kern_lwp.c revision 1.83.6.1 1 /* $NetBSD: kern_lwp.c,v 1.83.6.1 2007/12/13 21:56:53 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit or thread of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp", also known as lwp_t.
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing concurrently in the kernel.
52 *
53 * Execution states
54 *
55 * At any given time, an LWP has overall state that is described by
56 * lwp::l_stat. The states are broken into two sets below. The first
57 * set is guaranteed to represent the absolute, current state of the
58 * LWP:
59 *
60 * LSONPROC
61 *
62 * On processor: the LWP is executing on a CPU, either in the
63 * kernel or in user space.
64 *
65 * LSRUN
66 *
67 * Runnable: the LWP is parked on a run queue, and may soon be
68 * chosen to run by a idle processor, or by a processor that
69 * has been asked to preempt a currently runnning but lower
70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 * then the LWP is not on a run queue, but may be soon.
72 *
73 * LSIDL
74 *
75 * Idle: the LWP has been created but has not yet executed,
76 * or it has ceased executing a unit of work and is waiting
77 * to be started again.
78 *
79 * LSSUSPENDED:
80 *
81 * Suspended: the LWP has had its execution suspended by
82 * another LWP in the same process using the _lwp_suspend()
83 * system call. User-level LWPs also enter the suspended
84 * state when the system is shutting down.
85 *
86 * The second set represent a "statement of intent" on behalf of the
87 * LWP. The LWP may in fact be executing on a processor, may be
88 * sleeping or idle. It is expected to take the necessary action to
89 * stop executing or become "running" again within a short timeframe.
90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91 * Importantly, in indicates that its state is tied to a CPU.
92 *
93 * LSZOMB:
94 *
95 * Dead or dying: the LWP has released most of its resources
96 * and is a) about to switch away into oblivion b) has already
97 * switched away. When it switches away, its few remaining
98 * resources can be collected.
99 *
100 * LSSLEEP:
101 *
102 * Sleeping: the LWP has entered itself onto a sleep queue, and
103 * has switched away or will switch away shortly to allow other
104 * LWPs to run on the CPU.
105 *
106 * LSSTOP:
107 *
108 * Stopped: the LWP has been stopped as a result of a job
109 * control signal, or as a result of the ptrace() interface.
110 *
111 * Stopped LWPs may run briefly within the kernel to handle
112 * signals that they receive, but will not return to user space
113 * until their process' state is changed away from stopped.
114 *
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP state may only be set when returning to
122 * user space in userret(), or when sleeping interruptably. The
123 * LSSUSPENDED state may only be set in userret(). Before setting
124 * those states, we try to ensure that the LWPs will release all
125 * locks that they hold, and at a minimum try to ensure that the
126 * LWP can be set runnable again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Other state transitions are possible with kernel threads (eg
145 * ONPROC -> IDL), but only happen under tightly controlled
146 * circumstances the side effects are understood.
147 *
148 * Locking
149 *
150 * The majority of fields in 'struct lwp' are covered by a single,
151 * general spin lock pointed to by lwp::l_mutex. The locks covering
152 * each field are documented in sys/lwp.h.
153 *
154 * State transitions must be made with the LWP's general lock held,
155 * and may cause the LWP's lock pointer to change. Manipulation of
156 * the general lock is not performed directly, but through calls to
157 * lwp_lock(), lwp_relock() and similar.
158 *
159 * States and their associated locks:
160 *
161 * LSONPROC, LSZOMB:
162 *
163 * Always covered by spc_lwplock, which protects running LWPs.
164 * This is a per-CPU lock.
165 *
166 * LSIDL, LSRUN:
167 *
168 * Always covered by spc_mutex, which protects the run queues.
169 * This may be a per-CPU lock, depending on the scheduler.
170 *
171 * LSSLEEP:
172 *
173 * Covered by a lock associated with the sleep queue that the
174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175 *
176 * LSSTOP, LSSUSPENDED:
177 *
178 * If the LWP was previously sleeping (l_wchan != NULL), then
179 * l_mutex references the sleep queue lock. If the LWP was
180 * runnable or on the CPU when halted, or has been removed from
181 * the sleep queue since halted, then the lock is spc_lwplock.
182 *
183 * The lock order is as follows:
184 *
185 * spc::spc_lwplock ->
186 * sleepq_t::sq_mutex ->
187 * tschain_t::tc_mutex ->
188 * spc::spc_mutex
189 *
190 * Each process has an scheduler state lock (proc::p_smutex), and a
191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192 * so on. When an LWP is to be entered into or removed from one of the
193 * following states, p_mutex must be held and the process wide counters
194 * adjusted:
195 *
196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197 *
198 * Note that an LWP is considered running or likely to run soon if in
199 * one of the following states. This affects the value of p_nrlwps:
200 *
201 * LSRUN, LSONPROC, LSSLEEP
202 *
203 * p_smutex does not need to be held when transitioning among these
204 * three states.
205 */
206
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.83.6.1 2007/12/13 21:56:53 bouyer Exp $");
209
210 #include "opt_ddb.h"
211 #include "opt_multiprocessor.h"
212 #include "opt_lockdebug.h"
213
214 #define _LWP_API_PRIVATE
215
216 #include <sys/param.h>
217 #include <sys/systm.h>
218 #include <sys/cpu.h>
219 #include <sys/pool.h>
220 #include <sys/proc.h>
221 #include <sys/syscallargs.h>
222 #include <sys/syscall_stats.h>
223 #include <sys/kauth.h>
224 #include <sys/sleepq.h>
225 #include <sys/user.h>
226 #include <sys/lockdebug.h>
227 #include <sys/kmem.h>
228 #include <sys/intr.h>
229 #include <sys/lwpctl.h>
230 #include <sys/atomic.h>
231
232 #include <uvm/uvm_extern.h>
233 #include <uvm/uvm_object.h>
234
235 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
236
237 POOL_INIT(lwp_pool, sizeof(struct lwp), MIN_LWP_ALIGNMENT, 0, 0, "lwppl",
238 &pool_allocator_nointr, IPL_NONE);
239 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
240 &pool_allocator_nointr, IPL_NONE);
241
242 static specificdata_domain_t lwp_specificdata_domain;
243
244 void
245 lwpinit(void)
246 {
247
248 lwp_specificdata_domain = specificdata_domain_create();
249 KASSERT(lwp_specificdata_domain != NULL);
250 lwp_sys_init();
251 }
252
253 /*
254 * Set an suspended.
255 *
256 * Must be called with p_smutex held, and the LWP locked. Will unlock the
257 * LWP before return.
258 */
259 int
260 lwp_suspend(struct lwp *curl, struct lwp *t)
261 {
262 int error;
263
264 KASSERT(mutex_owned(&t->l_proc->p_smutex));
265 KASSERT(lwp_locked(t, NULL));
266
267 KASSERT(curl != t || curl->l_stat == LSONPROC);
268
269 /*
270 * If the current LWP has been told to exit, we must not suspend anyone
271 * else or deadlock could occur. We won't return to userspace.
272 */
273 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
274 lwp_unlock(t);
275 return (EDEADLK);
276 }
277
278 error = 0;
279
280 switch (t->l_stat) {
281 case LSRUN:
282 case LSONPROC:
283 t->l_flag |= LW_WSUSPEND;
284 lwp_need_userret(t);
285 lwp_unlock(t);
286 break;
287
288 case LSSLEEP:
289 t->l_flag |= LW_WSUSPEND;
290
291 /*
292 * Kick the LWP and try to get it to the kernel boundary
293 * so that it will release any locks that it holds.
294 * setrunnable() will release the lock.
295 */
296 if ((t->l_flag & LW_SINTR) != 0)
297 setrunnable(t);
298 else
299 lwp_unlock(t);
300 break;
301
302 case LSSUSPENDED:
303 lwp_unlock(t);
304 break;
305
306 case LSSTOP:
307 t->l_flag |= LW_WSUSPEND;
308 setrunnable(t);
309 break;
310
311 case LSIDL:
312 case LSZOMB:
313 error = EINTR; /* It's what Solaris does..... */
314 lwp_unlock(t);
315 break;
316 }
317
318 return (error);
319 }
320
321 /*
322 * Restart a suspended LWP.
323 *
324 * Must be called with p_smutex held, and the LWP locked. Will unlock the
325 * LWP before return.
326 */
327 void
328 lwp_continue(struct lwp *l)
329 {
330
331 KASSERT(mutex_owned(&l->l_proc->p_smutex));
332 KASSERT(lwp_locked(l, NULL));
333
334 /* If rebooting or not suspended, then just bail out. */
335 if ((l->l_flag & LW_WREBOOT) != 0) {
336 lwp_unlock(l);
337 return;
338 }
339
340 l->l_flag &= ~LW_WSUSPEND;
341
342 if (l->l_stat != LSSUSPENDED) {
343 lwp_unlock(l);
344 return;
345 }
346
347 /* setrunnable() will release the lock. */
348 setrunnable(l);
349 }
350
351 /*
352 * Wait for an LWP within the current process to exit. If 'lid' is
353 * non-zero, we are waiting for a specific LWP.
354 *
355 * Must be called with p->p_smutex held.
356 */
357 int
358 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
359 {
360 struct proc *p = l->l_proc;
361 struct lwp *l2;
362 int nfound, error;
363 lwpid_t curlid;
364 bool exiting;
365
366 KASSERT(mutex_owned(&p->p_smutex));
367
368 p->p_nlwpwait++;
369 l->l_waitingfor = lid;
370 curlid = l->l_lid;
371 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
372
373 for (;;) {
374 /*
375 * Avoid a race between exit1() and sigexit(): if the
376 * process is dumping core, then we need to bail out: call
377 * into lwp_userret() where we will be suspended until the
378 * deed is done.
379 */
380 if ((p->p_sflag & PS_WCORE) != 0) {
381 mutex_exit(&p->p_smutex);
382 lwp_userret(l);
383 #ifdef DIAGNOSTIC
384 panic("lwp_wait1");
385 #endif
386 /* NOTREACHED */
387 }
388
389 /*
390 * First off, drain any detached LWP that is waiting to be
391 * reaped.
392 */
393 while ((l2 = p->p_zomblwp) != NULL) {
394 p->p_zomblwp = NULL;
395 lwp_free(l2, false, false);/* releases proc mutex */
396 mutex_enter(&p->p_smutex);
397 }
398
399 /*
400 * Now look for an LWP to collect. If the whole process is
401 * exiting, count detached LWPs as eligible to be collected,
402 * but don't drain them here.
403 */
404 nfound = 0;
405 error = 0;
406 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
407 /*
408 * If a specific wait and the target is waiting on
409 * us, then avoid deadlock. This also traps LWPs
410 * that try to wait on themselves.
411 *
412 * Note that this does not handle more complicated
413 * cycles, like: t1 -> t2 -> t3 -> t1. The process
414 * can still be killed so it is not a major problem.
415 */
416 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
417 error = EDEADLK;
418 break;
419 }
420 if (l2 == l)
421 continue;
422 if ((l2->l_prflag & LPR_DETACHED) != 0) {
423 nfound += exiting;
424 continue;
425 }
426 if (lid != 0) {
427 if (l2->l_lid != lid)
428 continue;
429 /*
430 * Mark this LWP as the first waiter, if there
431 * is no other.
432 */
433 if (l2->l_waiter == 0)
434 l2->l_waiter = curlid;
435 } else if (l2->l_waiter != 0) {
436 /*
437 * It already has a waiter - so don't
438 * collect it. If the waiter doesn't
439 * grab it we'll get another chance
440 * later.
441 */
442 nfound++;
443 continue;
444 }
445 nfound++;
446
447 /* No need to lock the LWP in order to see LSZOMB. */
448 if (l2->l_stat != LSZOMB)
449 continue;
450
451 /*
452 * We're no longer waiting. Reset the "first waiter"
453 * pointer on the target, in case it was us.
454 */
455 l->l_waitingfor = 0;
456 l2->l_waiter = 0;
457 p->p_nlwpwait--;
458 if (departed)
459 *departed = l2->l_lid;
460 sched_lwp_collect(l2);
461
462 /* lwp_free() releases the proc lock. */
463 lwp_free(l2, false, false);
464 mutex_enter(&p->p_smutex);
465 return 0;
466 }
467
468 if (error != 0)
469 break;
470 if (nfound == 0) {
471 error = ESRCH;
472 break;
473 }
474
475 /*
476 * The kernel is careful to ensure that it can not deadlock
477 * when exiting - just keep waiting.
478 */
479 if (exiting) {
480 KASSERT(p->p_nlwps > 1);
481 cv_wait(&p->p_lwpcv, &p->p_smutex);
482 continue;
483 }
484
485 /*
486 * If all other LWPs are waiting for exits or suspends
487 * and the supply of zombies and potential zombies is
488 * exhausted, then we are about to deadlock.
489 *
490 * If the process is exiting (and this LWP is not the one
491 * that is coordinating the exit) then bail out now.
492 */
493 if ((p->p_sflag & PS_WEXIT) != 0 ||
494 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
495 error = EDEADLK;
496 break;
497 }
498
499 /*
500 * Sit around and wait for something to happen. We'll be
501 * awoken if any of the conditions examined change: if an
502 * LWP exits, is collected, or is detached.
503 */
504 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
505 break;
506 }
507
508 /*
509 * We didn't find any LWPs to collect, we may have received a
510 * signal, or some other condition has caused us to bail out.
511 *
512 * If waiting on a specific LWP, clear the waiters marker: some
513 * other LWP may want it. Then, kick all the remaining waiters
514 * so that they can re-check for zombies and for deadlock.
515 */
516 if (lid != 0) {
517 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
518 if (l2->l_lid == lid) {
519 if (l2->l_waiter == curlid)
520 l2->l_waiter = 0;
521 break;
522 }
523 }
524 }
525 p->p_nlwpwait--;
526 l->l_waitingfor = 0;
527 cv_broadcast(&p->p_lwpcv);
528
529 return error;
530 }
531
532 /*
533 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
534 * The new LWP is created in state LSIDL and must be set running,
535 * suspended, or stopped by the caller.
536 */
537 int
538 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
539 void *stack, size_t stacksize, void (*func)(void *), void *arg,
540 lwp_t **rnewlwpp, int sclass)
541 {
542 struct lwp *l2, *isfree;
543 turnstile_t *ts;
544
545 /*
546 * First off, reap any detached LWP waiting to be collected.
547 * We can re-use its LWP structure and turnstile.
548 */
549 isfree = NULL;
550 if (p2->p_zomblwp != NULL) {
551 mutex_enter(&p2->p_smutex);
552 if ((isfree = p2->p_zomblwp) != NULL) {
553 p2->p_zomblwp = NULL;
554 lwp_free(isfree, true, false);/* releases proc mutex */
555 } else
556 mutex_exit(&p2->p_smutex);
557 }
558 if (isfree == NULL) {
559 l2 = pool_get(&lwp_pool, PR_WAITOK);
560 memset(l2, 0, sizeof(*l2));
561 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
562 SLIST_INIT(&l2->l_pi_lenders);
563 } else {
564 l2 = isfree;
565 ts = l2->l_ts;
566 KASSERT(l2->l_inheritedprio == -1);
567 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
568 memset(l2, 0, sizeof(*l2));
569 l2->l_ts = ts;
570 }
571
572 l2->l_stat = LSIDL;
573 l2->l_proc = p2;
574 l2->l_refcnt = 1;
575 l2->l_class = sclass;
576 l2->l_kpriority = l1->l_kpriority;
577 l2->l_kpribase = PRI_KERNEL;
578 l2->l_priority = l1->l_priority;
579 l2->l_inheritedprio = -1;
580 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
581 l2->l_cpu = l1->l_cpu;
582 l2->l_flag = inmem ? LW_INMEM : 0;
583
584 if (p2->p_flag & PK_SYSTEM) {
585 /*
586 * Mark it as a system process and not a candidate for
587 * swapping.
588 */
589 l2->l_flag |= LW_SYSTEM;
590 } else {
591 /* Look for a CPU to start */
592 l2->l_cpu = sched_takecpu(l2);
593 l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
594 }
595
596 lwp_initspecific(l2);
597 sched_lwp_fork(l1, l2);
598 lwp_update_creds(l2);
599 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
600 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
601 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
602 cv_init(&l2->l_sigcv, "sigwait");
603 l2->l_syncobj = &sched_syncobj;
604
605 if (rnewlwpp != NULL)
606 *rnewlwpp = l2;
607
608 l2->l_addr = UAREA_TO_USER(uaddr);
609 uvm_lwp_fork(l1, l2, stack, stacksize, func,
610 (arg != NULL) ? arg : l2);
611
612 mutex_enter(&p2->p_smutex);
613
614 if ((flags & LWP_DETACHED) != 0) {
615 l2->l_prflag = LPR_DETACHED;
616 p2->p_ndlwps++;
617 } else
618 l2->l_prflag = 0;
619
620 l2->l_sigmask = l1->l_sigmask;
621 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
622 sigemptyset(&l2->l_sigpend.sp_set);
623
624 p2->p_nlwpid++;
625 if (p2->p_nlwpid == 0)
626 p2->p_nlwpid++;
627 l2->l_lid = p2->p_nlwpid;
628 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
629 p2->p_nlwps++;
630
631 mutex_exit(&p2->p_smutex);
632
633 mutex_enter(&proclist_lock);
634 LIST_INSERT_HEAD(&alllwp, l2, l_list);
635 mutex_exit(&proclist_lock);
636
637 SYSCALL_TIME_LWP_INIT(l2);
638
639 if (p2->p_emul->e_lwp_fork)
640 (*p2->p_emul->e_lwp_fork)(l1, l2);
641
642 return (0);
643 }
644
645 /*
646 * Called by MD code when a new LWP begins execution. Must be called
647 * with the previous LWP locked (so at splsched), or if there is no
648 * previous LWP, at splsched.
649 */
650 void
651 lwp_startup(struct lwp *prev, struct lwp *new)
652 {
653
654 if (prev != NULL) {
655 /*
656 * Normalize the count of the spin-mutexes, it was
657 * increased in mi_switch(). Unmark the state of
658 * context switch - it is finished for previous LWP.
659 */
660 curcpu()->ci_mtx_count++;
661 membar_exit();
662 prev->l_ctxswtch = 0;
663 }
664 spl0();
665 pmap_activate(new);
666 LOCKDEBUG_BARRIER(NULL, 0);
667 if ((new->l_pflag & LP_MPSAFE) == 0) {
668 KERNEL_LOCK(1, new);
669 }
670 }
671
672 /*
673 * Exit an LWP.
674 */
675 void
676 lwp_exit(struct lwp *l)
677 {
678 struct proc *p = l->l_proc;
679 struct lwp *l2;
680 bool current;
681
682 current = (l == curlwp);
683
684 KASSERT(current || l->l_stat == LSIDL);
685
686 /*
687 * Verify that we hold no locks other than the kernel lock.
688 */
689 #ifdef MULTIPROCESSOR
690 LOCKDEBUG_BARRIER(&kernel_lock, 0);
691 #else
692 LOCKDEBUG_BARRIER(NULL, 0);
693 #endif
694
695 /*
696 * If we are the last live LWP in a process, we need to exit the
697 * entire process. We do so with an exit status of zero, because
698 * it's a "controlled" exit, and because that's what Solaris does.
699 *
700 * We are not quite a zombie yet, but for accounting purposes we
701 * must increment the count of zombies here.
702 *
703 * Note: the last LWP's specificdata will be deleted here.
704 */
705 mutex_enter(&p->p_smutex);
706 if (p->p_nlwps - p->p_nzlwps == 1) {
707 KASSERT(current == true);
708 exit1(l, 0);
709 /* NOTREACHED */
710 }
711 p->p_nzlwps++;
712 mutex_exit(&p->p_smutex);
713
714 if (p->p_emul->e_lwp_exit)
715 (*p->p_emul->e_lwp_exit)(l);
716
717 /* Delete the specificdata while it's still safe to sleep. */
718 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
719
720 /*
721 * Release our cached credentials.
722 */
723 kauth_cred_free(l->l_cred);
724 callout_destroy(&l->l_timeout_ch);
725
726 /*
727 * While we can still block, mark the LWP as unswappable to
728 * prevent conflicts with the with the swapper.
729 */
730 if (current)
731 uvm_lwp_hold(l);
732
733 /*
734 * Remove the LWP from the global list.
735 */
736 mutex_enter(&proclist_lock);
737 mutex_enter(&proclist_mutex);
738 LIST_REMOVE(l, l_list);
739 mutex_exit(&proclist_mutex);
740 mutex_exit(&proclist_lock);
741
742 /*
743 * Get rid of all references to the LWP that others (e.g. procfs)
744 * may have, and mark the LWP as a zombie. If the LWP is detached,
745 * mark it waiting for collection in the proc structure. Note that
746 * before we can do that, we need to free any other dead, deatched
747 * LWP waiting to meet its maker.
748 *
749 * XXXSMP disable preemption.
750 */
751 mutex_enter(&p->p_smutex);
752 lwp_drainrefs(l);
753
754 if ((l->l_prflag & LPR_DETACHED) != 0) {
755 while ((l2 = p->p_zomblwp) != NULL) {
756 p->p_zomblwp = NULL;
757 lwp_free(l2, false, false);/* releases proc mutex */
758 mutex_enter(&p->p_smutex);
759 l->l_refcnt++;
760 lwp_drainrefs(l);
761 }
762 p->p_zomblwp = l;
763 }
764
765 /*
766 * If we find a pending signal for the process and we have been
767 * asked to check for signals, then we loose: arrange to have
768 * all other LWPs in the process check for signals.
769 */
770 if ((l->l_flag & LW_PENDSIG) != 0 &&
771 firstsig(&p->p_sigpend.sp_set) != 0) {
772 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
773 lwp_lock(l2);
774 l2->l_flag |= LW_PENDSIG;
775 lwp_unlock(l2);
776 }
777 }
778
779 lwp_lock(l);
780 l->l_stat = LSZOMB;
781 lwp_unlock(l);
782 p->p_nrlwps--;
783 cv_broadcast(&p->p_lwpcv);
784 if (l->l_lwpctl != NULL)
785 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
786 mutex_exit(&p->p_smutex);
787
788 /*
789 * We can no longer block. At this point, lwp_free() may already
790 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
791 *
792 * Free MD LWP resources.
793 */
794 #ifndef __NO_CPU_LWP_FREE
795 cpu_lwp_free(l, 0);
796 #endif
797
798 if (current) {
799 pmap_deactivate(l);
800
801 /*
802 * Release the kernel lock, and switch away into
803 * oblivion.
804 */
805 #ifdef notyet
806 /* XXXSMP hold in lwp_userret() */
807 KERNEL_UNLOCK_LAST(l);
808 #else
809 KERNEL_UNLOCK_ALL(l, NULL);
810 #endif
811 lwp_exit_switchaway(l);
812 }
813 }
814
815 void
816 lwp_exit_switchaway(struct lwp *l)
817 {
818 struct cpu_info *ci;
819 struct lwp *idlelwp;
820
821 /* Unlocked, but is for statistics only. */
822 uvmexp.swtch++;
823
824 (void)splsched();
825 l->l_flag &= ~LW_RUNNING;
826 ci = curcpu();
827 idlelwp = ci->ci_data.cpu_idlelwp;
828 idlelwp->l_stat = LSONPROC;
829
830 /*
831 * cpu_onproc must be updated with the CPU locked, as
832 * aston() may try to set a AST pending on the LWP (and
833 * it does so with the CPU locked). Otherwise, the LWP
834 * may be destroyed before the AST can be set, leading
835 * to a user-after-free.
836 */
837 spc_lock(ci);
838 ci->ci_data.cpu_onproc = idlelwp;
839 spc_unlock(ci);
840 cpu_switchto(NULL, idlelwp, false);
841 }
842
843 /*
844 * Free a dead LWP's remaining resources.
845 *
846 * XXXLWP limits.
847 */
848 void
849 lwp_free(struct lwp *l, bool recycle, bool last)
850 {
851 struct proc *p = l->l_proc;
852 ksiginfoq_t kq;
853
854 /*
855 * If this was not the last LWP in the process, then adjust
856 * counters and unlock.
857 */
858 if (!last) {
859 /*
860 * Add the LWP's run time to the process' base value.
861 * This needs to co-incide with coming off p_lwps.
862 */
863 timeradd(&l->l_rtime, &p->p_rtime, &p->p_rtime);
864 p->p_pctcpu += l->l_pctcpu;
865 LIST_REMOVE(l, l_sibling);
866 p->p_nlwps--;
867 p->p_nzlwps--;
868 if ((l->l_prflag & LPR_DETACHED) != 0)
869 p->p_ndlwps--;
870
871 /*
872 * Have any LWPs sleeping in lwp_wait() recheck for
873 * deadlock.
874 */
875 cv_broadcast(&p->p_lwpcv);
876 mutex_exit(&p->p_smutex);
877 }
878
879 #ifdef MULTIPROCESSOR
880 /*
881 * In the unlikely event that the LWP is still on the CPU,
882 * then spin until it has switched away. We need to release
883 * all locks to avoid deadlock against interrupt handlers on
884 * the target CPU.
885 */
886 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
887 int count;
888 (void)count; /* XXXgcc */
889 KERNEL_UNLOCK_ALL(curlwp, &count);
890 while ((l->l_flag & LW_RUNNING) != 0 ||
891 l->l_cpu->ci_curlwp == l)
892 SPINLOCK_BACKOFF_HOOK;
893 KERNEL_LOCK(count, curlwp);
894 }
895 #endif
896
897 /*
898 * Destroy the LWP's remaining signal information.
899 */
900 ksiginfo_queue_init(&kq);
901 sigclear(&l->l_sigpend, NULL, &kq);
902 ksiginfo_queue_drain(&kq);
903 cv_destroy(&l->l_sigcv);
904 mutex_destroy(&l->l_swaplock);
905
906 /*
907 * Free the LWP's turnstile and the LWP structure itself unless the
908 * caller wants to recycle them. Also, free the scheduler specific data.
909 *
910 * We can't return turnstile0 to the pool (it didn't come from it),
911 * so if it comes up just drop it quietly and move on.
912 *
913 * We don't recycle the VM resources at this time.
914 */
915 KERNEL_LOCK(1, curlwp); /* XXXSMP */
916
917 if (l->l_lwpctl != NULL)
918 lwp_ctl_free(l);
919 sched_lwp_exit(l);
920
921 if (!recycle && l->l_ts != &turnstile0)
922 pool_cache_put(turnstile_cache, l->l_ts);
923 #ifndef __NO_CPU_LWP_FREE
924 cpu_lwp_free2(l);
925 #endif
926 uvm_lwp_exit(l);
927 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
928 KASSERT(l->l_inheritedprio == -1);
929 if (!recycle)
930 pool_put(&lwp_pool, l);
931 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
932 }
933
934 /*
935 * Pick a LWP to represent the process for those operations which
936 * want information about a "process" that is actually associated
937 * with a LWP.
938 *
939 * If 'locking' is false, no locking or lock checks are performed.
940 * This is intended for use by DDB.
941 *
942 * We don't bother locking the LWP here, since code that uses this
943 * interface is broken by design and an exact match is not required.
944 */
945 struct lwp *
946 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
947 {
948 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
949 struct lwp *signalled;
950 int cnt;
951
952 if (locking) {
953 KASSERT(mutex_owned(&p->p_smutex));
954 }
955
956 /* Trivial case: only one LWP */
957 if (p->p_nlwps == 1) {
958 l = LIST_FIRST(&p->p_lwps);
959 if (nrlwps)
960 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
961 return l;
962 }
963
964 cnt = 0;
965 switch (p->p_stat) {
966 case SSTOP:
967 case SACTIVE:
968 /* Pick the most live LWP */
969 onproc = running = sleeping = stopped = suspended = NULL;
970 signalled = NULL;
971 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
972 if ((l->l_flag & LW_IDLE) != 0) {
973 continue;
974 }
975 if (l->l_lid == p->p_sigctx.ps_lwp)
976 signalled = l;
977 switch (l->l_stat) {
978 case LSONPROC:
979 onproc = l;
980 cnt++;
981 break;
982 case LSRUN:
983 running = l;
984 cnt++;
985 break;
986 case LSSLEEP:
987 sleeping = l;
988 break;
989 case LSSTOP:
990 stopped = l;
991 break;
992 case LSSUSPENDED:
993 suspended = l;
994 break;
995 }
996 }
997 if (nrlwps)
998 *nrlwps = cnt;
999 if (signalled)
1000 l = signalled;
1001 else if (onproc)
1002 l = onproc;
1003 else if (running)
1004 l = running;
1005 else if (sleeping)
1006 l = sleeping;
1007 else if (stopped)
1008 l = stopped;
1009 else if (suspended)
1010 l = suspended;
1011 else
1012 break;
1013 return l;
1014 #ifdef DIAGNOSTIC
1015 case SIDL:
1016 case SZOMB:
1017 case SDYING:
1018 case SDEAD:
1019 if (locking)
1020 mutex_exit(&p->p_smutex);
1021 /* We have more than one LWP and we're in SIDL?
1022 * How'd that happen?
1023 */
1024 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1025 p->p_pid, p->p_comm, p->p_stat);
1026 break;
1027 default:
1028 if (locking)
1029 mutex_exit(&p->p_smutex);
1030 panic("Process %d (%s) in unknown state %d",
1031 p->p_pid, p->p_comm, p->p_stat);
1032 #endif
1033 }
1034
1035 if (locking)
1036 mutex_exit(&p->p_smutex);
1037 panic("proc_representative_lwp: couldn't find a lwp for process"
1038 " %d (%s)", p->p_pid, p->p_comm);
1039 /* NOTREACHED */
1040 return NULL;
1041 }
1042
1043 /*
1044 * Look up a live LWP within the speicifed process, and return it locked.
1045 *
1046 * Must be called with p->p_smutex held.
1047 */
1048 struct lwp *
1049 lwp_find(struct proc *p, int id)
1050 {
1051 struct lwp *l;
1052
1053 KASSERT(mutex_owned(&p->p_smutex));
1054
1055 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1056 if (l->l_lid == id)
1057 break;
1058 }
1059
1060 /*
1061 * No need to lock - all of these conditions will
1062 * be visible with the process level mutex held.
1063 */
1064 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1065 l = NULL;
1066
1067 return l;
1068 }
1069
1070 /*
1071 * Update an LWP's cached credentials to mirror the process' master copy.
1072 *
1073 * This happens early in the syscall path, on user trap, and on LWP
1074 * creation. A long-running LWP can also voluntarily choose to update
1075 * it's credentials by calling this routine. This may be called from
1076 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1077 */
1078 void
1079 lwp_update_creds(struct lwp *l)
1080 {
1081 kauth_cred_t oc;
1082 struct proc *p;
1083
1084 p = l->l_proc;
1085 oc = l->l_cred;
1086
1087 mutex_enter(&p->p_mutex);
1088 kauth_cred_hold(p->p_cred);
1089 l->l_cred = p->p_cred;
1090 mutex_exit(&p->p_mutex);
1091 if (oc != NULL) {
1092 KERNEL_LOCK(1, l); /* XXXSMP */
1093 kauth_cred_free(oc);
1094 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
1095 }
1096 }
1097
1098 /*
1099 * Verify that an LWP is locked, and optionally verify that the lock matches
1100 * one we specify.
1101 */
1102 int
1103 lwp_locked(struct lwp *l, kmutex_t *mtx)
1104 {
1105 kmutex_t *cur = l->l_mutex;
1106
1107 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1108 }
1109
1110 /*
1111 * Lock an LWP.
1112 */
1113 void
1114 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1115 {
1116
1117 /*
1118 * XXXgcc ignoring kmutex_t * volatile on i386
1119 *
1120 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1121 */
1122 #if 1
1123 while (l->l_mutex != old) {
1124 #else
1125 for (;;) {
1126 #endif
1127 mutex_spin_exit(old);
1128 old = l->l_mutex;
1129 mutex_spin_enter(old);
1130
1131 /*
1132 * mutex_enter() will have posted a read barrier. Re-test
1133 * l->l_mutex. If it has changed, we need to try again.
1134 */
1135 #if 1
1136 }
1137 #else
1138 } while (__predict_false(l->l_mutex != old));
1139 #endif
1140 }
1141
1142 /*
1143 * Lend a new mutex to an LWP. The old mutex must be held.
1144 */
1145 void
1146 lwp_setlock(struct lwp *l, kmutex_t *new)
1147 {
1148
1149 KASSERT(mutex_owned(l->l_mutex));
1150
1151 membar_producer();
1152 l->l_mutex = new;
1153 }
1154
1155 /*
1156 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1157 * must be held.
1158 */
1159 void
1160 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1161 {
1162 kmutex_t *old;
1163
1164 KASSERT(mutex_owned(l->l_mutex));
1165
1166 old = l->l_mutex;
1167 membar_producer();
1168 l->l_mutex = new;
1169 mutex_spin_exit(old);
1170 }
1171
1172 /*
1173 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1174 * locked.
1175 */
1176 void
1177 lwp_relock(struct lwp *l, kmutex_t *new)
1178 {
1179 kmutex_t *old;
1180
1181 KASSERT(mutex_owned(l->l_mutex));
1182
1183 old = l->l_mutex;
1184 if (old != new) {
1185 mutex_spin_enter(new);
1186 l->l_mutex = new;
1187 mutex_spin_exit(old);
1188 }
1189 }
1190
1191 int
1192 lwp_trylock(struct lwp *l)
1193 {
1194 kmutex_t *old;
1195
1196 for (;;) {
1197 if (!mutex_tryenter(old = l->l_mutex))
1198 return 0;
1199 if (__predict_true(l->l_mutex == old))
1200 return 1;
1201 mutex_spin_exit(old);
1202 }
1203 }
1204
1205 /*
1206 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1207 * set.
1208 */
1209 void
1210 lwp_userret(struct lwp *l)
1211 {
1212 struct proc *p;
1213 void (*hook)(void);
1214 int sig;
1215
1216 p = l->l_proc;
1217
1218 #ifndef __HAVE_FAST_SOFTINTS
1219 /* Run pending soft interrupts. */
1220 if (l->l_cpu->ci_data.cpu_softints != 0)
1221 softint_overlay();
1222 #endif
1223
1224 /*
1225 * It should be safe to do this read unlocked on a multiprocessor
1226 * system..
1227 */
1228 while ((l->l_flag & LW_USERRET) != 0) {
1229 /*
1230 * Process pending signals first, unless the process
1231 * is dumping core or exiting, where we will instead
1232 * enter the L_WSUSPEND case below.
1233 */
1234 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1235 LW_PENDSIG) {
1236 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1237 mutex_enter(&p->p_smutex);
1238 while ((sig = issignal(l)) != 0)
1239 postsig(sig);
1240 mutex_exit(&p->p_smutex);
1241 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1242 }
1243
1244 /*
1245 * Core-dump or suspend pending.
1246 *
1247 * In case of core dump, suspend ourselves, so that the
1248 * kernel stack and therefore the userland registers saved
1249 * in the trapframe are around for coredump() to write them
1250 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1251 * will write the core file out once all other LWPs are
1252 * suspended.
1253 */
1254 if ((l->l_flag & LW_WSUSPEND) != 0) {
1255 mutex_enter(&p->p_smutex);
1256 p->p_nrlwps--;
1257 cv_broadcast(&p->p_lwpcv);
1258 lwp_lock(l);
1259 l->l_stat = LSSUSPENDED;
1260 mutex_exit(&p->p_smutex);
1261 mi_switch(l);
1262 }
1263
1264 /* Process is exiting. */
1265 if ((l->l_flag & LW_WEXIT) != 0) {
1266 KERNEL_LOCK(1, l);
1267 lwp_exit(l);
1268 KASSERT(0);
1269 /* NOTREACHED */
1270 }
1271
1272 /* Call userret hook; used by Linux emulation. */
1273 if ((l->l_flag & LW_WUSERRET) != 0) {
1274 lwp_lock(l);
1275 l->l_flag &= ~LW_WUSERRET;
1276 lwp_unlock(l);
1277 hook = p->p_userret;
1278 p->p_userret = NULL;
1279 (*hook)();
1280 }
1281 }
1282 }
1283
1284 /*
1285 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1286 */
1287 void
1288 lwp_need_userret(struct lwp *l)
1289 {
1290 KASSERT(lwp_locked(l, NULL));
1291
1292 /*
1293 * Since the tests in lwp_userret() are done unlocked, make sure
1294 * that the condition will be seen before forcing the LWP to enter
1295 * kernel mode.
1296 */
1297 membar_producer();
1298 cpu_signotify(l);
1299 }
1300
1301 /*
1302 * Add one reference to an LWP. This will prevent the LWP from
1303 * exiting, thus keep the lwp structure and PCB around to inspect.
1304 */
1305 void
1306 lwp_addref(struct lwp *l)
1307 {
1308
1309 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1310 KASSERT(l->l_stat != LSZOMB);
1311 KASSERT(l->l_refcnt != 0);
1312
1313 l->l_refcnt++;
1314 }
1315
1316 /*
1317 * Remove one reference to an LWP. If this is the last reference,
1318 * then we must finalize the LWP's death.
1319 */
1320 void
1321 lwp_delref(struct lwp *l)
1322 {
1323 struct proc *p = l->l_proc;
1324
1325 mutex_enter(&p->p_smutex);
1326 KASSERT(l->l_stat != LSZOMB);
1327 KASSERT(l->l_refcnt > 0);
1328 if (--l->l_refcnt == 0)
1329 cv_broadcast(&p->p_lwpcv);
1330 mutex_exit(&p->p_smutex);
1331 }
1332
1333 /*
1334 * Drain all references to the current LWP.
1335 */
1336 void
1337 lwp_drainrefs(struct lwp *l)
1338 {
1339 struct proc *p = l->l_proc;
1340
1341 KASSERT(mutex_owned(&p->p_smutex));
1342 KASSERT(l->l_refcnt != 0);
1343
1344 l->l_refcnt--;
1345 while (l->l_refcnt != 0)
1346 cv_wait(&p->p_lwpcv, &p->p_smutex);
1347 }
1348
1349 /*
1350 * lwp_specific_key_create --
1351 * Create a key for subsystem lwp-specific data.
1352 */
1353 int
1354 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1355 {
1356
1357 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1358 }
1359
1360 /*
1361 * lwp_specific_key_delete --
1362 * Delete a key for subsystem lwp-specific data.
1363 */
1364 void
1365 lwp_specific_key_delete(specificdata_key_t key)
1366 {
1367
1368 specificdata_key_delete(lwp_specificdata_domain, key);
1369 }
1370
1371 /*
1372 * lwp_initspecific --
1373 * Initialize an LWP's specificdata container.
1374 */
1375 void
1376 lwp_initspecific(struct lwp *l)
1377 {
1378 int error;
1379
1380 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1381 KASSERT(error == 0);
1382 }
1383
1384 /*
1385 * lwp_finispecific --
1386 * Finalize an LWP's specificdata container.
1387 */
1388 void
1389 lwp_finispecific(struct lwp *l)
1390 {
1391
1392 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1393 }
1394
1395 /*
1396 * lwp_getspecific --
1397 * Return lwp-specific data corresponding to the specified key.
1398 *
1399 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1400 * only its OWN SPECIFIC DATA. If it is necessary to access another
1401 * LWP's specifc data, care must be taken to ensure that doing so
1402 * would not cause internal data structure inconsistency (i.e. caller
1403 * can guarantee that the target LWP is not inside an lwp_getspecific()
1404 * or lwp_setspecific() call).
1405 */
1406 void *
1407 lwp_getspecific(specificdata_key_t key)
1408 {
1409
1410 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1411 &curlwp->l_specdataref, key));
1412 }
1413
1414 void *
1415 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1416 {
1417
1418 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1419 &l->l_specdataref, key));
1420 }
1421
1422 /*
1423 * lwp_setspecific --
1424 * Set lwp-specific data corresponding to the specified key.
1425 */
1426 void
1427 lwp_setspecific(specificdata_key_t key, void *data)
1428 {
1429
1430 specificdata_setspecific(lwp_specificdata_domain,
1431 &curlwp->l_specdataref, key, data);
1432 }
1433
1434 /*
1435 * Allocate a new lwpctl structure for a user LWP.
1436 */
1437 int
1438 lwp_ctl_alloc(vaddr_t *uaddr)
1439 {
1440 lcproc_t *lp;
1441 u_int bit, i, offset;
1442 struct uvm_object *uao;
1443 int error;
1444 lcpage_t *lcp;
1445 proc_t *p;
1446 lwp_t *l;
1447
1448 l = curlwp;
1449 p = l->l_proc;
1450
1451 if (l->l_lcpage != NULL) {
1452 lcp = l->l_lcpage;
1453 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1454 return (EINVAL);
1455 }
1456
1457 /* First time around, allocate header structure for the process. */
1458 if ((lp = p->p_lwpctl) == NULL) {
1459 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1460 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1461 lp->lp_uao = NULL;
1462 TAILQ_INIT(&lp->lp_pages);
1463 mutex_enter(&p->p_mutex);
1464 if (p->p_lwpctl == NULL) {
1465 p->p_lwpctl = lp;
1466 mutex_exit(&p->p_mutex);
1467 } else {
1468 mutex_exit(&p->p_mutex);
1469 mutex_destroy(&lp->lp_lock);
1470 kmem_free(lp, sizeof(*lp));
1471 lp = p->p_lwpctl;
1472 }
1473 }
1474
1475 /*
1476 * Set up an anonymous memory region to hold the shared pages.
1477 * Map them into the process' address space. The user vmspace
1478 * gets the first reference on the UAO.
1479 */
1480 mutex_enter(&lp->lp_lock);
1481 if (lp->lp_uao == NULL) {
1482 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1483 lp->lp_cur = 0;
1484 lp->lp_max = LWPCTL_UAREA_SZ;
1485 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1486 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1487 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1488 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1489 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1490 if (error != 0) {
1491 uao_detach(lp->lp_uao);
1492 lp->lp_uao = NULL;
1493 mutex_exit(&lp->lp_lock);
1494 return error;
1495 }
1496 }
1497
1498 /* Get a free block and allocate for this LWP. */
1499 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1500 if (lcp->lcp_nfree != 0)
1501 break;
1502 }
1503 if (lcp == NULL) {
1504 /* Nothing available - try to set up a free page. */
1505 if (lp->lp_cur == lp->lp_max) {
1506 mutex_exit(&lp->lp_lock);
1507 return ENOMEM;
1508 }
1509 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1510 if (lcp == NULL) {
1511 mutex_exit(&lp->lp_lock);
1512 return ENOMEM;
1513 }
1514 /*
1515 * Wire the next page down in kernel space. Since this
1516 * is a new mapping, we must add a reference.
1517 */
1518 uao = lp->lp_uao;
1519 (*uao->pgops->pgo_reference)(uao);
1520 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1521 uao, lp->lp_cur, PAGE_SIZE,
1522 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1523 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1524 if (error == 0)
1525 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1526 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1527 if (error != 0) {
1528 mutex_exit(&lp->lp_lock);
1529 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1530 (*uao->pgops->pgo_detach)(uao);
1531 return error;
1532 }
1533 /* Prepare the page descriptor and link into the list. */
1534 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1535 lp->lp_cur += PAGE_SIZE;
1536 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1537 lcp->lcp_rotor = 0;
1538 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1539 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1540 }
1541 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1542 if (++i >= LWPCTL_BITMAP_ENTRIES)
1543 i = 0;
1544 }
1545 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1546 lcp->lcp_bitmap[i] ^= (1 << bit);
1547 lcp->lcp_rotor = i;
1548 lcp->lcp_nfree--;
1549 l->l_lcpage = lcp;
1550 offset = (i << 5) + bit;
1551 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1552 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1553 mutex_exit(&lp->lp_lock);
1554
1555 l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
1556
1557 return 0;
1558 }
1559
1560 /*
1561 * Free an lwpctl structure back to the per-process list.
1562 */
1563 void
1564 lwp_ctl_free(lwp_t *l)
1565 {
1566 lcproc_t *lp;
1567 lcpage_t *lcp;
1568 u_int map, offset;
1569
1570 lp = l->l_proc->p_lwpctl;
1571 KASSERT(lp != NULL);
1572
1573 lcp = l->l_lcpage;
1574 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1575 KASSERT(offset < LWPCTL_PER_PAGE);
1576
1577 mutex_enter(&lp->lp_lock);
1578 lcp->lcp_nfree++;
1579 map = offset >> 5;
1580 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1581 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1582 lcp->lcp_rotor = map;
1583 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1584 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1585 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1586 }
1587 mutex_exit(&lp->lp_lock);
1588 }
1589
1590 /*
1591 * Process is exiting; tear down lwpctl state. This can only be safely
1592 * called by the last LWP in the process.
1593 */
1594 void
1595 lwp_ctl_exit(void)
1596 {
1597 lcpage_t *lcp, *next;
1598 lcproc_t *lp;
1599 proc_t *p;
1600 lwp_t *l;
1601
1602 l = curlwp;
1603 l->l_lwpctl = NULL;
1604 p = l->l_proc;
1605 lp = p->p_lwpctl;
1606
1607 KASSERT(lp != NULL);
1608 KASSERT(p->p_nlwps == 1);
1609
1610 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1611 next = TAILQ_NEXT(lcp, lcp_chain);
1612 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1613 lcp->lcp_kaddr + PAGE_SIZE);
1614 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1615 }
1616
1617 if (lp->lp_uao != NULL) {
1618 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1619 lp->lp_uva + LWPCTL_UAREA_SZ);
1620 }
1621
1622 mutex_destroy(&lp->lp_lock);
1623 kmem_free(lp, sizeof(*lp));
1624 p->p_lwpctl = NULL;
1625 }
1626
1627 #if defined(DDB)
1628 void
1629 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1630 {
1631 lwp_t *l;
1632
1633 LIST_FOREACH(l, &alllwp, l_list) {
1634 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1635
1636 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1637 continue;
1638 }
1639 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1640 (void *)addr, (void *)stack,
1641 (size_t)(addr - stack), l);
1642 }
1643 }
1644 #endif /* defined(DDB) */
1645