kern_lwp.c revision 1.91 1 /* $NetBSD: kern_lwp.c,v 1.91 2008/01/15 03:37:11 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Overview
41 *
42 * Lightweight processes (LWPs) are the basic unit or thread of
43 * execution within the kernel. The core state of an LWP is described
44 * by "struct lwp", also known as lwp_t.
45 *
46 * Each LWP is contained within a process (described by "struct proc"),
47 * Every process contains at least one LWP, but may contain more. The
48 * process describes attributes shared among all of its LWPs such as a
49 * private address space, global execution state (stopped, active,
50 * zombie, ...), signal disposition and so on. On a multiprocessor
51 * machine, multiple LWPs be executing concurrently in the kernel.
52 *
53 * Execution states
54 *
55 * At any given time, an LWP has overall state that is described by
56 * lwp::l_stat. The states are broken into two sets below. The first
57 * set is guaranteed to represent the absolute, current state of the
58 * LWP:
59 *
60 * LSONPROC
61 *
62 * On processor: the LWP is executing on a CPU, either in the
63 * kernel or in user space.
64 *
65 * LSRUN
66 *
67 * Runnable: the LWP is parked on a run queue, and may soon be
68 * chosen to run by a idle processor, or by a processor that
69 * has been asked to preempt a currently runnning but lower
70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0)
71 * then the LWP is not on a run queue, but may be soon.
72 *
73 * LSIDL
74 *
75 * Idle: the LWP has been created but has not yet executed,
76 * or it has ceased executing a unit of work and is waiting
77 * to be started again.
78 *
79 * LSSUSPENDED:
80 *
81 * Suspended: the LWP has had its execution suspended by
82 * another LWP in the same process using the _lwp_suspend()
83 * system call. User-level LWPs also enter the suspended
84 * state when the system is shutting down.
85 *
86 * The second set represent a "statement of intent" on behalf of the
87 * LWP. The LWP may in fact be executing on a processor, may be
88 * sleeping or idle. It is expected to take the necessary action to
89 * stop executing or become "running" again within a short timeframe.
90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91 * Importantly, in indicates that its state is tied to a CPU.
92 *
93 * LSZOMB:
94 *
95 * Dead or dying: the LWP has released most of its resources
96 * and is a) about to switch away into oblivion b) has already
97 * switched away. When it switches away, its few remaining
98 * resources can be collected.
99 *
100 * LSSLEEP:
101 *
102 * Sleeping: the LWP has entered itself onto a sleep queue, and
103 * has switched away or will switch away shortly to allow other
104 * LWPs to run on the CPU.
105 *
106 * LSSTOP:
107 *
108 * Stopped: the LWP has been stopped as a result of a job
109 * control signal, or as a result of the ptrace() interface.
110 *
111 * Stopped LWPs may run briefly within the kernel to handle
112 * signals that they receive, but will not return to user space
113 * until their process' state is changed away from stopped.
114 *
115 * Single LWPs within a process can not be set stopped
116 * selectively: all actions that can stop or continue LWPs
117 * occur at the process level.
118 *
119 * State transitions
120 *
121 * Note that the LSSTOP state may only be set when returning to
122 * user space in userret(), or when sleeping interruptably. The
123 * LSSUSPENDED state may only be set in userret(). Before setting
124 * those states, we try to ensure that the LWPs will release all
125 * locks that they hold, and at a minimum try to ensure that the
126 * LWP can be set runnable again by a signal.
127 *
128 * LWPs may transition states in the following ways:
129 *
130 * RUN -------> ONPROC ONPROC -----> RUN
131 * > STOPPED > SLEEP
132 * > SUSPENDED > STOPPED
133 * > SUSPENDED
134 * > ZOMB
135 *
136 * STOPPED ---> RUN SUSPENDED --> RUN
137 * > SLEEP > SLEEP
138 *
139 * SLEEP -----> ONPROC IDL --------> RUN
140 * > RUN > SUSPENDED
141 * > STOPPED > STOPPED
142 * > SUSPENDED
143 *
144 * Other state transitions are possible with kernel threads (eg
145 * ONPROC -> IDL), but only happen under tightly controlled
146 * circumstances the side effects are understood.
147 *
148 * Locking
149 *
150 * The majority of fields in 'struct lwp' are covered by a single,
151 * general spin lock pointed to by lwp::l_mutex. The locks covering
152 * each field are documented in sys/lwp.h.
153 *
154 * State transitions must be made with the LWP's general lock held,
155 * and may cause the LWP's lock pointer to change. Manipulation of
156 * the general lock is not performed directly, but through calls to
157 * lwp_lock(), lwp_relock() and similar.
158 *
159 * States and their associated locks:
160 *
161 * LSONPROC, LSZOMB:
162 *
163 * Always covered by spc_lwplock, which protects running LWPs.
164 * This is a per-CPU lock.
165 *
166 * LSIDL, LSRUN:
167 *
168 * Always covered by spc_mutex, which protects the run queues.
169 * This may be a per-CPU lock, depending on the scheduler.
170 *
171 * LSSLEEP:
172 *
173 * Covered by a lock associated with the sleep queue that the
174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175 *
176 * LSSTOP, LSSUSPENDED:
177 *
178 * If the LWP was previously sleeping (l_wchan != NULL), then
179 * l_mutex references the sleep queue lock. If the LWP was
180 * runnable or on the CPU when halted, or has been removed from
181 * the sleep queue since halted, then the lock is spc_lwplock.
182 *
183 * The lock order is as follows:
184 *
185 * spc::spc_lwplock ->
186 * sleepq_t::sq_mutex ->
187 * tschain_t::tc_mutex ->
188 * spc::spc_mutex
189 *
190 * Each process has an scheduler state lock (proc::p_smutex), and a
191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192 * so on. When an LWP is to be entered into or removed from one of the
193 * following states, p_mutex must be held and the process wide counters
194 * adjusted:
195 *
196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197 *
198 * Note that an LWP is considered running or likely to run soon if in
199 * one of the following states. This affects the value of p_nrlwps:
200 *
201 * LSRUN, LSONPROC, LSSLEEP
202 *
203 * p_smutex does not need to be held when transitioning among these
204 * three states.
205 */
206
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.91 2008/01/15 03:37:11 rmind Exp $");
209
210 #include "opt_ddb.h"
211 #include "opt_multiprocessor.h"
212 #include "opt_lockdebug.h"
213
214 #define _LWP_API_PRIVATE
215
216 #include <sys/param.h>
217 #include <sys/systm.h>
218 #include <sys/cpu.h>
219 #include <sys/pool.h>
220 #include <sys/proc.h>
221 #include <sys/syscallargs.h>
222 #include <sys/syscall_stats.h>
223 #include <sys/kauth.h>
224 #include <sys/sleepq.h>
225 #include <sys/user.h>
226 #include <sys/lockdebug.h>
227 #include <sys/kmem.h>
228 #include <sys/pset.h>
229 #include <sys/intr.h>
230 #include <sys/lwpctl.h>
231 #include <sys/atomic.h>
232
233 #include <uvm/uvm_extern.h>
234 #include <uvm/uvm_object.h>
235
236 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp);
237
238 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
239 &pool_allocator_nointr, IPL_NONE);
240
241 static pool_cache_t lwp_cache;
242 static specificdata_domain_t lwp_specificdata_domain;
243
244 void
245 lwpinit(void)
246 {
247
248 lwp_specificdata_domain = specificdata_domain_create();
249 KASSERT(lwp_specificdata_domain != NULL);
250 lwp_sys_init();
251 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
252 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
253 }
254
255 /*
256 * Set an suspended.
257 *
258 * Must be called with p_smutex held, and the LWP locked. Will unlock the
259 * LWP before return.
260 */
261 int
262 lwp_suspend(struct lwp *curl, struct lwp *t)
263 {
264 int error;
265
266 KASSERT(mutex_owned(&t->l_proc->p_smutex));
267 KASSERT(lwp_locked(t, NULL));
268
269 KASSERT(curl != t || curl->l_stat == LSONPROC);
270
271 /*
272 * If the current LWP has been told to exit, we must not suspend anyone
273 * else or deadlock could occur. We won't return to userspace.
274 */
275 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
276 lwp_unlock(t);
277 return (EDEADLK);
278 }
279
280 error = 0;
281
282 switch (t->l_stat) {
283 case LSRUN:
284 case LSONPROC:
285 t->l_flag |= LW_WSUSPEND;
286 lwp_need_userret(t);
287 lwp_unlock(t);
288 break;
289
290 case LSSLEEP:
291 t->l_flag |= LW_WSUSPEND;
292
293 /*
294 * Kick the LWP and try to get it to the kernel boundary
295 * so that it will release any locks that it holds.
296 * setrunnable() will release the lock.
297 */
298 if ((t->l_flag & LW_SINTR) != 0)
299 setrunnable(t);
300 else
301 lwp_unlock(t);
302 break;
303
304 case LSSUSPENDED:
305 lwp_unlock(t);
306 break;
307
308 case LSSTOP:
309 t->l_flag |= LW_WSUSPEND;
310 setrunnable(t);
311 break;
312
313 case LSIDL:
314 case LSZOMB:
315 error = EINTR; /* It's what Solaris does..... */
316 lwp_unlock(t);
317 break;
318 }
319
320 return (error);
321 }
322
323 /*
324 * Restart a suspended LWP.
325 *
326 * Must be called with p_smutex held, and the LWP locked. Will unlock the
327 * LWP before return.
328 */
329 void
330 lwp_continue(struct lwp *l)
331 {
332
333 KASSERT(mutex_owned(&l->l_proc->p_smutex));
334 KASSERT(lwp_locked(l, NULL));
335
336 /* If rebooting or not suspended, then just bail out. */
337 if ((l->l_flag & LW_WREBOOT) != 0) {
338 lwp_unlock(l);
339 return;
340 }
341
342 l->l_flag &= ~LW_WSUSPEND;
343
344 if (l->l_stat != LSSUSPENDED) {
345 lwp_unlock(l);
346 return;
347 }
348
349 /* setrunnable() will release the lock. */
350 setrunnable(l);
351 }
352
353 /*
354 * Wait for an LWP within the current process to exit. If 'lid' is
355 * non-zero, we are waiting for a specific LWP.
356 *
357 * Must be called with p->p_smutex held.
358 */
359 int
360 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
361 {
362 struct proc *p = l->l_proc;
363 struct lwp *l2;
364 int nfound, error;
365 lwpid_t curlid;
366 bool exiting;
367
368 KASSERT(mutex_owned(&p->p_smutex));
369
370 p->p_nlwpwait++;
371 l->l_waitingfor = lid;
372 curlid = l->l_lid;
373 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
374
375 for (;;) {
376 /*
377 * Avoid a race between exit1() and sigexit(): if the
378 * process is dumping core, then we need to bail out: call
379 * into lwp_userret() where we will be suspended until the
380 * deed is done.
381 */
382 if ((p->p_sflag & PS_WCORE) != 0) {
383 mutex_exit(&p->p_smutex);
384 lwp_userret(l);
385 #ifdef DIAGNOSTIC
386 panic("lwp_wait1");
387 #endif
388 /* NOTREACHED */
389 }
390
391 /*
392 * First off, drain any detached LWP that is waiting to be
393 * reaped.
394 */
395 while ((l2 = p->p_zomblwp) != NULL) {
396 p->p_zomblwp = NULL;
397 lwp_free(l2, false, false);/* releases proc mutex */
398 mutex_enter(&p->p_smutex);
399 }
400
401 /*
402 * Now look for an LWP to collect. If the whole process is
403 * exiting, count detached LWPs as eligible to be collected,
404 * but don't drain them here.
405 */
406 nfound = 0;
407 error = 0;
408 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
409 /*
410 * If a specific wait and the target is waiting on
411 * us, then avoid deadlock. This also traps LWPs
412 * that try to wait on themselves.
413 *
414 * Note that this does not handle more complicated
415 * cycles, like: t1 -> t2 -> t3 -> t1. The process
416 * can still be killed so it is not a major problem.
417 */
418 if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
419 error = EDEADLK;
420 break;
421 }
422 if (l2 == l)
423 continue;
424 if ((l2->l_prflag & LPR_DETACHED) != 0) {
425 nfound += exiting;
426 continue;
427 }
428 if (lid != 0) {
429 if (l2->l_lid != lid)
430 continue;
431 /*
432 * Mark this LWP as the first waiter, if there
433 * is no other.
434 */
435 if (l2->l_waiter == 0)
436 l2->l_waiter = curlid;
437 } else if (l2->l_waiter != 0) {
438 /*
439 * It already has a waiter - so don't
440 * collect it. If the waiter doesn't
441 * grab it we'll get another chance
442 * later.
443 */
444 nfound++;
445 continue;
446 }
447 nfound++;
448
449 /* No need to lock the LWP in order to see LSZOMB. */
450 if (l2->l_stat != LSZOMB)
451 continue;
452
453 /*
454 * We're no longer waiting. Reset the "first waiter"
455 * pointer on the target, in case it was us.
456 */
457 l->l_waitingfor = 0;
458 l2->l_waiter = 0;
459 p->p_nlwpwait--;
460 if (departed)
461 *departed = l2->l_lid;
462 sched_lwp_collect(l2);
463
464 /* lwp_free() releases the proc lock. */
465 lwp_free(l2, false, false);
466 mutex_enter(&p->p_smutex);
467 return 0;
468 }
469
470 if (error != 0)
471 break;
472 if (nfound == 0) {
473 error = ESRCH;
474 break;
475 }
476
477 /*
478 * The kernel is careful to ensure that it can not deadlock
479 * when exiting - just keep waiting.
480 */
481 if (exiting) {
482 KASSERT(p->p_nlwps > 1);
483 cv_wait(&p->p_lwpcv, &p->p_smutex);
484 continue;
485 }
486
487 /*
488 * If all other LWPs are waiting for exits or suspends
489 * and the supply of zombies and potential zombies is
490 * exhausted, then we are about to deadlock.
491 *
492 * If the process is exiting (and this LWP is not the one
493 * that is coordinating the exit) then bail out now.
494 */
495 if ((p->p_sflag & PS_WEXIT) != 0 ||
496 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
497 error = EDEADLK;
498 break;
499 }
500
501 /*
502 * Sit around and wait for something to happen. We'll be
503 * awoken if any of the conditions examined change: if an
504 * LWP exits, is collected, or is detached.
505 */
506 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
507 break;
508 }
509
510 /*
511 * We didn't find any LWPs to collect, we may have received a
512 * signal, or some other condition has caused us to bail out.
513 *
514 * If waiting on a specific LWP, clear the waiters marker: some
515 * other LWP may want it. Then, kick all the remaining waiters
516 * so that they can re-check for zombies and for deadlock.
517 */
518 if (lid != 0) {
519 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
520 if (l2->l_lid == lid) {
521 if (l2->l_waiter == curlid)
522 l2->l_waiter = 0;
523 break;
524 }
525 }
526 }
527 p->p_nlwpwait--;
528 l->l_waitingfor = 0;
529 cv_broadcast(&p->p_lwpcv);
530
531 return error;
532 }
533
534 /*
535 * Create a new LWP within process 'p2', using LWP 'l1' as a template.
536 * The new LWP is created in state LSIDL and must be set running,
537 * suspended, or stopped by the caller.
538 */
539 int
540 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
541 void *stack, size_t stacksize, void (*func)(void *), void *arg,
542 lwp_t **rnewlwpp, int sclass)
543 {
544 struct lwp *l2, *isfree;
545 turnstile_t *ts;
546
547 /*
548 * First off, reap any detached LWP waiting to be collected.
549 * We can re-use its LWP structure and turnstile.
550 */
551 isfree = NULL;
552 if (p2->p_zomblwp != NULL) {
553 mutex_enter(&p2->p_smutex);
554 if ((isfree = p2->p_zomblwp) != NULL) {
555 p2->p_zomblwp = NULL;
556 lwp_free(isfree, true, false);/* releases proc mutex */
557 } else
558 mutex_exit(&p2->p_smutex);
559 }
560 if (isfree == NULL) {
561 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
562 memset(l2, 0, sizeof(*l2));
563 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
564 SLIST_INIT(&l2->l_pi_lenders);
565 } else {
566 l2 = isfree;
567 ts = l2->l_ts;
568 KASSERT(l2->l_inheritedprio == -1);
569 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
570 memset(l2, 0, sizeof(*l2));
571 l2->l_ts = ts;
572 }
573
574 l2->l_stat = LSIDL;
575 l2->l_proc = p2;
576 l2->l_refcnt = 1;
577 l2->l_class = sclass;
578 l2->l_kpriority = l1->l_kpriority;
579 l2->l_kpribase = PRI_KERNEL;
580 l2->l_priority = l1->l_priority;
581 l2->l_inheritedprio = -1;
582 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
583 l2->l_cpu = l1->l_cpu;
584 l2->l_flag = inmem ? LW_INMEM : 0;
585 l2->l_pflag = LP_MPSAFE;
586
587 if (p2->p_flag & PK_SYSTEM) {
588 /* Mark it as a system LWP and not a candidate for swapping */
589 l2->l_flag |= LW_SYSTEM;
590 }
591
592 lwp_initspecific(l2);
593 sched_lwp_fork(l1, l2);
594 lwp_update_creds(l2);
595 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
596 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
597 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
598 cv_init(&l2->l_sigcv, "sigwait");
599 l2->l_syncobj = &sched_syncobj;
600
601 if (rnewlwpp != NULL)
602 *rnewlwpp = l2;
603
604 l2->l_addr = UAREA_TO_USER(uaddr);
605 uvm_lwp_fork(l1, l2, stack, stacksize, func,
606 (arg != NULL) ? arg : l2);
607
608 mutex_enter(&p2->p_smutex);
609
610 if ((flags & LWP_DETACHED) != 0) {
611 l2->l_prflag = LPR_DETACHED;
612 p2->p_ndlwps++;
613 } else
614 l2->l_prflag = 0;
615
616 l2->l_sigmask = l1->l_sigmask;
617 CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
618 sigemptyset(&l2->l_sigpend.sp_set);
619
620 p2->p_nlwpid++;
621 if (p2->p_nlwpid == 0)
622 p2->p_nlwpid++;
623 l2->l_lid = p2->p_nlwpid;
624 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
625 p2->p_nlwps++;
626
627 mutex_exit(&p2->p_smutex);
628
629 mutex_enter(&proclist_lock);
630 LIST_INSERT_HEAD(&alllwp, l2, l_list);
631 mutex_exit(&proclist_lock);
632
633 if ((p2->p_flag & PK_SYSTEM) == 0) {
634 /* Locking is needed, since LWP is in the list of all LWPs */
635 lwp_lock(l2);
636 /* Inherit a processor-set */
637 l2->l_psid = l1->l_psid;
638 /* Inherit an affinity */
639 memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
640 /* Look for a CPU to start */
641 l2->l_cpu = sched_takecpu(l2);
642 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
643 }
644
645 SYSCALL_TIME_LWP_INIT(l2);
646
647 if (p2->p_emul->e_lwp_fork)
648 (*p2->p_emul->e_lwp_fork)(l1, l2);
649
650 return (0);
651 }
652
653 /*
654 * Called by MD code when a new LWP begins execution. Must be called
655 * with the previous LWP locked (so at splsched), or if there is no
656 * previous LWP, at splsched.
657 */
658 void
659 lwp_startup(struct lwp *prev, struct lwp *new)
660 {
661
662 if (prev != NULL) {
663 /*
664 * Normalize the count of the spin-mutexes, it was
665 * increased in mi_switch(). Unmark the state of
666 * context switch - it is finished for previous LWP.
667 */
668 curcpu()->ci_mtx_count++;
669 membar_exit();
670 prev->l_ctxswtch = 0;
671 }
672 spl0();
673 pmap_activate(new);
674 LOCKDEBUG_BARRIER(NULL, 0);
675 if ((new->l_pflag & LP_MPSAFE) == 0) {
676 KERNEL_LOCK(1, new);
677 }
678 }
679
680 /*
681 * Exit an LWP.
682 */
683 void
684 lwp_exit(struct lwp *l)
685 {
686 struct proc *p = l->l_proc;
687 struct lwp *l2;
688 bool current;
689
690 current = (l == curlwp);
691
692 KASSERT(current || l->l_stat == LSIDL);
693
694 /*
695 * Verify that we hold no locks other than the kernel lock.
696 */
697 #ifdef MULTIPROCESSOR
698 LOCKDEBUG_BARRIER(&kernel_lock, 0);
699 #else
700 LOCKDEBUG_BARRIER(NULL, 0);
701 #endif
702
703 /*
704 * If we are the last live LWP in a process, we need to exit the
705 * entire process. We do so with an exit status of zero, because
706 * it's a "controlled" exit, and because that's what Solaris does.
707 *
708 * We are not quite a zombie yet, but for accounting purposes we
709 * must increment the count of zombies here.
710 *
711 * Note: the last LWP's specificdata will be deleted here.
712 */
713 mutex_enter(&p->p_smutex);
714 if (p->p_nlwps - p->p_nzlwps == 1) {
715 KASSERT(current == true);
716 /* XXXSMP kernel_lock not held */
717 exit1(l, 0);
718 /* NOTREACHED */
719 }
720 p->p_nzlwps++;
721 mutex_exit(&p->p_smutex);
722
723 if (p->p_emul->e_lwp_exit)
724 (*p->p_emul->e_lwp_exit)(l);
725
726 /* Delete the specificdata while it's still safe to sleep. */
727 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
728
729 /*
730 * Release our cached credentials.
731 */
732 kauth_cred_free(l->l_cred);
733 callout_destroy(&l->l_timeout_ch);
734
735 /*
736 * While we can still block, mark the LWP as unswappable to
737 * prevent conflicts with the with the swapper.
738 */
739 if (current)
740 uvm_lwp_hold(l);
741
742 /*
743 * Remove the LWP from the global list.
744 */
745 mutex_enter(&proclist_lock);
746 mutex_enter(&proclist_mutex);
747 LIST_REMOVE(l, l_list);
748 mutex_exit(&proclist_mutex);
749 mutex_exit(&proclist_lock);
750
751 /*
752 * Get rid of all references to the LWP that others (e.g. procfs)
753 * may have, and mark the LWP as a zombie. If the LWP is detached,
754 * mark it waiting for collection in the proc structure. Note that
755 * before we can do that, we need to free any other dead, deatched
756 * LWP waiting to meet its maker.
757 *
758 * XXXSMP disable preemption.
759 */
760 mutex_enter(&p->p_smutex);
761 lwp_drainrefs(l);
762
763 if ((l->l_prflag & LPR_DETACHED) != 0) {
764 while ((l2 = p->p_zomblwp) != NULL) {
765 p->p_zomblwp = NULL;
766 lwp_free(l2, false, false);/* releases proc mutex */
767 mutex_enter(&p->p_smutex);
768 l->l_refcnt++;
769 lwp_drainrefs(l);
770 }
771 p->p_zomblwp = l;
772 }
773
774 /*
775 * If we find a pending signal for the process and we have been
776 * asked to check for signals, then we loose: arrange to have
777 * all other LWPs in the process check for signals.
778 */
779 if ((l->l_flag & LW_PENDSIG) != 0 &&
780 firstsig(&p->p_sigpend.sp_set) != 0) {
781 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
782 lwp_lock(l2);
783 l2->l_flag |= LW_PENDSIG;
784 lwp_unlock(l2);
785 }
786 }
787
788 lwp_lock(l);
789 l->l_stat = LSZOMB;
790 if (l->l_name != NULL)
791 strcpy(l->l_name, "(zombie)");
792 lwp_unlock(l);
793 p->p_nrlwps--;
794 cv_broadcast(&p->p_lwpcv);
795 if (l->l_lwpctl != NULL)
796 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
797 mutex_exit(&p->p_smutex);
798
799 /*
800 * We can no longer block. At this point, lwp_free() may already
801 * be gunning for us. On a multi-CPU system, we may be off p_lwps.
802 *
803 * Free MD LWP resources.
804 */
805 #ifndef __NO_CPU_LWP_FREE
806 cpu_lwp_free(l, 0);
807 #endif
808
809 if (current) {
810 pmap_deactivate(l);
811
812 /*
813 * Release the kernel lock, and switch away into
814 * oblivion.
815 */
816 #ifdef notyet
817 /* XXXSMP hold in lwp_userret() */
818 KERNEL_UNLOCK_LAST(l);
819 #else
820 KERNEL_UNLOCK_ALL(l, NULL);
821 #endif
822 lwp_exit_switchaway(l);
823 }
824 }
825
826 void
827 lwp_exit_switchaway(struct lwp *l)
828 {
829 struct cpu_info *ci;
830 struct lwp *idlelwp;
831
832 /* Unlocked, but is for statistics only. */
833 uvmexp.swtch++;
834
835 (void)splsched();
836 l->l_flag &= ~LW_RUNNING;
837 ci = curcpu();
838 idlelwp = ci->ci_data.cpu_idlelwp;
839 idlelwp->l_stat = LSONPROC;
840
841 /*
842 * cpu_onproc must be updated with the CPU locked, as
843 * aston() may try to set a AST pending on the LWP (and
844 * it does so with the CPU locked). Otherwise, the LWP
845 * may be destroyed before the AST can be set, leading
846 * to a user-after-free.
847 */
848 spc_lock(ci);
849 ci->ci_data.cpu_onproc = idlelwp;
850 spc_unlock(ci);
851 cpu_switchto(NULL, idlelwp, false);
852 }
853
854 /*
855 * Free a dead LWP's remaining resources.
856 *
857 * XXXLWP limits.
858 */
859 void
860 lwp_free(struct lwp *l, bool recycle, bool last)
861 {
862 struct proc *p = l->l_proc;
863 ksiginfoq_t kq;
864
865 /*
866 * If this was not the last LWP in the process, then adjust
867 * counters and unlock.
868 */
869 if (!last) {
870 /*
871 * Add the LWP's run time to the process' base value.
872 * This needs to co-incide with coming off p_lwps.
873 */
874 bintime_add(&p->p_rtime, &l->l_rtime);
875 p->p_pctcpu += l->l_pctcpu;
876 LIST_REMOVE(l, l_sibling);
877 p->p_nlwps--;
878 p->p_nzlwps--;
879 if ((l->l_prflag & LPR_DETACHED) != 0)
880 p->p_ndlwps--;
881
882 /*
883 * Have any LWPs sleeping in lwp_wait() recheck for
884 * deadlock.
885 */
886 cv_broadcast(&p->p_lwpcv);
887 mutex_exit(&p->p_smutex);
888 }
889
890 #ifdef MULTIPROCESSOR
891 /*
892 * In the unlikely event that the LWP is still on the CPU,
893 * then spin until it has switched away. We need to release
894 * all locks to avoid deadlock against interrupt handlers on
895 * the target CPU.
896 */
897 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
898 int count;
899 (void)count; /* XXXgcc */
900 KERNEL_UNLOCK_ALL(curlwp, &count);
901 while ((l->l_flag & LW_RUNNING) != 0 ||
902 l->l_cpu->ci_curlwp == l)
903 SPINLOCK_BACKOFF_HOOK;
904 KERNEL_LOCK(count, curlwp);
905 }
906 #endif
907
908 /*
909 * Destroy the LWP's remaining signal information.
910 */
911 ksiginfo_queue_init(&kq);
912 sigclear(&l->l_sigpend, NULL, &kq);
913 ksiginfo_queue_drain(&kq);
914 cv_destroy(&l->l_sigcv);
915 mutex_destroy(&l->l_swaplock);
916
917 /*
918 * Free the LWP's turnstile and the LWP structure itself unless the
919 * caller wants to recycle them. Also, free the scheduler specific data.
920 *
921 * We can't return turnstile0 to the pool (it didn't come from it),
922 * so if it comes up just drop it quietly and move on.
923 *
924 * We don't recycle the VM resources at this time.
925 */
926 if (l->l_lwpctl != NULL)
927 lwp_ctl_free(l);
928 sched_lwp_exit(l);
929
930 if (!recycle && l->l_ts != &turnstile0)
931 pool_cache_put(turnstile_cache, l->l_ts);
932 if (l->l_name != NULL)
933 kmem_free(l->l_name, MAXCOMLEN);
934 #ifndef __NO_CPU_LWP_FREE
935 cpu_lwp_free2(l);
936 #endif
937 uvm_lwp_exit(l);
938 KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
939 KASSERT(l->l_inheritedprio == -1);
940 if (!recycle)
941 pool_cache_put(lwp_cache, l);
942 }
943
944 /*
945 * Pick a LWP to represent the process for those operations which
946 * want information about a "process" that is actually associated
947 * with a LWP.
948 *
949 * If 'locking' is false, no locking or lock checks are performed.
950 * This is intended for use by DDB.
951 *
952 * We don't bother locking the LWP here, since code that uses this
953 * interface is broken by design and an exact match is not required.
954 */
955 struct lwp *
956 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
957 {
958 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
959 struct lwp *signalled;
960 int cnt;
961
962 if (locking) {
963 KASSERT(mutex_owned(&p->p_smutex));
964 }
965
966 /* Trivial case: only one LWP */
967 if (p->p_nlwps == 1) {
968 l = LIST_FIRST(&p->p_lwps);
969 if (nrlwps)
970 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
971 return l;
972 }
973
974 cnt = 0;
975 switch (p->p_stat) {
976 case SSTOP:
977 case SACTIVE:
978 /* Pick the most live LWP */
979 onproc = running = sleeping = stopped = suspended = NULL;
980 signalled = NULL;
981 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
982 if ((l->l_flag & LW_IDLE) != 0) {
983 continue;
984 }
985 if (l->l_lid == p->p_sigctx.ps_lwp)
986 signalled = l;
987 switch (l->l_stat) {
988 case LSONPROC:
989 onproc = l;
990 cnt++;
991 break;
992 case LSRUN:
993 running = l;
994 cnt++;
995 break;
996 case LSSLEEP:
997 sleeping = l;
998 break;
999 case LSSTOP:
1000 stopped = l;
1001 break;
1002 case LSSUSPENDED:
1003 suspended = l;
1004 break;
1005 }
1006 }
1007 if (nrlwps)
1008 *nrlwps = cnt;
1009 if (signalled)
1010 l = signalled;
1011 else if (onproc)
1012 l = onproc;
1013 else if (running)
1014 l = running;
1015 else if (sleeping)
1016 l = sleeping;
1017 else if (stopped)
1018 l = stopped;
1019 else if (suspended)
1020 l = suspended;
1021 else
1022 break;
1023 return l;
1024 #ifdef DIAGNOSTIC
1025 case SIDL:
1026 case SZOMB:
1027 case SDYING:
1028 case SDEAD:
1029 if (locking)
1030 mutex_exit(&p->p_smutex);
1031 /* We have more than one LWP and we're in SIDL?
1032 * How'd that happen?
1033 */
1034 panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1035 p->p_pid, p->p_comm, p->p_stat);
1036 break;
1037 default:
1038 if (locking)
1039 mutex_exit(&p->p_smutex);
1040 panic("Process %d (%s) in unknown state %d",
1041 p->p_pid, p->p_comm, p->p_stat);
1042 #endif
1043 }
1044
1045 if (locking)
1046 mutex_exit(&p->p_smutex);
1047 panic("proc_representative_lwp: couldn't find a lwp for process"
1048 " %d (%s)", p->p_pid, p->p_comm);
1049 /* NOTREACHED */
1050 return NULL;
1051 }
1052
1053 /*
1054 * Migrate the LWP to the another CPU. Unlocks the LWP.
1055 */
1056 void
1057 lwp_migrate(lwp_t *l, struct cpu_info *ci)
1058 {
1059 struct schedstate_percpu *spc;
1060 KASSERT(lwp_locked(l, NULL));
1061
1062 if (l->l_cpu == ci) {
1063 lwp_unlock(l);
1064 return;
1065 }
1066
1067 spc = &ci->ci_schedstate;
1068 switch (l->l_stat) {
1069 case LSRUN:
1070 if (l->l_flag & LW_INMEM) {
1071 l->l_target_cpu = ci;
1072 break;
1073 }
1074 case LSIDL:
1075 l->l_cpu = ci;
1076 lwp_unlock_to(l, spc->spc_mutex);
1077 KASSERT(!mutex_owned(spc->spc_mutex));
1078 return;
1079 case LSSLEEP:
1080 l->l_cpu = ci;
1081 break;
1082 case LSSTOP:
1083 case LSSUSPENDED:
1084 if (l->l_wchan != NULL) {
1085 l->l_cpu = ci;
1086 break;
1087 }
1088 case LSONPROC:
1089 l->l_target_cpu = ci;
1090 break;
1091 }
1092 lwp_unlock(l);
1093 }
1094
1095 /*
1096 * Find the LWP in the process.
1097 * On success - returns LWP locked.
1098 */
1099 struct lwp *
1100 lwp_find2(pid_t pid, lwpid_t lid)
1101 {
1102 proc_t *p;
1103 lwp_t *l;
1104
1105 /* Find the process */
1106 p = p_find(pid, PFIND_UNLOCK_FAIL);
1107 if (p == NULL)
1108 return NULL;
1109 mutex_enter(&p->p_smutex);
1110 mutex_exit(&proclist_lock);
1111
1112 /* Find the thread */
1113 l = lwp_find(p, lid);
1114 if (l != NULL)
1115 lwp_lock(l);
1116 mutex_exit(&p->p_smutex);
1117
1118 return l;
1119 }
1120
1121 /*
1122 * Look up a live LWP within the speicifed process, and return it locked.
1123 *
1124 * Must be called with p->p_smutex held.
1125 */
1126 struct lwp *
1127 lwp_find(struct proc *p, int id)
1128 {
1129 struct lwp *l;
1130
1131 KASSERT(mutex_owned(&p->p_smutex));
1132
1133 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1134 if (l->l_lid == id)
1135 break;
1136 }
1137
1138 /*
1139 * No need to lock - all of these conditions will
1140 * be visible with the process level mutex held.
1141 */
1142 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1143 l = NULL;
1144
1145 return l;
1146 }
1147
1148 /*
1149 * Update an LWP's cached credentials to mirror the process' master copy.
1150 *
1151 * This happens early in the syscall path, on user trap, and on LWP
1152 * creation. A long-running LWP can also voluntarily choose to update
1153 * it's credentials by calling this routine. This may be called from
1154 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1155 */
1156 void
1157 lwp_update_creds(struct lwp *l)
1158 {
1159 kauth_cred_t oc;
1160 struct proc *p;
1161
1162 p = l->l_proc;
1163 oc = l->l_cred;
1164
1165 mutex_enter(&p->p_mutex);
1166 kauth_cred_hold(p->p_cred);
1167 l->l_cred = p->p_cred;
1168 mutex_exit(&p->p_mutex);
1169 if (oc != NULL)
1170 kauth_cred_free(oc);
1171 }
1172
1173 /*
1174 * Verify that an LWP is locked, and optionally verify that the lock matches
1175 * one we specify.
1176 */
1177 int
1178 lwp_locked(struct lwp *l, kmutex_t *mtx)
1179 {
1180 kmutex_t *cur = l->l_mutex;
1181
1182 return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1183 }
1184
1185 /*
1186 * Lock an LWP.
1187 */
1188 void
1189 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1190 {
1191
1192 /*
1193 * XXXgcc ignoring kmutex_t * volatile on i386
1194 *
1195 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1196 */
1197 #if 1
1198 while (l->l_mutex != old) {
1199 #else
1200 for (;;) {
1201 #endif
1202 mutex_spin_exit(old);
1203 old = l->l_mutex;
1204 mutex_spin_enter(old);
1205
1206 /*
1207 * mutex_enter() will have posted a read barrier. Re-test
1208 * l->l_mutex. If it has changed, we need to try again.
1209 */
1210 #if 1
1211 }
1212 #else
1213 } while (__predict_false(l->l_mutex != old));
1214 #endif
1215 }
1216
1217 /*
1218 * Lend a new mutex to an LWP. The old mutex must be held.
1219 */
1220 void
1221 lwp_setlock(struct lwp *l, kmutex_t *new)
1222 {
1223
1224 KASSERT(mutex_owned(l->l_mutex));
1225
1226 membar_producer();
1227 l->l_mutex = new;
1228 }
1229
1230 /*
1231 * Lend a new mutex to an LWP, and release the old mutex. The old mutex
1232 * must be held.
1233 */
1234 void
1235 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1236 {
1237 kmutex_t *old;
1238
1239 KASSERT(mutex_owned(l->l_mutex));
1240
1241 old = l->l_mutex;
1242 membar_producer();
1243 l->l_mutex = new;
1244 mutex_spin_exit(old);
1245 }
1246
1247 /*
1248 * Acquire a new mutex, and donate it to an LWP. The LWP must already be
1249 * locked.
1250 */
1251 void
1252 lwp_relock(struct lwp *l, kmutex_t *new)
1253 {
1254 kmutex_t *old;
1255
1256 KASSERT(mutex_owned(l->l_mutex));
1257
1258 old = l->l_mutex;
1259 if (old != new) {
1260 mutex_spin_enter(new);
1261 l->l_mutex = new;
1262 mutex_spin_exit(old);
1263 }
1264 }
1265
1266 int
1267 lwp_trylock(struct lwp *l)
1268 {
1269 kmutex_t *old;
1270
1271 for (;;) {
1272 if (!mutex_tryenter(old = l->l_mutex))
1273 return 0;
1274 if (__predict_true(l->l_mutex == old))
1275 return 1;
1276 mutex_spin_exit(old);
1277 }
1278 }
1279
1280 /*
1281 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
1282 * set.
1283 */
1284 void
1285 lwp_userret(struct lwp *l)
1286 {
1287 struct proc *p;
1288 void (*hook)(void);
1289 int sig;
1290
1291 p = l->l_proc;
1292
1293 #ifndef __HAVE_FAST_SOFTINTS
1294 /* Run pending soft interrupts. */
1295 if (l->l_cpu->ci_data.cpu_softints != 0)
1296 softint_overlay();
1297 #endif
1298
1299 /*
1300 * It should be safe to do this read unlocked on a multiprocessor
1301 * system..
1302 */
1303 while ((l->l_flag & LW_USERRET) != 0) {
1304 /*
1305 * Process pending signals first, unless the process
1306 * is dumping core or exiting, where we will instead
1307 * enter the L_WSUSPEND case below.
1308 */
1309 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1310 LW_PENDSIG) {
1311 mutex_enter(&p->p_smutex);
1312 while ((sig = issignal(l)) != 0)
1313 postsig(sig);
1314 mutex_exit(&p->p_smutex);
1315 }
1316
1317 /*
1318 * Core-dump or suspend pending.
1319 *
1320 * In case of core dump, suspend ourselves, so that the
1321 * kernel stack and therefore the userland registers saved
1322 * in the trapframe are around for coredump() to write them
1323 * out. We issue a wakeup on p->p_lwpcv so that sigexit()
1324 * will write the core file out once all other LWPs are
1325 * suspended.
1326 */
1327 if ((l->l_flag & LW_WSUSPEND) != 0) {
1328 mutex_enter(&p->p_smutex);
1329 p->p_nrlwps--;
1330 cv_broadcast(&p->p_lwpcv);
1331 lwp_lock(l);
1332 l->l_stat = LSSUSPENDED;
1333 mutex_exit(&p->p_smutex);
1334 mi_switch(l);
1335 }
1336
1337 /* Process is exiting. */
1338 if ((l->l_flag & LW_WEXIT) != 0) {
1339 lwp_exit(l);
1340 KASSERT(0);
1341 /* NOTREACHED */
1342 }
1343
1344 /* Call userret hook; used by Linux emulation. */
1345 if ((l->l_flag & LW_WUSERRET) != 0) {
1346 lwp_lock(l);
1347 l->l_flag &= ~LW_WUSERRET;
1348 lwp_unlock(l);
1349 hook = p->p_userret;
1350 p->p_userret = NULL;
1351 (*hook)();
1352 }
1353 }
1354 }
1355
1356 /*
1357 * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1358 */
1359 void
1360 lwp_need_userret(struct lwp *l)
1361 {
1362 KASSERT(lwp_locked(l, NULL));
1363
1364 /*
1365 * Since the tests in lwp_userret() are done unlocked, make sure
1366 * that the condition will be seen before forcing the LWP to enter
1367 * kernel mode.
1368 */
1369 membar_producer();
1370 cpu_signotify(l);
1371 }
1372
1373 /*
1374 * Add one reference to an LWP. This will prevent the LWP from
1375 * exiting, thus keep the lwp structure and PCB around to inspect.
1376 */
1377 void
1378 lwp_addref(struct lwp *l)
1379 {
1380
1381 KASSERT(mutex_owned(&l->l_proc->p_smutex));
1382 KASSERT(l->l_stat != LSZOMB);
1383 KASSERT(l->l_refcnt != 0);
1384
1385 l->l_refcnt++;
1386 }
1387
1388 /*
1389 * Remove one reference to an LWP. If this is the last reference,
1390 * then we must finalize the LWP's death.
1391 */
1392 void
1393 lwp_delref(struct lwp *l)
1394 {
1395 struct proc *p = l->l_proc;
1396
1397 mutex_enter(&p->p_smutex);
1398 KASSERT(l->l_stat != LSZOMB);
1399 KASSERT(l->l_refcnt > 0);
1400 if (--l->l_refcnt == 0)
1401 cv_broadcast(&p->p_lwpcv);
1402 mutex_exit(&p->p_smutex);
1403 }
1404
1405 /*
1406 * Drain all references to the current LWP.
1407 */
1408 void
1409 lwp_drainrefs(struct lwp *l)
1410 {
1411 struct proc *p = l->l_proc;
1412
1413 KASSERT(mutex_owned(&p->p_smutex));
1414 KASSERT(l->l_refcnt != 0);
1415
1416 l->l_refcnt--;
1417 while (l->l_refcnt != 0)
1418 cv_wait(&p->p_lwpcv, &p->p_smutex);
1419 }
1420
1421 /*
1422 * lwp_specific_key_create --
1423 * Create a key for subsystem lwp-specific data.
1424 */
1425 int
1426 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1427 {
1428
1429 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1430 }
1431
1432 /*
1433 * lwp_specific_key_delete --
1434 * Delete a key for subsystem lwp-specific data.
1435 */
1436 void
1437 lwp_specific_key_delete(specificdata_key_t key)
1438 {
1439
1440 specificdata_key_delete(lwp_specificdata_domain, key);
1441 }
1442
1443 /*
1444 * lwp_initspecific --
1445 * Initialize an LWP's specificdata container.
1446 */
1447 void
1448 lwp_initspecific(struct lwp *l)
1449 {
1450 int error;
1451
1452 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1453 KASSERT(error == 0);
1454 }
1455
1456 /*
1457 * lwp_finispecific --
1458 * Finalize an LWP's specificdata container.
1459 */
1460 void
1461 lwp_finispecific(struct lwp *l)
1462 {
1463
1464 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1465 }
1466
1467 /*
1468 * lwp_getspecific --
1469 * Return lwp-specific data corresponding to the specified key.
1470 *
1471 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access
1472 * only its OWN SPECIFIC DATA. If it is necessary to access another
1473 * LWP's specifc data, care must be taken to ensure that doing so
1474 * would not cause internal data structure inconsistency (i.e. caller
1475 * can guarantee that the target LWP is not inside an lwp_getspecific()
1476 * or lwp_setspecific() call).
1477 */
1478 void *
1479 lwp_getspecific(specificdata_key_t key)
1480 {
1481
1482 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1483 &curlwp->l_specdataref, key));
1484 }
1485
1486 void *
1487 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1488 {
1489
1490 return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1491 &l->l_specdataref, key));
1492 }
1493
1494 /*
1495 * lwp_setspecific --
1496 * Set lwp-specific data corresponding to the specified key.
1497 */
1498 void
1499 lwp_setspecific(specificdata_key_t key, void *data)
1500 {
1501
1502 specificdata_setspecific(lwp_specificdata_domain,
1503 &curlwp->l_specdataref, key, data);
1504 }
1505
1506 /*
1507 * Allocate a new lwpctl structure for a user LWP.
1508 */
1509 int
1510 lwp_ctl_alloc(vaddr_t *uaddr)
1511 {
1512 lcproc_t *lp;
1513 u_int bit, i, offset;
1514 struct uvm_object *uao;
1515 int error;
1516 lcpage_t *lcp;
1517 proc_t *p;
1518 lwp_t *l;
1519
1520 l = curlwp;
1521 p = l->l_proc;
1522
1523 if (l->l_lcpage != NULL) {
1524 lcp = l->l_lcpage;
1525 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1526 return (EINVAL);
1527 }
1528
1529 /* First time around, allocate header structure for the process. */
1530 if ((lp = p->p_lwpctl) == NULL) {
1531 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1532 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1533 lp->lp_uao = NULL;
1534 TAILQ_INIT(&lp->lp_pages);
1535 mutex_enter(&p->p_mutex);
1536 if (p->p_lwpctl == NULL) {
1537 p->p_lwpctl = lp;
1538 mutex_exit(&p->p_mutex);
1539 } else {
1540 mutex_exit(&p->p_mutex);
1541 mutex_destroy(&lp->lp_lock);
1542 kmem_free(lp, sizeof(*lp));
1543 lp = p->p_lwpctl;
1544 }
1545 }
1546
1547 /*
1548 * Set up an anonymous memory region to hold the shared pages.
1549 * Map them into the process' address space. The user vmspace
1550 * gets the first reference on the UAO.
1551 */
1552 mutex_enter(&lp->lp_lock);
1553 if (lp->lp_uao == NULL) {
1554 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1555 lp->lp_cur = 0;
1556 lp->lp_max = LWPCTL_UAREA_SZ;
1557 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1558 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1559 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1560 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1561 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1562 if (error != 0) {
1563 uao_detach(lp->lp_uao);
1564 lp->lp_uao = NULL;
1565 mutex_exit(&lp->lp_lock);
1566 return error;
1567 }
1568 }
1569
1570 /* Get a free block and allocate for this LWP. */
1571 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1572 if (lcp->lcp_nfree != 0)
1573 break;
1574 }
1575 if (lcp == NULL) {
1576 /* Nothing available - try to set up a free page. */
1577 if (lp->lp_cur == lp->lp_max) {
1578 mutex_exit(&lp->lp_lock);
1579 return ENOMEM;
1580 }
1581 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1582 if (lcp == NULL) {
1583 mutex_exit(&lp->lp_lock);
1584 return ENOMEM;
1585 }
1586 /*
1587 * Wire the next page down in kernel space. Since this
1588 * is a new mapping, we must add a reference.
1589 */
1590 uao = lp->lp_uao;
1591 (*uao->pgops->pgo_reference)(uao);
1592 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1593 uao, lp->lp_cur, PAGE_SIZE,
1594 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1595 UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1596 if (error != 0) {
1597 mutex_exit(&lp->lp_lock);
1598 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1599 (*uao->pgops->pgo_detach)(uao);
1600 return error;
1601 }
1602 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1603 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1604 if (error != 0) {
1605 mutex_exit(&lp->lp_lock);
1606 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1607 lcp->lcp_kaddr + PAGE_SIZE);
1608 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1609 return error;
1610 }
1611 /* Prepare the page descriptor and link into the list. */
1612 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1613 lp->lp_cur += PAGE_SIZE;
1614 lcp->lcp_nfree = LWPCTL_PER_PAGE;
1615 lcp->lcp_rotor = 0;
1616 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1617 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1618 }
1619 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1620 if (++i >= LWPCTL_BITMAP_ENTRIES)
1621 i = 0;
1622 }
1623 bit = ffs(lcp->lcp_bitmap[i]) - 1;
1624 lcp->lcp_bitmap[i] ^= (1 << bit);
1625 lcp->lcp_rotor = i;
1626 lcp->lcp_nfree--;
1627 l->l_lcpage = lcp;
1628 offset = (i << 5) + bit;
1629 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1630 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1631 mutex_exit(&lp->lp_lock);
1632
1633 l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
1634
1635 return 0;
1636 }
1637
1638 /*
1639 * Free an lwpctl structure back to the per-process list.
1640 */
1641 void
1642 lwp_ctl_free(lwp_t *l)
1643 {
1644 lcproc_t *lp;
1645 lcpage_t *lcp;
1646 u_int map, offset;
1647
1648 lp = l->l_proc->p_lwpctl;
1649 KASSERT(lp != NULL);
1650
1651 lcp = l->l_lcpage;
1652 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1653 KASSERT(offset < LWPCTL_PER_PAGE);
1654
1655 mutex_enter(&lp->lp_lock);
1656 lcp->lcp_nfree++;
1657 map = offset >> 5;
1658 lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1659 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1660 lcp->lcp_rotor = map;
1661 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1662 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1663 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1664 }
1665 mutex_exit(&lp->lp_lock);
1666 }
1667
1668 /*
1669 * Process is exiting; tear down lwpctl state. This can only be safely
1670 * called by the last LWP in the process.
1671 */
1672 void
1673 lwp_ctl_exit(void)
1674 {
1675 lcpage_t *lcp, *next;
1676 lcproc_t *lp;
1677 proc_t *p;
1678 lwp_t *l;
1679
1680 l = curlwp;
1681 l->l_lwpctl = NULL;
1682 p = l->l_proc;
1683 lp = p->p_lwpctl;
1684
1685 KASSERT(lp != NULL);
1686 KASSERT(p->p_nlwps == 1);
1687
1688 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1689 next = TAILQ_NEXT(lcp, lcp_chain);
1690 uvm_unmap(kernel_map, lcp->lcp_kaddr,
1691 lcp->lcp_kaddr + PAGE_SIZE);
1692 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1693 }
1694
1695 if (lp->lp_uao != NULL) {
1696 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1697 lp->lp_uva + LWPCTL_UAREA_SZ);
1698 }
1699
1700 mutex_destroy(&lp->lp_lock);
1701 kmem_free(lp, sizeof(*lp));
1702 p->p_lwpctl = NULL;
1703 }
1704
1705 #if defined(DDB)
1706 void
1707 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1708 {
1709 lwp_t *l;
1710
1711 LIST_FOREACH(l, &alllwp, l_list) {
1712 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1713
1714 if (addr < stack || stack + KSTACK_SIZE <= addr) {
1715 continue;
1716 }
1717 (*pr)("%p is %p+%zu, LWP %p's stack\n",
1718 (void *)addr, (void *)stack,
1719 (size_t)(addr - stack), l);
1720 }
1721 }
1722 #endif /* defined(DDB) */
1723