we find a pending signal for the process and we have been
766 * asked to check for signals, then we loose: arrange to have
767 * all other LWPs in the process check for signals.
768 */
769 if ((l->l_flag & LW_PENDSIG) != 0 &&
770 firstsig(&p->p_sigpend.sp_set) != 0) {
771 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
772 lwp_lock(l2);
773 l2->l_flag |= LW_PENDSIG;
774 lwp_unlock(l2);
775 }
776 }
777
778 lwp_lock(l);
779 l->l_stat = LSZOMB;
780 lwp_unlock(l);
781 p->p_nrlwps--;
782 cv_broadcast(&p->p_lwpcv);
783 if (l->l_lwpctl != NULL)
784 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
785 mutex_exit(&p->p_smutex);
786
787 /*
788 * We can no longer block. At this point, lwp_free() may already
789 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
790 *
791 * Free MD LWP resources.
792 */
793 #ifndef __NO_CPU_LWP_FREE
794 cpu_lwp_free(l, 0);
795 #endif
796
797 if (current) {
798 pmap_deactivate(l);
799
800 /*
801 * Release the kernel lock, and switch away into
802 * oblivion.
803 */
804 #ifdef notyet
805 /* XXXSMP hold in lwp_userret() */
806 KERNEL_UNLOCK_LAST(l);
807 #else
808 KERNEL_UNLOCK_ALL(l, NULL);
809 #endif
810 lwp_exit_switchaway(l);
811 }
812 }
813
814 void
815 lwp_exit_switchaway(struct lwp *l)
816 {
817 struct cpu_info *ci;
818 struct lwp *idlelwp;
819
820 /* Unlocked, but is for statistics only. */
821 uvmexp.swtch++;
822
823 (void)splsched();
824 l->l_flag &= ~LW_RUNNING;
825 ci = curcpu();
826 idlelwp = ci->ci_data.cpu_idlelwp;
827 idlelwp->l_stat = LSONPROC;
828
829 /*
830 * cpu_onproc must be updated with the CPU locked, as
831 * aston() may try to set a AST pending on the LWP (and
832 * it does so with the CPU locked). Otherwise, the LWP
833 * may be destroyed before the AST can be set, leading
834 * to a user-after-free.
835 */
836 spc_lock(ci);
837 ci->ci_data.cpu_onproc = idlelwp;
838 spc_unlock(ci);
839 cpu_switchto(NULL, idlelwp, false);
840 }
841
842 /*
843 * Free a dead LWP's remaining resources.
844 *
845 * XXXLWP limits.
846 */
847 void
848 lwp_free(struct lwp *l, bool recycle, bool last)
849 {
850 struct proc *p = l->l_proc;
851 ksiginfoq_t kq;
852
853 /*
854 * If this was not the last LWP in the process, then adjust
855 * counters and unlock.
856 */
857 if (!last) {
858 /*
859 * Add the LWP's run time to the process' base value.
860 * This needs to co-incide with coming off p_lwps.
861 */
862 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
863 p->p_pctcpu += l->l_pctcpu;
864 LIST_REMOVE(l, l_sibling);
865 p->p_nlwps--;
866 p->p_nzlwps--;
867 if ((l->l_prflag & LPR_DETACHED) != 0)
868 p->p_ndlwps--;
869
870 /*
871 * Have any LWPs sleeping in lwp_wait() recheck for
872 * deadlock.
873 */
874 cv_broadcast(&p->p_lwpcv);
875 mutex_exit(&p->p_smutex);
876 }
877
878 #ifdef MULTIPROCESSOR
879 /*
880 * In the unlikely event that the LWP is still on the CPU,
881 * then spin until it has switched away. We need to release
882 * all locks to avoid deadlock against interrupt handlers on
883 * the target CPU.
884 */
885 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
886 int count;
887 (void)count; /* XXXgcc */
888 KERNEL_UNLOCK_ALL(curlwp, &count);
889 while ((l->l_flag & LW_RUNNING) != 0 ||
890 l->l_cpu->ci_curlwp == l)
891 SPINLOCK_BACKOFF_HOOK;
892 KERNEL_LOCK(count, curlwp);
893 }
894 #endif
895
896 /*
897 * Destroy the LWP's remaining signal information.
898 */
899 ksiginfo_queue_init(&kq);
900 sigclear(&l->l_sigpend, NULL, &kq);
901 ksiginfo_queue_drain(&kq);
902 cv_destroy(&l->l_sigcv);
903 mutex_destroy(&l->l_swaplock);
904
905 /*
906 * Free the LWP's turnstile and the LWP structure itself unless the
907 * caller wants to recycle them. Also, free the scheduler specific data.
908 *
909 * We can't return turnstile0 to the pool (it didn't come from it),
910 * so if it comes up just drop it quietly and move on.
911 *
912 * We don't recycle the VM resources at this time.
913 */
914 if (l->l_lwpctl != NULL)
915 lwp_ctl_free(l);
916 sched_lwp_exit(l);
917
918 if (!recycle && l->l_ts != &turnstile0)
919 pool_cache_put(turnstile_cache, l->l_ts);
920 #ifndef __NO_CPU_LWP_FREE
921 cpu_lwp_free2(l);
922 #endif
923 uvm_lwp_exit(l);
924 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
925 KASSERT(l->l_inheritedprio == -1);
926 if (!recycle)
927 pool_put(&lwp_pool, l);
928 }
929
930 /*
931 * Pick a LWP to represent the process for those operations which
932 * want information about a "process" that is actually associated
933 * with a LWP.
934 *
935 * If 'locking' is false, no locking or lock checks are performed.
936 * This is intended for use by DDB.
937 *
938 * We don't bother locking the LWP here, since code that uses this
939 * interface is broken by design and an exact match is not required.
940 */
941 struct lwp *
942 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
943 {
944 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
945 struct lwp *signalled;
946 int cnt;
947
948 if (locking) {
949 KASSERT(mutex_owned(&p->p_smutex));
950 }
951
952 /* Trivial case: only one LWP */
953 if (p->p_nlwps == 1) {
954 l = LIST_FIRST(&p->p_lwps);
955 if (nrlwps)
956 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
957 return l;
958 }
959
960 cnt = 0;
961 switch (p->p_stat) {
962 case SSTOP:
963 case SACTIVE:
964 /* Pick the most live LWP */
965 onproc = running = sleeping = stopped = suspended = NULL;
966 signalled = NULL;
967 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
968 if ((l->l_flag & LW_IDLE) != 0) {
969 continue;
970 }
971 if (l->l_lid == p->p_sigctx.ps_lwp)
972 signalled = l;
973 switch (l->l_stat) {
974 case LSONPROC:
975 onproc = l;
976 cnt++;
977 break;
978 case LSRUN:
979 running = l;
980 cnt++;
981 break;
982 case LSSLEEP:
983 sleeping = l;
984 break;
985 case LSSTOP:
986 stopped = l;
987 break;
988 case LSSUSPENDED:
989 suspended = l;
990 break;
991 }
992 }
993 if (nrlwps)
994 *nrlwps = cnt;
995 if (signalled)
996 l = signalled;
997 else if (onproc)
998 l = onproc;
999 else if (running)
1000 l = running;
1001 else if (sleeping)
1002 l = sleeping;
1003 else if (stopped)
1004 l = stopped;
1005 else if (suspended)
1006 l = suspended;
1007 else
1008 break;
1009 return l;
1010 #ifdef DIAGNOSTIC
1011 case SIDL:
1012 case SZOMB:
1013 case SDYING:
1014 case SDEAD:
1015 if (locking)
1016 mutex_exit(&p->p_smutex);
1017 /* We have more than one LWP and we're in SIDL?
1018 * How'd that happen?
1019 */
1020 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1021 p->p_pid, p->p_comm, p->p_stat);
1022 break;
1023 default:
1024 if (locking)
1025 mutex_exit(&p->p_smutex);
1026 panic("Process %d (%s) in unknown state %d",
1027 p->p_pid, p->p_comm, p->p_stat);
1028 #endif
1029 }
1030
1031 if (locking)
1032 mutex_exit(&p->p_smutex);
1033 panic("proc_representative_lwp: couldn't find a lwp for process"
1034 " %d (%s)", p->p_pid, p->p_comm);
1035 /* NOTREACHED */
1036 return NULL;
1037 }
1038
1039 /*
1040 * Look up a live LWP within the speicifed process, and return it locked.
1041 *
1042 * Must be called with p->p_smutex held.
1043 */
1044 struct lwp *
1045 lwp_find(struct proc *p, int id)
1046 {
1047 struct lwp *l;
1048
1049 KASSERT(mutex_owned(&p->p_smutex));
1050
1051 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1052 if (l->l_lid == id)
1053 break;
1054 }
1055
1056 /*
1057 * No need to lock - all of these conditions will
1058 * be visible with the process level mutex held.
1059 */
1060 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1061 l = NULL;
1062
1063 return l;
1064 }
1065
1066 /*
1067 * Update an LWP's cached credentials to mirror the process' master copy.
1068 *
1069 * This happens early in the syscall path, on user trap, and on LWP
1070 * creation. A long-running LWP can also voluntarily choose to update
1071 * it's credentials by calling this routine. This may be called from
1072 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1073 */
1074 void
1075 lwp_update_creds(struct lwp *l)
1076 {
1077 kauth_cred_t oc;
1078 struct proc *p;
1079
1080 p = l->l_proc;
1081 oc = l->l_cred;
1082
1083 mutex_enter(&p->p_mutex);
1084 kauth_cred_hold(p->p_cred);
1085 l->l_cred = p->p_cred;
1086 mutex_exit(&p->p_mutex);
1087 if (oc != NULL)
1088 kauth_cred_free(oc);
1089 }
1090
1091 /*
1092 * Verify that an LWP is locked, and optionally verify that the lock matches
1093 * one we specify.
1094 */
1095 int
1096 lwp_locked(struct lwp *l, kmutex_t *mtx)
1097 {
1098 kmutex_t *cur = l->l_mutex;
1099
1100 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1101 }
1102
1103 /*
1104 * Lock an LWP.
1105 */
1106 void
1107 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1108 {
1109
1110 /*
1111 * XXXgcc ignoring kmutex_t * volatile on i386
1112 *
1113 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1114 */
1115 #if 1
1116 while (l->l_mutex != old) {
1117 #else
1118 for (;;) {
1119 #endif
1120 mutex_spin_exit(old);
1121 old = l->l_mutex;
1122 mutex_spin_enter(old);
1123
1124 /*
1125 * mutex_enter() will have posted a read barrier. Re-test
1126 * l->l_mutex. If it has changed, we need to try again.
1127 */
1128 #if 1
1129 }
1130 #else
1131 } while (__predict_false(l->l_mutex != old));
1132 #endif
1133 }
1134
1135 /*
1136 * Lend a new mutex to an LWP. The old mutex must be held.
1137 */
1138 void
1139 lwp_setlock(struct lwp *l, kmutex_t *new)
1140 {
1141
1142 KASSERT(mutex_owned(l->l_mutex));
1143
1144 membar_producer();
1145 l->l_mutex = new;
1146 }
1147
1148 /*
1149 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1150 * must be held.
1151 */
1152 void
1153 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1154 {
1155 kmutex_t *old;
1156
1157 KASSERT(mutex_owned(l->l_mutex));
1158
1159 old = l->l_mutex;
1160 membar_producer();
1161 l->l_mutex = new;
1162 mutex_spin_exit(old);
1163 }
1164
1165 /*
1166 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1167 * locked.
1168 */
1169 void
1170 lwp_relock(struct lwp *l, kmutex_t *new)
1171 {
1172 kmutex_t *old;
1173
1174 KASSERT(mutex_owned(l->l_mutex));
1175
1176 old = l->l_mutex;
1177 if (old != new) {
1178 mutex_spin_enter(new);
1179 l->l_mutex = new;
1180 mutex_spin_exit(old);
1181 }
1182 }
1183
1184 int
1185 lwp_trylock(struct lwp *l)
1186 {
1187 kmutex_t *old;
1188
1189 for (;;) {
1190 if (!mutex_tryenter(old = l->l_mutex))
1191 return 0;
1192 if (__predict_true(l->l_mutex == old))
1193 return 1;
1194 mutex_spin_exit(old);
1195 }
1196 }
1197
1198 /*
1199 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1200 * set.
1201 */
1202 void
1203 lwp_userret(struct lwp *l)
1204 {
1205 struct proc *p;
1206 void (*hook)(void);
1207 int sig;
1208
1209 p = l->l_proc;
1210
1211 #ifndef __HAVE_FAST_SOFTINTS
1212 /* Run pending soft interrupts. */
1213 if (l->l_cpu->ci_data.cpu_softints != 0)
1214 softint_overlay();
1215 #endif
1216
1217 /*
1218 * It should be safe to do this read unlocked on a multiprocessor
1219 * system..
1220 */
1221 while ((l->l_flag & LW_USERRET) != 0) {
1222 /*
1223 * Process pending signals first, unless the process
1224 * is dumping core or exiting, where we will instead
1225 * enter the L_WSUSPEND case below.
1226 */
1227 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1228 LW_PENDSIG) {
1229 mutex_enter(&p->p_smutex);
1230 while ((sig = issignal(l)) != 0)
1231 postsig(sig);
1232 mutex_exit(&p->p_smutex);
1233 }
1234
1235 /*
1236 * Core-dump or suspend pending.
1237 *
1238 * In case of core dump, suspend ourselves, so that the
1239 * kernel stack and therefore the userland registers saved
1240 * in the trapframe are around for coredump() to write them
1241 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1242 * will write the core file out once all other LWPs are
1243 * suspended.
1244 */
1245 if ((l->l_flag & LW_WSUSPEND) != 0) {
1246 mutex_enter(&p->p_smutex);
1247 p->p_nrlwps--;
1248 cv_broadcast(&p->p_lwpcv);
1249 lwp_lock(l);
1250 l->l_stat = LSSUSPENDED;
1251 mutex_exit(&p->p_smutex);
1252 mi_switch(l);
1253 }
1254
1255 /* Process is exiting. */
1256 if ((l->l_flag & LW_WEXIT) != 0) {
1257 lwp_exit(l);
1258 KASSERT(0);
1259 /* NOTREACHED */
1260 }
1261
1262 /* Call userret hook; used by Linux emulation. */
1263 if ((l->l_flag & LW_WUSERRET) != 0) {
1264 lwp_lock(l);
1265 l->l_flag &= ~LW_WUSERRET;
1266 lwp_unlock(l);
1267 hook = p->p_userret;
1268 p->p_userret = NULL;
1269 (*hook)();
1270 }
1271 }
1272 }
1273
1274 /*
1275 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1276 */
1277 void
1278 lwp_need_userret(struct lwp *l)
1279 {
1280 KASSERT(lwp_locked(l, NULL));
1281
1282 /*
1283 * Since the tests in lwp_userret() are done unlocked, make sure
1284 * that the condition will be seen before forcing the LWP to enter
1285 * kernel mode.
1286 */
1287 membar_producer();
1288 cpu_signotify(l);
1289 }
1290
1291 /*
1292 * Add one reference to an LWP. This will prevent the LWP from
1293 * exiting, thus keep the lwp structure and PCB around to inspect.
1294 */
1295 void
1296 lwp_addref(struct lwp *l)
1297 {
1298
1299 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1300 KASSERT(l->l_stat != LSZOMB);
1301 KASSERT(l->l_refcnt != 0);
1302
1303 l->l_refcnt++;
1304 }
1305
1306 /*
1307 * Remove one reference to an LWP. If this is the last reference,
1308 * then we must finalize the LWP's death.
1309 */
1310 void
1311 lwp_delref(struct lwp *l)
1312 {
1313 struct proc *p = l->l_proc;
1314
1315 mutex_enter(&p->p_smutex);
1316 KASSERT(l->l_stat != LSZOMB);
1317 KASSERT(l->l_refcnt > 0);
1318 if (--l->l_refcnt == 0)
1319 cv_broadcast(&p->p_lwpcv);
1320 mutex_exit(&p->p_smutex);
1321 }
1322
1323 /*
1324 * Drain all references to the current LWP.
1325 */
1326 void
1327 lwp_drainrefs(struct lwp *l)
1328 {
1329 struct proc *p = l->l_proc;
1330
1331 KASSERT(mutex_owned(&p->p_smutex));
1332 KASSERT(l->l_refcnt != 0);
1333
1334 l->l_refcnt--;
1335 while (l->l_refcnt != 0)
1336 cv_wait(&p->p_lwpcv, &p->p_smutex);
1337 }
1338
1339 /*
1340 * lwp_specific_key_create --
1341 * Create a key for subsystem lwp-specific data.
1342 */
1343 int
1344 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1345 {
1346
1347 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1348 }
1349
1350 /*
1351 * lwp_specific_key_delete --
1352 * Delete a key for subsystem lwp-specific data.
1353 */
1354 void
1355 lwp_specific_key_delete(specificdata_key_t key)
1356 {
1357
1358 specificdata_key_delete(lwp_specificdata_domain, key);
1359 }
1360
1361 /*
1362 * lwp_initspecific --
1363 * Initialize an LWP's specificdata container.
1364 */
1365 void
1366 lwp_initspecific(struct lwp *l)
1367 {
1368 int error;
1369
1370 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1371 KASSERT(error == 0);
1372 }
1373
1374 /*
1375 * lwp_finispecific --
1376 * Finalize an LWP's specificdata container.
1377 */
1378 void
1379 lwp_finispecific(struct lwp *l)
1380 {
1381
1382 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1383 }
1384
1385 /*
1386 * lwp_getspecific --
1387 * Return lwp-specific data corresponding to the specified key.
1388 *
1389 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1390 * only its OWN SPECIFIC DATA. If it is necessary to access another
1391 * LWP's specifc data, care must be taken to ensure that doing so
1392 * would not cause internal data structure inconsistency (i.e. caller
1393 * can guarantee that the target LWP is not inside an lwp_getspecific()
1394 * or lwp_setspecific() call).
1395 */
1396 void *
1397 lwp_getspecific(specificdata_key_t key)
1398 {
1399
1400 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1401 &curlwp->l_specdataref, key));
1402 }
1403
1404 void *
1405 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1406 {
1407
1408 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1409 &l->l_specdataref, key));
1410 }
1411
1412 /*
1413 * lwp_setspecific --
1414 * Set lwp-specific data corresponding to the specified key.
1415 */
1416 void
1417 lwp_setspecific(specificdata_key_t key, void *data)
1418 {
1419
1420 specificdata_setspecific(lwp_specificdata_domain,
1421 &curlwp->l_specdataref, key, data);
1422 }
1423
1424 /*
1425 * Allocate a new lwpctl structure for a user LWP.
1426 */
1427 int
1428 lwp_ctl_alloc(vaddr_t *uaddr)
1429 {
1430 lcproc_t *lp;
1431 u_int bit, i, offset;
1432 struct uvm_object *uao;
1433 int error;
1434 lcpage_t *lcp;
1435 proc_t *p;
1436 lwp_t *l;
1437
1438 l = curlwp;
1439 p = l->l_proc;
1440
1441 if (l->l_lcpage != NULL) {
1442 lcp = l->l_lcpage;
1443 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1444 return (EINVAL);
1445 }
1446
1447 /* First time around, allocate header structure for the process. */
1448 if ((lp = p->p_lwpctl) == NULL) {
1449 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1450 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1451 lp->lp_uao = NULL;
1452 TAILQ_INIT(&lp->lp_pages);
1453 mutex_enter(&p->p_mutex);
1454 if (p->p_lwpctl == NULL) {
1455 p->p_lwpctl = lp;
1456 mutex_exit(&p->p_mutex);
1457 } else {
1458 mutex_exit(&p->p_mutex);
1459 mutex_destroy(&lp->lp_lock);
1460 kmem_free(lp, sizeof(*lp));
1461 lp = p->p_lwpctl;
1462 }
1463 }
1464
1465 /*
1466 * Set up an anonymous memory region to hold the shared pages.
1467 * Map them into the process' address space. The user vmspace
1468 * gets the first reference on the UAO.
1469 */
1470 mutex_enter(&lp->lp_lock);
1471 if (lp->lp_uao == NULL) {
1472 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1473 lp->lp_cur = 0;
1474 lp->lp_max = LWPCTL_UAREA_SZ;
1475 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1476 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1477 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1478 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1479 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1480 if (error != 0) {
1481 uao_detach(lp->lp_uao);
1482 lp->lp_uao = NULL;
1483 mutex_exit(&lp->lp_lock);
1484 return error;
1485 }
1486 }
1487
1488 /* Get a free block and allocate for this LWP. */
1489 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1490 if (lcp->lcp_nfree != 0)
1491 break;
1492 }
1493 if (lcp == NULL) {
1494 /* Nothing available - try to set up a free page. */
1495 if (lp->lp_cur == lp->lp_max) {
1496 mutex_exit(&lp->lp_lock);
1497 return ENOMEM;
1498 }
1499 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1500 if (lcp == NULL) {
1501 mutex_exit(&lp->lp_lock);
1502 return ENOMEM;
1503 }
1504 /*
1505 * Wire the next page down in kernel space. Since this
1506 * is a new mapping, we must add a reference.
1507 */
1508 uao = lp->lp_uao;
1509 (*uao->pgops->pgo_reference)(uao);
1510 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1511 uao, lp->lp_cur, PAGE_SIZE,
1512 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1513 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1514 if (error == 0)
1515 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1516 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1517 if (error != 0) {
1518 mutex_exit(&lp->lp_lock);
1519 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1520 (*uao->pgops->pgo_detach)(uao);
1521 return error;
1522 }
1523 /* Prepare the page descriptor and link into the list. */
1524 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1525 lp->lp_cur += PAGE_SIZE;
1526 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1527 lcp->lcp_rotor = 0;
1528 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1529 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1530 }
1531 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1532 if (++i >= LWPCTL_BITMAP_ENTRIES)
1533 i = 0;
1534 }
1535 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1536 lcp->lcp_bitmap[i] ^= (1 << bit);
1537 lcp->lcp_rotor = i;
1538 lcp->lcp_nfree--;
1539 l->l_lcpage = lcp;
1540 offset = (i << 5) + bit;
1541 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1542 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1543 mutex_exit(&lp->lp_lock);
1544
1545 l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
1546
1547 return 0;
1548 }
1549
1550 /*
1551 * Free an lwpctl structure back to the per-process list.
1552 */
1553 void
1554 lwp_ctl_free(lwp_t *l)
1555 {
1556 lcproc_t *lp;
1557 lcpage_t *lcp;
1558 u_int map, offset;
1559
1560 lp = l->l_proc->p_lwpctl;
1561 KASSERT(lp != NULL);
1562
1563 lcp = l->l_lcpage;
1564 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1565 KASSERT(offset < LWPCTL_PER_PAGE);
1566
1567 mutex_enter(&lp->lp_lock);
1568 lcp->lcp_nfree++;
1569 map = offset >> 5;
1570 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1571 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1572 lcp->lcp_rotor = map;
1573 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1574 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1575 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1576 }
1577 mutex_exit(&lp->lp_lock);
1578 }
1579
1580 /*
1581 * Process is exiting; tear down lwpctl state. This can only be safely
1582 * called by the last LWP in the process.
1583 */
1584 void
1585 lwp_ctl_exit(void)
1586 {
1587 lcpage_t *lcp, *next;
1588 lcproc_t *lp;
1589 proc_t *p;
1590 lwp_t *l;
1591
1592 l = curlwp;
1593 l->l_lwpctl = NULL;
1594 p = l->l_proc;
1595 lp = p->p_lwpctl;
1596
1597 KASSERT(lp != NULL);
1598 KASSERT(p->p_nlwps == 1);
1599
1600 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1601 next = TAILQ_NEXT(lcp, lcp_chain);
1602 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1603 lcp->lcp_kaddr + PAGE_SIZE);
1604 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1605 }
1606
1607 if (lp->lp_uao != NULL) {
1608 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1609 lp->lp_uva + LWPCTL_UAREA_SZ);
1610 }
1611
1612 mutex_destroy(&lp->lp_lock);
1613 kmem_free(lp, sizeof(*lp));
1614 p->p_lwpctl = NULL;
1615 }
1616