kern_lwp.c revision 1.87 1 /* $NetBSD: kern_lwp.c,v 1.87 2007/12/26 16:01:36 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit or thread of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp", also known as lwp_t.
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing concurrently in the kernel.
52 *
53 * Execution states
54 *
55 * At any given time, an LWP has overall state that is described by
56 * lwp::l_stat. The states are broken into two sets below. The first
57 * set is guaranteed to represent the absolute, current state of the
58 * LWP:
59 *
60 * LSONPROC
61 *
62 * On processor: the LWP is executing on a CPU, either in the
63 * kernel or in user space.
64 *
65 * LSRUN
66 *
67 * Runnable: the LWP is parked on a run queue, and may soon be
68 * chosen to run by a idle processor, or by a processor that
69 * has been asked to preempt a currently runnning but lower
70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 * then the LWP is not on a run queue, but may be soon.
72 *
73 * LSIDL
74 *
75 * Idle: the LWP has been created but has not yet executed,
76 * or it has ceased executing a unit of work and is waiting
77 * to be started again.
78 *
79 * LSSUSPENDED:
80 *
81 * Suspended: the LWP has had its execution suspended by
82 * another LWP in the same process using the _lwp_suspend()
83 * system call. User-level LWPs also enter the suspended
84 * state when the system is shutting down.
85 *
86 * The second set represent a "statement of intent" on behalf of the
87 * LWP. The LWP may in fact be executing on a processor, may be
88 * sleeping or idle. It is expected to take the necessary action to
89 * stop executing or become "running" again within a short timeframe.
90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91 * Importantly, in indicates that its state is tied to a CPU.
92 *
93 * LSZOMB:
94 *
95 * Dead or dying: the LWP has released most of its resources
96 * and is a) about to switch away into oblivion b) has already
97 * switched away. When it switches away, its few remaining
98 * resources can be collected.
99 *
100 * LSSLEEP:
101 *
102 * Sleeping: the LWP has entered itself onto a sleep queue, and
103 * has switched away or will switch away shortly to allow other
104 * LWPs to run on the CPU.
105 *
106 * LSSTOP:
107 *
108 * Stopped: the LWP has been stopped as a result of a job
109 * control signal, or as a result of the ptrace() interface.
110 *
111 * Stopped LWPs may run briefly within the kernel to handle
112 * signals that they receive, but will not return to user space
113 * until their process' state is changed away from stopped.
114 *
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP state may only be set when returning to
122 * user space in userret(), or when sleeping interruptably. The
123 * LSSUSPENDED state may only be set in userret(). Before setting
124 * those states, we try to ensure that the LWPs will release all
125 * locks that they hold, and at a minimum try to ensure that the
126 * LWP can be set runnable again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Other state transitions are possible with kernel threads (eg
145 * ONPROC -> IDL), but only happen under tightly controlled
146 * circumstances the side effects are understood.
147 *
148 * Locking
149 *
150 * The majority of fields in 'struct lwp' are covered by a single,
151 * general spin lock pointed to by lwp::l_mutex. The locks covering
152 * each field are documented in sys/lwp.h.
153 *
154 * State transitions must be made with the LWP's general lock held,
155 * and may cause the LWP's lock pointer to change. Manipulation of
156 * the general lock is not performed directly, but through calls to
157 * lwp_lock(), lwp_relock() and similar.
158 *
159 * States and their associated locks:
160 *
161 * LSONPROC, LSZOMB:
162 *
163 * Always covered by spc_lwplock, which protects running LWPs.
164 * This is a per-CPU lock.
165 *
166 * LSIDL, LSRUN:
167 *
168 * Always covered by spc_mutex, which protects the run queues.
169 * This may be a per-CPU lock, depending on the scheduler.
170 *
171 * LSSLEEP:
172 *
173 * Covered by a lock associated with the sleep queue that the
174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175 *
176 * LSSTOP, LSSUSPENDED:
177 *
178 * If the LWP was previously sleeping (l_wchan != NULL), then
179 * l_mutex references the sleep queue lock. If the LWP was
180 * runnable or on the CPU when halted, or has been removed from
181 * the sleep queue since halted, then the lock is spc_lwplock.
182 *
183 * The lock order is as follows:
184 *
185 * spc::spc_lwplock ->
186 * sleepq_t::sq_mutex ->
187 * tschain_t::tc_mutex ->
188 * spc::spc_mutex
189 *
190 * Each process has an scheduler state lock (proc::p_smutex), and a
191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192 * so on. When an LWP is to be entered into or removed from one of the
193 * following states, p_mutex must be held and the process wide counters
194 * adjusted:
195 *
196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197 *
198 * Note that an LWP is considered running or likely to run soon if in
199 * one of the following states. This affects the value of p_nrlwps:
200 *
201 * LSRUN, LSONPROC, LSSLEEP
202 *
203 * p_smutex does not need to be held when transitioning among these
204 * three states.
205 */
206
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.87 2007/12/26 16:01:36 ad Exp $");
209
210 #include "opt_ddb.h"
211 #include "opt_multiprocessor.h"
212 #include "opt_lockdebug.h"
213
214 #define _LWP_API_PRIVATE
215
216 #include <sys/param.h>
217 #include <sys/systm.h>
218 #include <sys/cpu.h>
219 #include <sys/pool.h>
220 #include <sys/proc.h>
221 #include <sys/syscallargs.h>
222 #include <sys/syscall_stats.h>
223 #include <sys/kauth.h>
224 #include <sys/sleepq.h>
225 #include <sys/user.h>
226 #include <sys/lockdebug.h>
227 #include <sys/kmem.h>
228 #include <sys/intr.h>
229 #include <sys/lwpctl.h>
230 #include <sys/atomic.h>
231
232 #include <uvm/uvm_extern.h>
233 #include <uvm/uvm_object.h>
234
235 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
236
237 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
238 &pool_allocator_nointr, IPL_NONE);
239
240 static pool_cache_t lwp_cache;
241 static specificdata_domain_t lwp_specificdata_domain;
242
243 void
244 lwpinit(void)
245 {
246
247 lwp_specificdata_domain = specificdata_domain_create();
248 KASSERT(lwp_specificdata_domain != NULL);
249 lwp_sys_init();
250 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
251 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
252 }
253
254 /*
255 * Set an suspended.
256 *
257 * Must be called with p_smutex held, and the LWP locked. Will unlock the
258 * LWP before return.
259 */
260 int
261 lwp_suspend(struct lwp *curl, struct lwp *t)
262 {
263 int error;
264
265 KASSERT(mutex_owned(&t->l_proc->p_smutex));
266 KASSERT(lwp_locked(t, NULL));
267
268 KASSERT(curl != t || curl->l_stat == LSONPROC);
269
270 /*
271 * If the current LWP has been told to exit, we must not suspend anyone
272 * else or deadlock could occur. We won't return to userspace.
273 */
274 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
275 lwp_unlock(t);
276 return (EDEADLK);
277 }
278
279 error = 0;
280
281 switch (t->l_stat) {
282 case LSRUN:
283 case LSONPROC:
284 t->l_flag |= LW_WSUSPEND;
285 lwp_need_userret(t);
286 lwp_unlock(t);
287 break;
288
289 case LSSLEEP:
290 t->l_flag |= LW_WSUSPEND;
291
292 /*
293 * Kick the LWP and try to get it to the kernel boundary
294 * so that it will release any locks that it holds.
295 * setrunnable() will release the lock.
296 */
297 if ((t->l_flag & LW_SINTR) != 0)
298 setrunnable(t);
299 else
300 lwp_unlock(t);
301 break;
302
303 case LSSUSPENDED:
304 lwp_unlock(t);
305 break;
306
307 case LSSTOP:
308 t->l_flag |= LW_WSUSPEND;
309 setrunnable(t);
310 break;
311
312 case LSIDL:
313 case LSZOMB:
314 error = EINTR; /* It's what Solaris does..... */
315 lwp_unlock(t);
316 break;
317 }
318
319 return (error);
320 }
321
322 /*
323 * Restart a suspended LWP.
324 *
325 * Must be called with p_smutex held, and the LWP locked. Will unlock the
326 * LWP before return.
327 */
328 void
329 lwp_continue(struct lwp *l)
330 {
331
332 KASSERT(mutex_owned(&l->l_proc->p_smutex));
333 KASSERT(lwp_locked(l, NULL));
334
335 /* If rebooting or not suspended, then just bail out. */
336 if ((l->l_flag & LW_WREBOOT) != 0) {
337 lwp_unlock(l);
338 return;
339 }
340
341 l->l_flag &= ~LW_WSUSPEND;
342
343 if (l->l_stat != LSSUSPENDED) {
344 lwp_unlock(l);
345 return;
346 }
347
348 /* setrunnable() will release the lock. */
349 setrunnable(l);
350 }
351
352 /*
353 * Wait for an LWP within the current process to exit. If 'lid' is
354 * non-zero, we are waiting for a specific LWP.
355 *
356 * Must be called with p->p_smutex held.
357 */
358 int
359 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
360 {
361 struct proc *p = l->l_proc;
362 struct lwp *l2;
363 int nfound, error;
364 lwpid_t curlid;
365 bool exiting;
366
367 KASSERT(mutex_owned(&p->p_smutex));
368
369 p->p_nlwpwait++;
370 l->l_waitingfor = lid;
371 curlid = l->l_lid;
372 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
373
374 for (;;) {
375 /*
376 * Avoid a race between exit1() and sigexit(): if the
377 * process is dumping core, then we need to bail out: call
378 * into lwp_userret() where we will be suspended until the
379 * deed is done.
380 */
381 if ((p->p_sflag & PS_WCORE) != 0) {
382 mutex_exit(&p->p_smutex);
383 lwp_userret(l);
384 #ifdef DIAGNOSTIC
385 panic("lwp_wait1");
386 #endif
387 /* NOTREACHED */
388 }
389
390 /*
391 * First off, drain any detached LWP that is waiting to be
392 * reaped.
393 */
394 while ((l2 = p->p_zomblwp) != NULL) {
395 p->p_zomblwp = NULL;
396 lwp_free(l2, false, false);/* releases proc mutex */
397 mutex_enter(&p->p_smutex);
398 }
399
400 /*
401 * Now look for an LWP to collect. If the whole process is
402 * exiting, count detached LWPs as eligible to be collected,
403 * but don't drain them here.
404 */
405 nfound = 0;
406 error = 0;
407 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
408 /*
409 * If a specific wait and the target is waiting on
410 * us, then avoid deadlock. This also traps LWPs
411 * that try to wait on themselves.
412 *
413 * Note that this does not handle more complicated
414 * cycles, like: t1 -> t2 -> t3 -> t1. The process
415 * can still be killed so it is not a major problem.
416 */
417 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
418 error = EDEADLK;
419 break;
420 }
421 if (l2 == l)
422 continue;
423 if ((l2->l_prflag & LPR_DETACHED) != 0) {
424 nfound += exiting;
425 continue;
426 }
427 if (lid != 0) {
428 if (l2->l_lid != lid)
429 continue;
430 /*
431 * Mark this LWP as the first waiter, if there
432 * is no other.
433 */
434 if (l2->l_waiter == 0)
435 l2->l_waiter = curlid;
436 } else if (l2->l_waiter != 0) {
437 /*
438 * It already has a waiter - so don't
439 * collect it. If the waiter doesn't
440 * grab it we'll get another chance
441 * later.
442 */
443 nfound++;
444 continue;
445 }
446 nfound++;
447
448 /* No need to lock the LWP in order to see LSZOMB. */
449 if (l2->l_stat != LSZOMB)
450 continue;
451
452 /*
453 * We're no longer waiting. Reset the "first waiter"
454 * pointer on the target, in case it was us.
455 */
456 l->l_waitingfor = 0;
457 l2->l_waiter = 0;
458 p->p_nlwpwait--;
459 if (departed)
460 *departed = l2->l_lid;
461 sched_lwp_collect(l2);
462
463 /* lwp_free() releases the proc lock. */
464 lwp_free(l2, false, false);
465 mutex_enter(&p->p_smutex);
466 return 0;
467 }
468
469 if (error != 0)
470 break;
471 if (nfound == 0) {
472 error = ESRCH;
473 break;
474 }
475
476 /*
477 * The kernel is careful to ensure that it can not deadlock
478 * when exiting - just keep waiting.
479 */
480 if (exiting) {
481 KASSERT(p->p_nlwps > 1);
482 cv_wait(&p->p_lwpcv, &p->p_smutex);
483 continue;
484 }
485
486 /*
487 * If all other LWPs are waiting for exits or suspends
488 * and the supply of zombies and potential zombies is
489 * exhausted, then we are about to deadlock.
490 *
491 * If the process is exiting (and this LWP is not the one
492 * that is coordinating the exit) then bail out now.
493 */
494 if ((p->p_sflag & PS_WEXIT) != 0 ||
495 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
496 error = EDEADLK;
497 break;
498 }
499
500 /*
501 * Sit around and wait for something to happen. We'll be
502 * awoken if any of the conditions examined change: if an
503 * LWP exits, is collected, or is detached.
504 */
505 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
506 break;
507 }
508
509 /*
510 * We didn't find any LWPs to collect, we may have received a
511 * signal, or some other condition has caused us to bail out.
512 *
513 * If waiting on a specific LWP, clear the waiters marker: some
514 * other LWP may want it. Then, kick all the remaining waiters
515 * so that they can re-check for zombies and for deadlock.
516 */
517 if (lid != 0) {
518 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
519 if (l2->l_lid == lid) {
520 if (l2->l_waiter == curlid)
521 l2->l_waiter = 0;
522 break;
523 }
524 }
525 }
526 p->p_nlwpwait--;
527 l->l_waitingfor = 0;
528 cv_broadcast(&p->p_lwpcv);
529
530 return error;
531 }
532
533 /*
534 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
535 * The new LWP is created in state LSIDL and must be set running,
536 * suspended, or stopped by the caller.
537 */
538 int
539 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
540 void *stack, size_t stacksize, void (*func)(void *), void *arg,
541 lwp_t **rnewlwpp, int sclass)
542 {
543 struct lwp *l2, *isfree;
544 turnstile_t *ts;
545
546 /*
547 * First off, reap any detached LWP waiting to be collected.
548 * We can re-use its LWP structure and turnstile.
549 */
550 isfree = NULL;
551 if (p2->p_zomblwp != NULL) {
552 mutex_enter(&p2->p_smutex);
553 if ((isfree = p2->p_zomblwp) != NULL) {
554 p2->p_zomblwp = NULL;
555 lwp_free(isfree, true, false);/* releases proc mutex */
556 } else
557 mutex_exit(&p2->p_smutex);
558 }
559 if (isfree == NULL) {
560 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
561 memset(l2, 0, sizeof(*l2));
562 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
563 SLIST_INIT(&l2->l_pi_lenders);
564 } else {
565 l2 = isfree;
566 ts = l2->l_ts;
567 KASSERT(l2->l_inheritedprio == -1);
568 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
569 memset(l2, 0, sizeof(*l2));
570 l2->l_ts = ts;
571 }
572
573 l2->l_stat = LSIDL;
574 l2->l_proc = p2;
575 l2->l_refcnt = 1;
576 l2->l_class = sclass;
577 l2->l_kpriority = l1->l_kpriority;
578 l2->l_kpribase = PRI_KERNEL;
579 l2->l_priority = l1->l_priority;
580 l2->l_inheritedprio = -1;
581 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
582 l2->l_cpu = l1->l_cpu;
583 l2->l_flag = inmem ? LW_INMEM : 0;
584
585 if (p2->p_flag & PK_SYSTEM) {
586 /*
587 * Mark it as a system process and not a candidate for
588 * swapping.
589 */
590 l2->l_flag |= LW_SYSTEM;
591 } else {
592 /* Look for a CPU to start */
593 l2->l_cpu = sched_takecpu(l2);
594 l2->l_mutex = l2->l_cpu->ci_schedstate.spc_mutex;
595 }
596
597 lwp_initspecific(l2);
598 sched_lwp_fork(l1, l2);
599 lwp_update_creds(l2);
600 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
601 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
602 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
603 cv_init(&l2->l_sigcv, "sigwait");
604 l2->l_syncobj = &sched_syncobj;
605
606 if (rnewlwpp != NULL)
607 *rnewlwpp = l2;
608
609 l2->l_addr = UAREA_TO_USER(uaddr);
610 uvm_lwp_fork(l1, l2, stack, stacksize, func,
611 (arg != NULL) ? arg : l2);
612
613 mutex_enter(&p2->p_smutex);
614
615 if ((flags & LWP_DETACHED) != 0) {
616 l2->l_prflag = LPR_DETACHED;
617 p2->p_ndlwps++;
618 } else
619 l2->l_prflag = 0;
620
621 l2->l_sigmask = l1->l_sigmask;
622 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
623 sigemptyset(&l2->l_sigpend.sp_set);
624
625 p2->p_nlwpid++;
626 if (p2->p_nlwpid == 0)
627 p2->p_nlwpid++;
628 l2->l_lid = p2->p_nlwpid;
629 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
630 p2->p_nlwps++;
631
632 mutex_exit(&p2->p_smutex);
633
634 mutex_enter(&proclist_lock);
635 LIST_INSERT_HEAD(&alllwp, l2, l_list);
636 mutex_exit(&proclist_lock);
637
638 SYSCALL_TIME_LWP_INIT(l2);
639
640 if (p2->p_emul->e_lwp_fork)
641 (*p2->p_emul->e_lwp_fork)(l1, l2);
642
643 return (0);
644 }
645
646 /*
647 * Called by MD code when a new LWP begins execution. Must be called
648 * with the previous LWP locked (so at splsched), or if there is no
649 * previous LWP, at splsched.
650 */
651 void
652 lwp_startup(struct lwp *prev, struct lwp *new)
653 {
654
655 if (prev != NULL) {
656 /*
657 * Normalize the count of the spin-mutexes, it was
658 * increased in mi_switch(). Unmark the state of
659 * context switch - it is finished for previous LWP.
660 */
661 curcpu()->ci_mtx_count++;
662 membar_exit();
663 prev->l_ctxswtch = 0;
664 }
665 spl0();
666 pmap_activate(new);
667 LOCKDEBUG_BARRIER(NULL, 0);
668 if ((new->l_pflag & LP_MPSAFE) == 0) {
669 KERNEL_LOCK(1, new);
670 }
671 }
672
673 /*
674 * Exit an LWP.
675 */
676 void
677 lwp_exit(struct lwp *l)
678 {
679 struct proc *p = l->l_proc;
680 struct lwp *l2;
681 bool current;
682
683 current = (l == curlwp);
684
685 KASSERT(current || l->l_stat == LSIDL);
686
687 /*
688 * Verify that we hold no locks other than the kernel lock.
689 */
690 #ifdef MULTIPROCESSOR
691 LOCKDEBUG_BARRIER(&kernel_lock, 0);
692 #else
693 LOCKDEBUG_BARRIER(NULL, 0);
694 #endif
695
696 /*
697 * If we are the last live LWP in a process, we need to exit the
698 * entire process. We do so with an exit status of zero, because
699 * it's a "controlled" exit, and because that's what Solaris does.
700 *
701 * We are not quite a zombie yet, but for accounting purposes we
702 * must increment the count of zombies here.
703 *
704 * Note: the last LWP's specificdata will be deleted here.
705 */
706 mutex_enter(&p->p_smutex);
707 if (p->p_nlwps - p->p_nzlwps == 1) {
708 KASSERT(current == true);
709 exit1(l, 0);
710 /* NOTREACHED */
711 }
712 p->p_nzlwps++;
713 mutex_exit(&p->p_smutex);
714
715 if (p->p_emul->e_lwp_exit)
716 (*p->p_emul->e_lwp_exit)(l);
717
718 /* Delete the specificdata while it's still safe to sleep. */
719 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
720
721 /*
722 * Release our cached credentials.
723 */
724 kauth_cred_free(l->l_cred);
725 callout_destroy(&l->l_timeout_ch);
726
727 /*
728 * While we can still block, mark the LWP as unswappable to
729 * prevent conflicts with the with the swapper.
730 */
731 if (current)
732 uvm_lwp_hold(l);
733
734 /*
735 * Remove the LWP from the global list.
736 */
737 mutex_enter(&proclist_lock);
738 mutex_enter(&proclist_mutex);
739 LIST_REMOVE(l, l_list);
740 mutex_exit(&proclist_mutex);
741 mutex_exit(&proclist_lock);
742
743 /*
744 * Get rid of all references to the LWP that others (e.g. procfs)
745 * may have, and mark the LWP as a zombie. If the LWP is detached,
746 * mark it waiting for collection in the proc structure. Note that
747 * before we can do that, we need to free any other dead, deatched
748 * LWP waiting to meet its maker.
749 *
750 * XXXSMP disable preemption.
751 */
752 mutex_enter(&p->p_smutex);
753 lwp_drainrefs(l);
754
755 if ((l->l_prflag & LPR_DETACHED) != 0) {
756 while ((l2 = p->p_zomblwp) != NULL) {
757 p->p_zomblwp = NULL;
758 lwp_free(l2, false, false);/* releases proc mutex */
759 mutex_enter(&p->p_smutex);
760 l->l_refcnt++;
761 lwp_drainrefs(l);
762 }
763 p->p_zomblwp = l;
764 }
765
766 /*
767 * If we find a pending signal for the process and we have been
768 * asked to check for signals, then we loose: arrange to have
769 * all other LWPs in the process check for signals.
770 */
771 if ((l->l_flag & LW_PENDSIG) != 0 &&
772 firstsig(&p->p_sigpend.sp_set) != 0) {
773 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
774 lwp_lock(l2);
775 l2->l_flag |= LW_PENDSIG;
776 lwp_unlock(l2);
777 }
778 }
779
780 lwp_lock(l);
781 l->l_stat = LSZOMB;
782 lwp_unlock(l);
783 p->p_nrlwps--;
784 cv_broadcast(&p->p_lwpcv);
785 if (l->l_lwpctl != NULL)
786 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
787 mutex_exit(&p->p_smutex);
788
789 /*
790 * We can no longer block. At this point, lwp_free() may already
791 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
792 *
793 * Free MD LWP resources.
794 */
795 #ifndef __NO_CPU_LWP_FREE
796 cpu_lwp_free(l, 0);
797 #endif
798
799 if (current) {
800 pmap_deactivate(l);
801
802 /*
803 * Release the kernel lock, and switch away into
804 * oblivion.
805 */
806 #ifdef notyet
807 /* XXXSMP hold in lwp_userret() */
808 KERNEL_UNLOCK_LAST(l);
809 #else
810 KERNEL_UNLOCK_ALL(l, NULL);
811 #endif
812 lwp_exit_switchaway(l);
813 }
814 }
815
816 void
817 lwp_exit_switchaway(struct lwp *l)
818 {
819 struct cpu_info *ci;
820 struct lwp *idlelwp;
821
822 /* Unlocked, but is for statistics only. */
823 uvmexp.swtch++;
824
825 (void)splsched();
826 l->l_flag &= ~LW_RUNNING;
827 ci = curcpu();
828 idlelwp = ci->ci_data.cpu_idlelwp;
829 idlelwp->l_stat = LSONPROC;
830
831 /*
832 * cpu_onproc must be updated with the CPU locked, as
833 * aston() may try to set a AST pending on the LWP (and
834 * it does so with the CPU locked). Otherwise, the LWP
835 * may be destroyed before the AST can be set, leading
836 * to a user-after-free.
837 */
838 spc_lock(ci);
839 ci->ci_data.cpu_onproc = idlelwp;
840 spc_unlock(ci);
841 cpu_switchto(NULL, idlelwp, false);
842 }
843
844 /*
845 * Free a dead LWP's remaining resources.
846 *
847 * XXXLWP limits.
848 */
849 void
850 lwp_free(struct lwp *l, bool recycle, bool last)
851 {
852 struct proc *p = l->l_proc;
853 ksiginfoq_t kq;
854
855 /*
856 * If this was not the last LWP in the process, then adjust
857 * counters and unlock.
858 */
859 if (!last) {
860 /*
861 * Add the LWP's run time to the process' base value.
862 * This needs to co-incide with coming off p_lwps.
863 */
864 bintime_add(&p->p_rtime, &l->l_rtime);
865 p->p_pctcpu += l->l_pctcpu;
866 LIST_REMOVE(l, l_sibling);
867 p->p_nlwps--;
868 p->p_nzlwps--;
869 if ((l->l_prflag & LPR_DETACHED) != 0)
870 p->p_ndlwps--;
871
872 /*
873 * Have any LWPs sleeping in lwp_wait() recheck for
874 * deadlock.
875 */
876 cv_broadcast(&p->p_lwpcv);
877 mutex_exit(&p->p_smutex);
878 }
879
880 #ifdef MULTIPROCESSOR
881 /*
882 * In the unlikely event that the LWP is still on the CPU,
883 * then spin until it has switched away. We need to release
884 * all locks to avoid deadlock against interrupt handlers on
885 * the target CPU.
886 */
887 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
888 int count;
889 (void)count; /* XXXgcc */
890 KERNEL_UNLOCK_ALL(curlwp, &count);
891 while ((l->l_flag & LW_RUNNING) != 0 ||
892 l->l_cpu->ci_curlwp == l)
893 SPINLOCK_BACKOFF_HOOK;
894 KERNEL_LOCK(count, curlwp);
895 }
896 #endif
897
898 /*
899 * Destroy the LWP's remaining signal information.
900 */
901 ksiginfo_queue_init(&kq);
902 sigclear(&l->l_sigpend, NULL, &kq);
903 ksiginfo_queue_drain(&kq);
904 cv_destroy(&l->l_sigcv);
905 mutex_destroy(&l->l_swaplock);
906
907 /*
908 * Free the LWP's turnstile and the LWP structure itself unless the
909 * caller wants to recycle them. Also, free the scheduler specific data.
910 *
911 * We can't return turnstile0 to the pool (it didn't come from it),
912 * so if it comes up just drop it quietly and move on.
913 *
914 * We don't recycle the VM resources at this time.
915 */
916 KERNEL_LOCK(1, curlwp); /* XXXSMP */
917
918 if (l->l_lwpctl != NULL)
919 lwp_ctl_free(l);
920 sched_lwp_exit(l);
921
922 if (!recycle && l->l_ts != &turnstile0)
923 pool_cache_put(turnstile_cache, l->l_ts);
924 #ifndef __NO_CPU_LWP_FREE
925 cpu_lwp_free2(l);
926 #endif
927 uvm_lwp_exit(l);
928 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
929 KASSERT(l->l_inheritedprio == -1);
930 if (!recycle)
931 pool_cache_put(lwp_cache, l);
932 KERNEL_UNLOCK_ONE(curlwp); /* XXXSMP */
933 }
934
935 /*
936 * Pick a LWP to represent the process for those operations which
937 * want information about a "process" that is actually associated
938 * with a LWP.
939 *
940 * If 'locking' is false, no locking or lock checks are performed.
941 * This is intended for use by DDB.
942 *
943 * We don't bother locking the LWP here, since code that uses this
944 * interface is broken by design and an exact match is not required.
945 */
946 struct lwp *
947 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
948 {
949 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
950 struct lwp *signalled;
951 int cnt;
952
953 if (locking) {
954 KASSERT(mutex_owned(&p->p_smutex));
955 }
956
957 /* Trivial case: only one LWP */
958 if (p->p_nlwps == 1) {
959 l = LIST_FIRST(&p->p_lwps);
960 if (nrlwps)
961 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
962 return l;
963 }
964
965 cnt = 0;
966 switch (p->p_stat) {
967 case SSTOP:
968 case SACTIVE:
969 /* Pick the most live LWP */
970 onproc = running = sleeping = stopped = suspended = NULL;
971 signalled = NULL;
972 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
973 if ((l->l_flag & LW_IDLE) != 0) {
974 continue;
975 }
976 if (l->l_lid == p->p_sigctx.ps_lwp)
977 signalled = l;
978 switch (l->l_stat) {
979 case LSONPROC:
980 onproc = l;
981 cnt++;
982 break;
983 case LSRUN:
984 running = l;
985 cnt++;
986 break;
987 case LSSLEEP:
988 sleeping = l;
989 break;
990 case LSSTOP:
991 stopped = l;
992 break;
993 case LSSUSPENDED:
994 suspended = l;
995 break;
996 }
997 }
998 if (nrlwps)
999 *nrlwps = cnt;
1000 if (signalled)
1001 l = signalled;
1002 else if (onproc)
1003 l = onproc;
1004 else if (running)
1005 l = running;
1006 else if (sleeping)
1007 l = sleeping;
1008 else if (stopped)
1009 l = stopped;
1010 else if (suspended)
1011 l = suspended;
1012 else
1013 break;
1014 return l;
1015 #ifdef DIAGNOSTIC
1016 case SIDL:
1017 case SZOMB:
1018 case SDYING:
1019 case SDEAD:
1020 if (locking)
1021 mutex_exit(&p->p_smutex);
1022 /* We have more than one LWP and we're in SIDL?
1023 * How'd that happen?
1024 */
1025 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1026 p->p_pid, p->p_comm, p->p_stat);
1027 break;
1028 default:
1029 if (locking)
1030 mutex_exit(&p->p_smutex);
1031 panic("Process %d (%s) in unknown state %d",
1032 p->p_pid, p->p_comm, p->p_stat);
1033 #endif
1034 }
1035
1036 if (locking)
1037 mutex_exit(&p->p_smutex);
1038 panic("proc_representative_lwp: couldn't find a lwp for process"
1039 " %d (%s)", p->p_pid, p->p_comm);
1040 /* NOTREACHED */
1041 return NULL;
1042 }
1043
1044 /*
1045 * Look up a live LWP within the speicifed process, and return it locked.
1046 *
1047 * Must be called with p->p_smutex held.
1048 */
1049 struct lwp *
1050 lwp_find(struct proc *p, int id)
1051 {
1052 struct lwp *l;
1053
1054 KASSERT(mutex_owned(&p->p_smutex));
1055
1056 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1057 if (l->l_lid == id)
1058 break;
1059 }
1060
1061 /*
1062 * No need to lock - all of these conditions will
1063 * be visible with the process level mutex held.
1064 */
1065 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1066 l = NULL;
1067
1068 return l;
1069 }
1070
1071 /*
1072 * Update an LWP's cached credentials to mirror the process' master copy.
1073 *
1074 * This happens early in the syscall path, on user trap, and on LWP
1075 * creation. A long-running LWP can also voluntarily choose to update
1076 * it's credentials by calling this routine. This may be called from
1077 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1078 */
1079 void
1080 lwp_update_creds(struct lwp *l)
1081 {
1082 kauth_cred_t oc;
1083 struct proc *p;
1084
1085 p = l->l_proc;
1086 oc = l->l_cred;
1087
1088 mutex_enter(&p->p_mutex);
1089 kauth_cred_hold(p->p_cred);
1090 l->l_cred = p->p_cred;
1091 mutex_exit(&p->p_mutex);
1092 if (oc != NULL) {
1093 KERNEL_LOCK(1, l); /* XXXSMP */
1094 kauth_cred_free(oc);
1095 KERNEL_UNLOCK_ONE(l); /* XXXSMP */
1096 }
1097 }
1098
1099 /*
1100 * Verify that an LWP is locked, and optionally verify that the lock matches
1101 * one we specify.
1102 */
1103 int
1104 lwp_locked(struct lwp *l, kmutex_t *mtx)
1105 {
1106 kmutex_t *cur = l->l_mutex;
1107
1108 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1109 }
1110
1111 /*
1112 * Lock an LWP.
1113 */
1114 void
1115 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1116 {
1117
1118 /*
1119 * XXXgcc ignoring kmutex_t * volatile on i386
1120 *
1121 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1122 */
1123 #if 1
1124 while (l->l_mutex != old) {
1125 #else
1126 for (;;) {
1127 #endif
1128 mutex_spin_exit(old);
1129 old = l->l_mutex;
1130 mutex_spin_enter(old);
1131
1132 /*
1133 * mutex_enter() will have posted a read barrier. Re-test
1134 * l->l_mutex. If it has changed, we need to try again.
1135 */
1136 #if 1
1137 }
1138 #else
1139 } while (__predict_false(l->l_mutex != old));
1140 #endif
1141 }
1142
1143 /*
1144 * Lend a new mutex to an LWP. The old mutex must be held.
1145 */
1146 void
1147 lwp_setlock(struct lwp *l, kmutex_t *new)
1148 {
1149
1150 KASSERT(mutex_owned(l->l_mutex));
1151
1152 membar_producer();
1153 l->l_mutex = new;
1154 }
1155
1156 /*
1157 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1158 * must be held.
1159 */
1160 void
1161 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1162 {
1163 kmutex_t *old;
1164
1165 KASSERT(mutex_owned(l->l_mutex));
1166
1167 old = l->l_mutex;
1168 membar_producer();
1169 l->l_mutex = new;
1170 mutex_spin_exit(old);
1171 }
1172
1173 /*
1174 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1175 * locked.
1176 */
1177 void
1178 lwp_relock(struct lwp *l, kmutex_t *new)
1179 {
1180 kmutex_t *old;
1181
1182 KASSERT(mutex_owned(l->l_mutex));
1183
1184 old = l->l_mutex;
1185 if (old != new) {
1186 mutex_spin_enter(new);
1187 l->l_mutex = new;
1188 mutex_spin_exit(old);
1189 }
1190 }
1191
1192 int
1193 lwp_trylock(struct lwp *l)
1194 {
1195 kmutex_t *old;
1196
1197 for (;;) {
1198 if (!mutex_tryenter(old = l->l_mutex))
1199 return 0;
1200 if (__predict_true(l->l_mutex == old))
1201 return 1;
1202 mutex_spin_exit(old);
1203 }
1204 }
1205
1206 /*
1207 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1208 * set.
1209 */
1210 void
1211 lwp_userret(struct lwp *l)
1212 {
1213 struct proc *p;
1214 void (*hook)(void);
1215 int sig;
1216
1217 p = l->l_proc;
1218
1219 #ifndef __HAVE_FAST_SOFTINTS
1220 /* Run pending soft interrupts. */
1221 if (l->l_cpu->ci_data.cpu_softints != 0)
1222 softint_overlay();
1223 #endif
1224
1225 /*
1226 * It should be safe to do this read unlocked on a multiprocessor
1227 * system..
1228 */
1229 while ((l->l_flag & LW_USERRET) != 0) {
1230 /*
1231 * Process pending signals first, unless the process
1232 * is dumping core or exiting, where we will instead
1233 * enter the L_WSUSPEND case below.
1234 */
1235 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1236 LW_PENDSIG) {
1237 KERNEL_LOCK(1, l); /* XXXSMP pool_put() below */
1238 mutex_enter(&p->p_smutex);
1239 while ((sig = issignal(l)) != 0)
1240 postsig(sig);
1241 mutex_exit(&p->p_smutex);
1242 KERNEL_UNLOCK_LAST(l); /* XXXSMP */
1243 }
1244
1245 /*
1246 * Core-dump or suspend pending.
1247 *
1248 * In case of core dump, suspend ourselves, so that the
1249 * kernel stack and therefore the userland registers saved
1250 * in the trapframe are around for coredump() to write them
1251 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1252 * will write the core file out once all other LWPs are
1253 * suspended.
1254 */
1255 if ((l->l_flag & LW_WSUSPEND) != 0) {
1256 mutex_enter(&p->p_smutex);
1257 p->p_nrlwps--;
1258 cv_broadcast(&p->p_lwpcv);
1259 lwp_lock(l);
1260 l->l_stat = LSSUSPENDED;
1261 mutex_exit(&p->p_smutex);
1262 mi_switch(l);
1263 }
1264
1265 /* Process is exiting. */
1266 if ((l->l_flag & LW_WEXIT) != 0) {
1267 KERNEL_LOCK(1, l);
1268 lwp_exit(l);
1269 KASSERT(0);
1270 /* NOTREACHED */
1271 }
1272
1273 /* Call userret hook; used by Linux emulation. */
1274 if ((l->l_flag & LW_WUSERRET) != 0) {
1275 lwp_lock(l);
1276 l->l_flag &= ~LW_WUSERRET;
1277 lwp_unlock(l);
1278 hook = p->p_userret;
1279 p->p_userret = NULL;
1280 (*hook)();
1281 }
1282 }
1283 }
1284
1285 /*
1286 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1287 */
1288 void
1289 lwp_need_userret(struct lwp *l)
1290 {
1291 KASSERT(lwp_locked(l, NULL));
1292
1293 /*
1294 * Since the tests in lwp_userret() are done unlocked, make sure
1295 * that the condition will be seen before forcing the LWP to enter
1296 * kernel mode.
1297 */
1298 membar_producer();
1299 cpu_signotify(l);
1300 }
1301
1302 /*
1303 * Add one reference to an LWP. This will prevent the LWP from
1304 * exiting, thus keep the lwp structure and PCB around to inspect.
1305 */
1306 void
1307 lwp_addref(struct lwp *l)
1308 {
1309
1310 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1311 KASSERT(l->l_stat != LSZOMB);
1312 KASSERT(l->l_refcnt != 0);
1313
1314 l->l_refcnt++;
1315 }
1316
1317 /*
1318 * Remove one reference to an LWP. If this is the last reference,
1319 * then we must finalize the LWP's death.
1320 */
1321 void
1322 lwp_delref(struct lwp *l)
1323 {
1324 struct proc *p = l->l_proc;
1325
1326 mutex_enter(&p->p_smutex);
1327 KASSERT(l->l_stat != LSZOMB);
1328 KASSERT(l->l_refcnt > 0);
1329 if (--l->l_refcnt == 0)
1330 cv_broadcast(&p->p_lwpcv);
1331 mutex_exit(&p->p_smutex);
1332 }
1333
1334 /*
1335 * Drain all references to the current LWP.
1336 */
1337 void
1338 lwp_drainrefs(struct lwp *l)
1339 {
1340 struct proc *p = l->l_proc;
1341
1342 KASSERT(mutex_owned(&p->p_smutex));
1343 KASSERT(l->l_refcnt != 0);
1344
1345 l->l_refcnt--;
1346 while (l->l_refcnt != 0)
1347 cv_wait(&p->p_lwpcv, &p->p_smutex);
1348 }
1349
1350 /*
1351 * lwp_specific_key_create --
1352 * Create a key for subsystem lwp-specific data.
1353 */
1354 int
1355 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1356 {
1357
1358 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1359 }
1360
1361 /*
1362 * lwp_specific_key_delete --
1363 * Delete a key for subsystem lwp-specific data.
1364 */
1365 void
1366 lwp_specific_key_delete(specificdata_key_t key)
1367 {
1368
1369 specificdata_key_delete(lwp_specificdata_domain, key);
1370 }
1371
1372 /*
1373 * lwp_initspecific --
1374 * Initialize an LWP's specificdata container.
1375 */
1376 void
1377 lwp_initspecific(struct lwp *l)
1378 {
1379 int error;
1380
1381 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1382 KASSERT(error == 0);
1383 }
1384
1385 /*
1386 * lwp_finispecific --
1387 * Finalize an LWP's specificdata container.
1388 */
1389 void
1390 lwp_finispecific(struct lwp *l)
1391 {
1392
1393 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1394 }
1395
1396 /*
1397 * lwp_getspecific --
1398 * Return lwp-specific data corresponding to the specified key.
1399 *
1400 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1401 * only its OWN SPECIFIC DATA. If it is necessary to access another
1402 * LWP's specifc data, care must be taken to ensure that doing so
1403 * would not cause internal data structure inconsistency (i.e. caller
1404 * can guarantee that the target LWP is not inside an lwp_getspecific()
1405 * or lwp_setspecific() call).
1406 */
1407 void *
1408 lwp_getspecific(specificdata_key_t key)
1409 {
1410
1411 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1412 &curlwp->l_specdataref, key));
1413 }
1414
1415 void *
1416 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1417 {
1418
1419 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1420 &l->l_specdataref, key));
1421 }
1422
1423 /*
1424 * lwp_setspecific --
1425 * Set lwp-specific data corresponding to the specified key.
1426 */
1427 void
1428 lwp_setspecific(specificdata_key_t key, void *data)
1429 {
1430
1431 specificdata_setspecific(lwp_specificdata_domain,
1432 &curlwp->l_specdataref, key, data);
1433 }
1434
1435 /*
1436 * Allocate a new lwpctl structure for a user LWP.
1437 */
1438 int
1439 lwp_ctl_alloc(vaddr_t *uaddr)
1440 {
1441 lcproc_t *lp;
1442 u_int bit, i, offset;
1443 struct uvm_object *uao;
1444 int error;
1445 lcpage_t *lcp;
1446 proc_t *p;
1447 lwp_t *l;
1448
1449 l = curlwp;
1450 p = l->l_proc;
1451
1452 if (l->l_lcpage != NULL) {
1453 lcp = l->l_lcpage;
1454 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1455 return (EINVAL);
1456 }
1457
1458 /* First time around, allocate header structure for the process. */
1459 if ((lp = p->p_lwpctl) == NULL) {
1460 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1461 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1462 lp->lp_uao = NULL;
1463 TAILQ_INIT(&lp->lp_pages);
1464 mutex_enter(&p->p_mutex);
1465 if (p->p_lwpctl == NULL) {
1466 p->p_lwpctl = lp;
1467 mutex_exit(&p->p_mutex);
1468 } else {
1469 mutex_exit(&p->p_mutex);
1470 mutex_destroy(&lp->lp_lock);
1471 kmem_free(lp, sizeof(*lp));
1472 lp = p->p_lwpctl;
1473 }
1474 }
1475
1476 /*
1477 * Set up an anonymous memory region to hold the shared pages.
1478 * Map them into the process' address space. The user vmspace
1479 * gets the first reference on the UAO.
1480 */
1481 mutex_enter(&lp->lp_lock);
1482 if (lp->lp_uao == NULL) {
1483 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1484 lp->lp_cur = 0;
1485 lp->lp_max = LWPCTL_UAREA_SZ;
1486 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1487 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1488 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1489 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1490 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1491 if (error != 0) {
1492 uao_detach(lp->lp_uao);
1493 lp->lp_uao = NULL;
1494 mutex_exit(&lp->lp_lock);
1495 return error;
1496 }
1497 }
1498
1499 /* Get a free block and allocate for this LWP. */
1500 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1501 if (lcp->lcp_nfree != 0)
1502 break;
1503 }
1504 if (lcp == NULL) {
1505 /* Nothing available - try to set up a free page. */
1506 if (lp->lp_cur == lp->lp_max) {
1507 mutex_exit(&lp->lp_lock);
1508 return ENOMEM;
1509 }
1510 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1511 if (lcp == NULL) {
1512 mutex_exit(&lp->lp_lock);
1513 return ENOMEM;
1514 }
1515 /*
1516 * Wire the next page down in kernel space. Since this
1517 * is a new mapping, we must add a reference.
1518 */
1519 uao = lp->lp_uao;
1520 (*uao->pgops->pgo_reference)(uao);
1521 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1522 uao, lp->lp_cur, PAGE_SIZE,
1523 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1524 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1525 if (error == 0)
1526 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1527 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1528 if (error != 0) {
1529 mutex_exit(&lp->lp_lock);
1530 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1531 (*uao->pgops->pgo_detach)(uao);
1532 return error;
1533 }
1534 /* Prepare the page descriptor and link into the list. */
1535 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1536 lp->lp_cur += PAGE_SIZE;
1537 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1538 lcp->lcp_rotor = 0;
1539 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1540 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1541 }
1542 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1543 if (++i >= LWPCTL_BITMAP_ENTRIES)
1544 i = 0;
1545 }
1546 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1547 lcp->lcp_bitmap[i] ^= (1 << bit);
1548 lcp->lcp_rotor = i;
1549 lcp->lcp_nfree--;
1550 l->l_lcpage = lcp;
1551 offset = (i << 5) + bit;
1552 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1553 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1554 mutex_exit(&lp->lp_lock);
1555
1556 l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
1557
1558 return 0;
1559 }
1560
1561 /*
1562 * Free an lwpctl structure back to the per-process list.
1563 */
1564 void
1565 lwp_ctl_free(lwp_t *l)
1566 {
1567 lcproc_t *lp;
1568 lcpage_t *lcp;
1569 u_int map, offset;
1570
1571 lp = l->l_proc->p_lwpctl;
1572 KASSERT(lp != NULL);
1573
1574 lcp = l->l_lcpage;
1575 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1576 KASSERT(offset < LWPCTL_PER_PAGE);
1577
1578 mutex_enter(&lp->lp_lock);
1579 lcp->lcp_nfree++;
1580 map = offset >> 5;
1581 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1582 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1583 lcp->lcp_rotor = map;
1584 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1585 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1586 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1587 }
1588 mutex_exit(&lp->lp_lock);
1589 }
1590
1591 /*
1592 * Process is exiting; tear down lwpctl state. This can only be safely
1593 * called by the last LWP in the process.
1594 */
1595 void
1596 lwp_ctl_exit(void)
1597 {
1598 lcpage_t *lcp, *next;
1599 lcproc_t *lp;
1600 proc_t *p;
1601 lwp_t *l;
1602
1603 l = curlwp;
1604 l->l_lwpctl = NULL;
1605 p = l->l_proc;
1606 lp = p->p_lwpctl;
1607
1608 KASSERT(lp != NULL);
1609 KASSERT(p->p_nlwps == 1);
1610
1611 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1612 next = TAILQ_NEXT(lcp, lcp_chain);
1613 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1614 lcp->lcp_kaddr + PAGE_SIZE);
1615 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1616 }
1617
1618 if (lp->lp_uao != NULL) {
1619 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1620 lp->lp_uva + LWPCTL_UAREA_SZ);
1621 }
1622
1623 mutex_destroy(&lp->lp_lock);
1624 kmem_free(lp, sizeof(*lp));
1625 p->p_lwpctl = NULL;
1626 }
1627
1628 #if defined(DDB)
1629 void
1630 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1631 {
1632 lwp_t *l;
1633
1634 LIST_FOREACH(l, &alllwp, l_list) {
1635 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1636
1637 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1638 continue;
1639 }
1640 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1641 (void *)addr, (void *)stack,
1642 (size_t)(addr - stack), l);
1643 }
1644 }
1645 #endif /* defined(DDB) */
1646