kern_malloc.c revision 1.11 1 1.11 cgd /* $NetBSD: kern_malloc.c,v 1.11 1995/05/01 22:39:11 cgd Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.8 cgd * Copyright (c) 1987, 1991, 1993
5 1.8 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd *
35 1.9 cgd * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
36 1.1 cgd */
37 1.1 cgd
38 1.7 mycroft #include <sys/param.h>
39 1.7 mycroft #include <sys/proc.h>
40 1.8 cgd #include <sys/map.h>
41 1.7 mycroft #include <sys/kernel.h>
42 1.7 mycroft #include <sys/malloc.h>
43 1.7 mycroft
44 1.7 mycroft #include <vm/vm.h>
45 1.7 mycroft #include <vm/vm_kern.h>
46 1.1 cgd
47 1.1 cgd struct kmembuckets bucket[MINBUCKET + 16];
48 1.8 cgd struct kmemstats kmemstats[M_LAST];
49 1.1 cgd struct kmemusage *kmemusage;
50 1.1 cgd char *kmembase, *kmemlimit;
51 1.1 cgd char *memname[] = INITKMEMNAMES;
52 1.1 cgd
53 1.8 cgd #ifdef DIAGNOSTIC
54 1.8 cgd /*
55 1.8 cgd * This structure provides a set of masks to catch unaligned frees.
56 1.8 cgd */
57 1.8 cgd long addrmask[] = { 0,
58 1.8 cgd 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
59 1.8 cgd 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
60 1.8 cgd 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
61 1.8 cgd 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
62 1.8 cgd };
63 1.8 cgd
64 1.8 cgd /*
65 1.8 cgd * The WEIRD_ADDR is used as known text to copy into free objects so
66 1.8 cgd * that modifications after frees can be detected.
67 1.8 cgd */
68 1.8 cgd #define WEIRD_ADDR 0xdeadbeef
69 1.8 cgd #define MAX_COPY 32
70 1.8 cgd
71 1.8 cgd /*
72 1.11 cgd * Normally the freelist structure is used only to hold the list pointer
73 1.11 cgd * for free objects. However, when running with diagnostics, the first
74 1.11 cgd * 8 bytes of the structure is unused except for diagnostic information,
75 1.11 cgd * and the free list pointer is at offst 8 in the structure. Since the
76 1.11 cgd * first 8 bytes is the portion of the structure most often modified, this
77 1.11 cgd * helps to detect memory reuse problems and avoid free list corruption.
78 1.8 cgd */
79 1.8 cgd struct freelist {
80 1.11 cgd int32_t spare0;
81 1.11 cgd int16_t type;
82 1.11 cgd int16_t spare1;
83 1.8 cgd caddr_t next;
84 1.8 cgd };
85 1.8 cgd #else /* !DIAGNOSTIC */
86 1.8 cgd struct freelist {
87 1.8 cgd caddr_t next;
88 1.8 cgd };
89 1.8 cgd #endif /* DIAGNOSTIC */
90 1.8 cgd
91 1.1 cgd /*
92 1.1 cgd * Allocate a block of memory
93 1.1 cgd */
94 1.1 cgd void *
95 1.1 cgd malloc(size, type, flags)
96 1.1 cgd unsigned long size;
97 1.1 cgd int type, flags;
98 1.1 cgd {
99 1.1 cgd register struct kmembuckets *kbp;
100 1.1 cgd register struct kmemusage *kup;
101 1.8 cgd register struct freelist *freep;
102 1.5 andrew long indx, npg, allocsize;
103 1.1 cgd int s;
104 1.1 cgd caddr_t va, cp, savedlist;
105 1.8 cgd #ifdef DIAGNOSTIC
106 1.11 cgd int32_t *end, *lp;
107 1.8 cgd int copysize;
108 1.8 cgd char *savedtype;
109 1.8 cgd #endif
110 1.1 cgd #ifdef KMEMSTATS
111 1.1 cgd register struct kmemstats *ksp = &kmemstats[type];
112 1.1 cgd
113 1.1 cgd if (((unsigned long)type) > M_LAST)
114 1.1 cgd panic("malloc - bogus type");
115 1.1 cgd #endif
116 1.1 cgd indx = BUCKETINDX(size);
117 1.1 cgd kbp = &bucket[indx];
118 1.1 cgd s = splimp();
119 1.1 cgd #ifdef KMEMSTATS
120 1.1 cgd while (ksp->ks_memuse >= ksp->ks_limit) {
121 1.1 cgd if (flags & M_NOWAIT) {
122 1.1 cgd splx(s);
123 1.1 cgd return ((void *) NULL);
124 1.1 cgd }
125 1.1 cgd if (ksp->ks_limblocks < 65535)
126 1.1 cgd ksp->ks_limblocks++;
127 1.1 cgd tsleep((caddr_t)ksp, PSWP+2, memname[type], 0);
128 1.1 cgd }
129 1.8 cgd ksp->ks_size |= 1 << indx;
130 1.8 cgd #endif
131 1.8 cgd #ifdef DIAGNOSTIC
132 1.8 cgd copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
133 1.1 cgd #endif
134 1.1 cgd if (kbp->kb_next == NULL) {
135 1.8 cgd kbp->kb_last = NULL;
136 1.1 cgd if (size > MAXALLOCSAVE)
137 1.1 cgd allocsize = roundup(size, CLBYTES);
138 1.1 cgd else
139 1.1 cgd allocsize = 1 << indx;
140 1.1 cgd npg = clrnd(btoc(allocsize));
141 1.1 cgd va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg),
142 1.1 cgd !(flags & M_NOWAIT));
143 1.1 cgd if (va == NULL) {
144 1.6 cgd splx(s);
145 1.6 cgd return ((void *) NULL);
146 1.1 cgd }
147 1.1 cgd #ifdef KMEMSTATS
148 1.1 cgd kbp->kb_total += kbp->kb_elmpercl;
149 1.1 cgd #endif
150 1.1 cgd kup = btokup(va);
151 1.1 cgd kup->ku_indx = indx;
152 1.1 cgd if (allocsize > MAXALLOCSAVE) {
153 1.1 cgd if (npg > 65535)
154 1.1 cgd panic("malloc: allocation too large");
155 1.1 cgd kup->ku_pagecnt = npg;
156 1.1 cgd #ifdef KMEMSTATS
157 1.1 cgd ksp->ks_memuse += allocsize;
158 1.1 cgd #endif
159 1.1 cgd goto out;
160 1.1 cgd }
161 1.1 cgd #ifdef KMEMSTATS
162 1.1 cgd kup->ku_freecnt = kbp->kb_elmpercl;
163 1.1 cgd kbp->kb_totalfree += kbp->kb_elmpercl;
164 1.1 cgd #endif
165 1.1 cgd /*
166 1.1 cgd * Just in case we blocked while allocating memory,
167 1.1 cgd * and someone else also allocated memory for this
168 1.1 cgd * bucket, don't assume the list is still empty.
169 1.1 cgd */
170 1.1 cgd savedlist = kbp->kb_next;
171 1.8 cgd kbp->kb_next = cp = va + (npg * NBPG) - allocsize;
172 1.8 cgd for (;;) {
173 1.8 cgd freep = (struct freelist *)cp;
174 1.8 cgd #ifdef DIAGNOSTIC
175 1.8 cgd /*
176 1.8 cgd * Copy in known text to detect modification
177 1.8 cgd * after freeing.
178 1.8 cgd */
179 1.11 cgd end = (int32_t *)&cp[copysize];
180 1.11 cgd for (lp = (int32_t *)cp; lp < end; lp++)
181 1.8 cgd *lp = WEIRD_ADDR;
182 1.8 cgd freep->type = M_FREE;
183 1.8 cgd #endif /* DIAGNOSTIC */
184 1.8 cgd if (cp <= va)
185 1.8 cgd break;
186 1.8 cgd cp -= allocsize;
187 1.8 cgd freep->next = cp;
188 1.8 cgd }
189 1.8 cgd freep->next = savedlist;
190 1.8 cgd if (kbp->kb_last == NULL)
191 1.8 cgd kbp->kb_last = (caddr_t)freep;
192 1.1 cgd }
193 1.1 cgd va = kbp->kb_next;
194 1.8 cgd kbp->kb_next = ((struct freelist *)va)->next;
195 1.8 cgd #ifdef DIAGNOSTIC
196 1.8 cgd freep = (struct freelist *)va;
197 1.8 cgd savedtype = (unsigned)freep->type < M_LAST ?
198 1.8 cgd memname[freep->type] : "???";
199 1.8 cgd if (kbp->kb_next &&
200 1.8 cgd !kernacc(kbp->kb_next, sizeof(struct freelist), 0)) {
201 1.11 cgd printf("%s %d of object %p size %d %s %s (invalid addr %p)\n",
202 1.11 cgd "Data modified on freelist: word",
203 1.11 cgd (int32_t *)&kbp->kb_next - (int32_t *)kbp, va, size,
204 1.8 cgd "previous type", savedtype, kbp->kb_next);
205 1.8 cgd kbp->kb_next = NULL;
206 1.8 cgd }
207 1.11 cgd
208 1.11 cgd /* Fill the fields that we've used with WEIRD_ADDR */
209 1.8 cgd #if BYTE_ORDER == BIG_ENDIAN
210 1.8 cgd freep->type = WEIRD_ADDR >> 16;
211 1.8 cgd #endif
212 1.8 cgd #if BYTE_ORDER == LITTLE_ENDIAN
213 1.8 cgd freep->type = (short)WEIRD_ADDR;
214 1.8 cgd #endif
215 1.11 cgd end = (int32_t *)&freep->next +
216 1.11 cgd (sizeof(freep->next) / sizeof(int32_t));
217 1.11 cgd for (lp = (int32_t *)&freep->next; lp < end; lp++)
218 1.11 cgd *lp = WEIRD_ADDR;
219 1.11 cgd
220 1.11 cgd /* and check that the data hasn't been modified. */
221 1.11 cgd end = (int32_t *)&va[copysize];
222 1.11 cgd for (lp = (int32_t *)va; lp < end; lp++) {
223 1.8 cgd if (*lp == WEIRD_ADDR)
224 1.8 cgd continue;
225 1.10 mycroft printf("%s %d of object %p size %d %s %s (%p != %p)\n",
226 1.11 cgd "Data modified on freelist: word", lp - (int32_t *)va,
227 1.8 cgd va, size, "previous type", savedtype, *lp, WEIRD_ADDR);
228 1.8 cgd break;
229 1.8 cgd }
230 1.11 cgd
231 1.8 cgd freep->spare0 = 0;
232 1.8 cgd #endif /* DIAGNOSTIC */
233 1.1 cgd #ifdef KMEMSTATS
234 1.1 cgd kup = btokup(va);
235 1.1 cgd if (kup->ku_indx != indx)
236 1.1 cgd panic("malloc: wrong bucket");
237 1.1 cgd if (kup->ku_freecnt == 0)
238 1.1 cgd panic("malloc: lost data");
239 1.1 cgd kup->ku_freecnt--;
240 1.1 cgd kbp->kb_totalfree--;
241 1.1 cgd ksp->ks_memuse += 1 << indx;
242 1.1 cgd out:
243 1.1 cgd kbp->kb_calls++;
244 1.1 cgd ksp->ks_inuse++;
245 1.1 cgd ksp->ks_calls++;
246 1.1 cgd if (ksp->ks_memuse > ksp->ks_maxused)
247 1.1 cgd ksp->ks_maxused = ksp->ks_memuse;
248 1.1 cgd #else
249 1.1 cgd out:
250 1.1 cgd #endif
251 1.1 cgd splx(s);
252 1.1 cgd return ((void *) va);
253 1.1 cgd }
254 1.1 cgd
255 1.1 cgd /*
256 1.1 cgd * Free a block of memory allocated by malloc.
257 1.1 cgd */
258 1.1 cgd void
259 1.1 cgd free(addr, type)
260 1.1 cgd void *addr;
261 1.1 cgd int type;
262 1.1 cgd {
263 1.1 cgd register struct kmembuckets *kbp;
264 1.1 cgd register struct kmemusage *kup;
265 1.8 cgd register struct freelist *freep;
266 1.8 cgd long size;
267 1.8 cgd int s;
268 1.5 andrew #ifdef DIAGNOSTIC
269 1.8 cgd caddr_t cp;
270 1.11 cgd int32_t *end, *lp;
271 1.11 cgd long alloc, copysize;
272 1.5 andrew #endif
273 1.1 cgd #ifdef KMEMSTATS
274 1.1 cgd register struct kmemstats *ksp = &kmemstats[type];
275 1.1 cgd #endif
276 1.1 cgd
277 1.1 cgd kup = btokup(addr);
278 1.1 cgd size = 1 << kup->ku_indx;
279 1.8 cgd kbp = &bucket[kup->ku_indx];
280 1.8 cgd s = splimp();
281 1.1 cgd #ifdef DIAGNOSTIC
282 1.8 cgd /*
283 1.8 cgd * Check for returns of data that do not point to the
284 1.8 cgd * beginning of the allocation.
285 1.8 cgd */
286 1.1 cgd if (size > NBPG * CLSIZE)
287 1.1 cgd alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
288 1.1 cgd else
289 1.1 cgd alloc = addrmask[kup->ku_indx];
290 1.8 cgd if (((u_long)addr & alloc) != 0)
291 1.8 cgd panic("free: unaligned addr 0x%x, size %d, type %s, mask %d\n",
292 1.8 cgd addr, size, memname[type], alloc);
293 1.1 cgd #endif /* DIAGNOSTIC */
294 1.1 cgd if (size > MAXALLOCSAVE) {
295 1.1 cgd kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
296 1.1 cgd #ifdef KMEMSTATS
297 1.1 cgd size = kup->ku_pagecnt << PGSHIFT;
298 1.1 cgd ksp->ks_memuse -= size;
299 1.1 cgd kup->ku_indx = 0;
300 1.1 cgd kup->ku_pagecnt = 0;
301 1.1 cgd if (ksp->ks_memuse + size >= ksp->ks_limit &&
302 1.1 cgd ksp->ks_memuse < ksp->ks_limit)
303 1.1 cgd wakeup((caddr_t)ksp);
304 1.1 cgd ksp->ks_inuse--;
305 1.1 cgd kbp->kb_total -= 1;
306 1.1 cgd #endif
307 1.1 cgd splx(s);
308 1.1 cgd return;
309 1.1 cgd }
310 1.8 cgd freep = (struct freelist *)addr;
311 1.8 cgd #ifdef DIAGNOSTIC
312 1.8 cgd /*
313 1.8 cgd * Check for multiple frees. Use a quick check to see if
314 1.8 cgd * it looks free before laboriously searching the freelist.
315 1.8 cgd */
316 1.8 cgd if (freep->spare0 == WEIRD_ADDR) {
317 1.8 cgd for (cp = kbp->kb_next; cp; cp = *(caddr_t *)cp) {
318 1.8 cgd if (addr != cp)
319 1.8 cgd continue;
320 1.10 mycroft printf("multiply freed item %p\n", addr);
321 1.8 cgd panic("free: duplicated free");
322 1.8 cgd }
323 1.8 cgd }
324 1.8 cgd /*
325 1.8 cgd * Copy in known text to detect modification after freeing
326 1.8 cgd * and to make it look free. Also, save the type being freed
327 1.8 cgd * so we can list likely culprit if modification is detected
328 1.8 cgd * when the object is reallocated.
329 1.8 cgd */
330 1.8 cgd copysize = size < MAX_COPY ? size : MAX_COPY;
331 1.11 cgd end = (int32_t *)&((caddr_t)addr)[copysize];
332 1.11 cgd for (lp = (int32_t *)addr; lp < end; lp++)
333 1.8 cgd *lp = WEIRD_ADDR;
334 1.8 cgd freep->type = type;
335 1.8 cgd #endif /* DIAGNOSTIC */
336 1.1 cgd #ifdef KMEMSTATS
337 1.1 cgd kup->ku_freecnt++;
338 1.1 cgd if (kup->ku_freecnt >= kbp->kb_elmpercl)
339 1.1 cgd if (kup->ku_freecnt > kbp->kb_elmpercl)
340 1.1 cgd panic("free: multiple frees");
341 1.1 cgd else if (kbp->kb_totalfree > kbp->kb_highwat)
342 1.1 cgd kbp->kb_couldfree++;
343 1.1 cgd kbp->kb_totalfree++;
344 1.1 cgd ksp->ks_memuse -= size;
345 1.1 cgd if (ksp->ks_memuse + size >= ksp->ks_limit &&
346 1.1 cgd ksp->ks_memuse < ksp->ks_limit)
347 1.1 cgd wakeup((caddr_t)ksp);
348 1.1 cgd ksp->ks_inuse--;
349 1.1 cgd #endif
350 1.8 cgd if (kbp->kb_next == NULL)
351 1.8 cgd kbp->kb_next = addr;
352 1.8 cgd else
353 1.8 cgd ((struct freelist *)kbp->kb_last)->next = addr;
354 1.8 cgd freep->next = NULL;
355 1.8 cgd kbp->kb_last = addr;
356 1.1 cgd splx(s);
357 1.1 cgd }
358 1.1 cgd
359 1.1 cgd /*
360 1.1 cgd * Initialize the kernel memory allocator
361 1.1 cgd */
362 1.1 cgd kmeminit()
363 1.1 cgd {
364 1.1 cgd register long indx;
365 1.1 cgd int npg;
366 1.1 cgd
367 1.1 cgd #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
368 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
369 1.1 cgd #endif
370 1.1 cgd #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
371 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_too_big
372 1.1 cgd #endif
373 1.1 cgd #if (MAXALLOCSAVE < CLBYTES)
374 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_too_small
375 1.1 cgd #endif
376 1.11 cgd
377 1.11 cgd if (sizeof(struct freelist) > (1 << MINBUCKET))
378 1.11 cgd panic("minbucket too small/struct freelist too big");
379 1.11 cgd
380 1.1 cgd npg = VM_KMEM_SIZE/ NBPG;
381 1.1 cgd kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
382 1.1 cgd (vm_size_t)(npg * sizeof(struct kmemusage)));
383 1.1 cgd kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
384 1.1 cgd (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * NBPG), FALSE);
385 1.1 cgd #ifdef KMEMSTATS
386 1.1 cgd for (indx = 0; indx < MINBUCKET + 16; indx++) {
387 1.1 cgd if (1 << indx >= CLBYTES)
388 1.1 cgd bucket[indx].kb_elmpercl = 1;
389 1.1 cgd else
390 1.1 cgd bucket[indx].kb_elmpercl = CLBYTES / (1 << indx);
391 1.1 cgd bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
392 1.1 cgd }
393 1.8 cgd for (indx = 0; indx < M_LAST; indx++)
394 1.1 cgd kmemstats[indx].ks_limit = npg * NBPG * 6 / 10;
395 1.1 cgd #endif
396 1.1 cgd }
397