kern_malloc.c revision 1.119.4.3 1 1.119.4.3 yamt /* $NetBSD: kern_malloc.c,v 1.119.4.3 2010/03/11 15:04:17 yamt Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.8 cgd * Copyright (c) 1987, 1991, 1993
5 1.8 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.81 agc * 3. Neither the name of the University nor the names of its contributors
16 1.81 agc * may be used to endorse or promote products derived from this software
17 1.81 agc * without specific prior written permission.
18 1.81 agc *
19 1.81 agc * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 1.81 agc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.81 agc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.81 agc * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 1.81 agc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.81 agc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.81 agc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.81 agc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.81 agc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.81 agc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.81 agc * SUCH DAMAGE.
30 1.81 agc *
31 1.81 agc * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
32 1.81 agc */
33 1.81 agc
34 1.81 agc /*
35 1.81 agc * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
36 1.81 agc *
37 1.81 agc * Redistribution and use in source and binary forms, with or without
38 1.81 agc * modification, are permitted provided that the following conditions
39 1.81 agc * are met:
40 1.81 agc * 1. Redistributions of source code must retain the above copyright
41 1.81 agc * notice, this list of conditions and the following disclaimer.
42 1.81 agc * 2. Redistributions in binary form must reproduce the above copyright
43 1.81 agc * notice, this list of conditions and the following disclaimer in the
44 1.81 agc * documentation and/or other materials provided with the distribution.
45 1.1 cgd * 3. All advertising materials mentioning features or use of this software
46 1.1 cgd * must display the following acknowledgement:
47 1.1 cgd * This product includes software developed by the University of
48 1.1 cgd * California, Berkeley and its contributors.
49 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
50 1.1 cgd * may be used to endorse or promote products derived from this software
51 1.1 cgd * without specific prior written permission.
52 1.1 cgd *
53 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 cgd * SUCH DAMAGE.
64 1.1 cgd *
65 1.32 fvdl * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
66 1.1 cgd */
67 1.64 lukem
68 1.64 lukem #include <sys/cdefs.h>
69 1.119.4.3 yamt __KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.119.4.3 2010/03/11 15:04:17 yamt Exp $");
70 1.1 cgd
71 1.7 mycroft #include <sys/param.h>
72 1.7 mycroft #include <sys/proc.h>
73 1.7 mycroft #include <sys/kernel.h>
74 1.7 mycroft #include <sys/malloc.h>
75 1.12 christos #include <sys/systm.h>
76 1.106 ad #include <sys/debug.h>
77 1.109 ad #include <sys/mutex.h>
78 1.113 ad #include <sys/lockdebug.h>
79 1.24 thorpej
80 1.28 mrg #include <uvm/uvm_extern.h>
81 1.28 mrg
82 1.92 yamt static struct vm_map_kernel kmem_map_store;
83 1.58 chs struct vm_map *kmem_map = NULL;
84 1.28 mrg
85 1.49 thorpej #include "opt_kmempages.h"
86 1.49 thorpej
87 1.49 thorpej #ifdef NKMEMCLUSTERS
88 1.52 sommerfe #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
89 1.49 thorpej #endif
90 1.49 thorpej
91 1.49 thorpej /*
92 1.49 thorpej * Default number of pages in kmem_map. We attempt to calculate this
93 1.49 thorpej * at run-time, but allow it to be either patched or set in the kernel
94 1.49 thorpej * config file.
95 1.49 thorpej */
96 1.49 thorpej #ifndef NKMEMPAGES
97 1.49 thorpej #define NKMEMPAGES 0
98 1.49 thorpej #endif
99 1.49 thorpej int nkmempages = NKMEMPAGES;
100 1.49 thorpej
101 1.49 thorpej /*
102 1.49 thorpej * Defaults for lower- and upper-bounds for the kmem_map page count.
103 1.49 thorpej * Can be overridden by kernel config options.
104 1.49 thorpej */
105 1.49 thorpej #ifndef NKMEMPAGES_MIN
106 1.49 thorpej #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
107 1.49 thorpej #endif
108 1.49 thorpej
109 1.49 thorpej #ifndef NKMEMPAGES_MAX
110 1.49 thorpej #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
111 1.49 thorpej #endif
112 1.49 thorpej
113 1.24 thorpej #include "opt_kmemstats.h"
114 1.27 thorpej #include "opt_malloclog.h"
115 1.71 fvdl #include "opt_malloc_debug.h"
116 1.12 christos
117 1.103 chs #define MINALLOCSIZE (1 << MINBUCKET)
118 1.103 chs #define BUCKETINDX(size) \
119 1.103 chs ((size) <= (MINALLOCSIZE * 128) \
120 1.103 chs ? (size) <= (MINALLOCSIZE * 8) \
121 1.103 chs ? (size) <= (MINALLOCSIZE * 2) \
122 1.103 chs ? (size) <= (MINALLOCSIZE * 1) \
123 1.103 chs ? (MINBUCKET + 0) \
124 1.103 chs : (MINBUCKET + 1) \
125 1.103 chs : (size) <= (MINALLOCSIZE * 4) \
126 1.103 chs ? (MINBUCKET + 2) \
127 1.103 chs : (MINBUCKET + 3) \
128 1.103 chs : (size) <= (MINALLOCSIZE* 32) \
129 1.103 chs ? (size) <= (MINALLOCSIZE * 16) \
130 1.103 chs ? (MINBUCKET + 4) \
131 1.103 chs : (MINBUCKET + 5) \
132 1.103 chs : (size) <= (MINALLOCSIZE * 64) \
133 1.103 chs ? (MINBUCKET + 6) \
134 1.103 chs : (MINBUCKET + 7) \
135 1.103 chs : (size) <= (MINALLOCSIZE * 2048) \
136 1.103 chs ? (size) <= (MINALLOCSIZE * 512) \
137 1.103 chs ? (size) <= (MINALLOCSIZE * 256) \
138 1.103 chs ? (MINBUCKET + 8) \
139 1.103 chs : (MINBUCKET + 9) \
140 1.103 chs : (size) <= (MINALLOCSIZE * 1024) \
141 1.103 chs ? (MINBUCKET + 10) \
142 1.103 chs : (MINBUCKET + 11) \
143 1.103 chs : (size) <= (MINALLOCSIZE * 8192) \
144 1.103 chs ? (size) <= (MINALLOCSIZE * 4096) \
145 1.103 chs ? (MINBUCKET + 12) \
146 1.103 chs : (MINBUCKET + 13) \
147 1.103 chs : (size) <= (MINALLOCSIZE * 16384) \
148 1.103 chs ? (MINBUCKET + 14) \
149 1.103 chs : (MINBUCKET + 15))
150 1.103 chs
151 1.103 chs /*
152 1.103 chs * Array of descriptors that describe the contents of each page
153 1.103 chs */
154 1.103 chs struct kmemusage {
155 1.103 chs short ku_indx; /* bucket index */
156 1.103 chs union {
157 1.103 chs u_short freecnt;/* for small allocations, free pieces in page */
158 1.103 chs u_short pagecnt;/* for large allocations, pages alloced */
159 1.103 chs } ku_un;
160 1.103 chs };
161 1.103 chs #define ku_freecnt ku_un.freecnt
162 1.103 chs #define ku_pagecnt ku_un.pagecnt
163 1.103 chs
164 1.99 chs struct kmembuckets kmembuckets[MINBUCKET + 16];
165 1.1 cgd struct kmemusage *kmemusage;
166 1.1 cgd char *kmembase, *kmemlimit;
167 1.77 thorpej
168 1.106 ad #ifdef DEBUG
169 1.106 ad static void *malloc_freecheck;
170 1.106 ad #endif
171 1.106 ad
172 1.103 chs /*
173 1.103 chs * Turn virtual addresses into kmem map indicies
174 1.103 chs */
175 1.108 christos #define btokup(addr) (&kmemusage[((char *)(addr) - kmembase) >> PGSHIFT])
176 1.103 chs
177 1.77 thorpej struct malloc_type *kmemstatistics;
178 1.1 cgd
179 1.27 thorpej #ifdef MALLOCLOG
180 1.27 thorpej #ifndef MALLOCLOGSIZE
181 1.27 thorpej #define MALLOCLOGSIZE 100000
182 1.27 thorpej #endif
183 1.27 thorpej
184 1.27 thorpej struct malloclog {
185 1.27 thorpej void *addr;
186 1.27 thorpej long size;
187 1.77 thorpej struct malloc_type *type;
188 1.27 thorpej int action;
189 1.27 thorpej const char *file;
190 1.27 thorpej long line;
191 1.27 thorpej } malloclog[MALLOCLOGSIZE];
192 1.27 thorpej
193 1.27 thorpej long malloclogptr;
194 1.27 thorpej
195 1.119.4.1 yamt /*
196 1.119.4.1 yamt * Fuzz factor for neighbour address match this must be a mask of the lower
197 1.119.4.1 yamt * bits we wish to ignore when comparing addresses
198 1.119.4.1 yamt */
199 1.119.4.1 yamt __uintptr_t malloclog_fuzz = 0x7FL;
200 1.119.4.1 yamt
201 1.119.4.1 yamt
202 1.27 thorpej static void
203 1.77 thorpej domlog(void *a, long size, struct malloc_type *type, int action,
204 1.77 thorpej const char *file, long line)
205 1.27 thorpej {
206 1.27 thorpej
207 1.27 thorpej malloclog[malloclogptr].addr = a;
208 1.27 thorpej malloclog[malloclogptr].size = size;
209 1.27 thorpej malloclog[malloclogptr].type = type;
210 1.27 thorpej malloclog[malloclogptr].action = action;
211 1.27 thorpej malloclog[malloclogptr].file = file;
212 1.27 thorpej malloclog[malloclogptr].line = line;
213 1.27 thorpej malloclogptr++;
214 1.27 thorpej if (malloclogptr >= MALLOCLOGSIZE)
215 1.27 thorpej malloclogptr = 0;
216 1.27 thorpej }
217 1.27 thorpej
218 1.119.4.3 yamt #ifdef DIAGNOSTIC
219 1.27 thorpej static void
220 1.69 enami hitmlog(void *a)
221 1.27 thorpej {
222 1.27 thorpej struct malloclog *lp;
223 1.27 thorpej long l;
224 1.27 thorpej
225 1.69 enami #define PRT do { \
226 1.88 mycroft lp = &malloclog[l]; \
227 1.88 mycroft if (lp->addr == a && lp->action) { \
228 1.27 thorpej printf("malloc log entry %ld:\n", l); \
229 1.27 thorpej printf("\taddr = %p\n", lp->addr); \
230 1.27 thorpej printf("\tsize = %ld\n", lp->size); \
231 1.77 thorpej printf("\ttype = %s\n", lp->type->ks_shortdesc); \
232 1.27 thorpej printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
233 1.27 thorpej printf("\tfile = %s\n", lp->file); \
234 1.27 thorpej printf("\tline = %ld\n", lp->line); \
235 1.69 enami } \
236 1.69 enami } while (/* CONSTCOND */0)
237 1.27 thorpej
238 1.119.4.1 yamt /*
239 1.119.4.1 yamt * Print fuzzy matched "neighbour" - look for the memory block that has
240 1.119.4.1 yamt * been allocated below the address we are interested in. We look for a
241 1.119.4.1 yamt * base address + size that is within malloclog_fuzz of our target
242 1.119.4.1 yamt * address. If the base address and target address are the same then it is
243 1.119.4.1 yamt * likely we have found a free (size is 0 in this case) so we won't report
244 1.119.4.1 yamt * those, they will get reported by PRT anyway.
245 1.119.4.1 yamt */
246 1.119.4.1 yamt #define NPRT do { \
247 1.119.4.1 yamt __uintptr_t fuzz_mask = ~(malloclog_fuzz); \
248 1.119.4.1 yamt lp = &malloclog[l]; \
249 1.119.4.1 yamt if ((__uintptr_t)lp->addr != (__uintptr_t)a && \
250 1.119.4.1 yamt (((__uintptr_t)lp->addr + lp->size + malloclog_fuzz) & fuzz_mask) \
251 1.119.4.1 yamt == ((__uintptr_t)a & fuzz_mask) && lp->action) { \
252 1.119.4.1 yamt printf("neighbour malloc log entry %ld:\n", l); \
253 1.119.4.1 yamt printf("\taddr = %p\n", lp->addr); \
254 1.119.4.1 yamt printf("\tsize = %ld\n", lp->size); \
255 1.119.4.1 yamt printf("\ttype = %s\n", lp->type->ks_shortdesc); \
256 1.119.4.1 yamt printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
257 1.119.4.1 yamt printf("\tfile = %s\n", lp->file); \
258 1.119.4.1 yamt printf("\tline = %ld\n", lp->line); \
259 1.119.4.1 yamt } \
260 1.119.4.1 yamt } while (/* CONSTCOND */0)
261 1.119.4.1 yamt
262 1.119.4.1 yamt for (l = malloclogptr; l < MALLOCLOGSIZE; l++) {
263 1.69 enami PRT;
264 1.119.4.1 yamt NPRT;
265 1.119.4.1 yamt }
266 1.119.4.1 yamt
267 1.27 thorpej
268 1.119.4.1 yamt for (l = 0; l < malloclogptr; l++) {
269 1.69 enami PRT;
270 1.119.4.1 yamt NPRT;
271 1.119.4.1 yamt }
272 1.119.4.1 yamt
273 1.88 mycroft #undef PRT
274 1.27 thorpej }
275 1.119.4.3 yamt #endif /* DIAGNOSTIC */
276 1.27 thorpej #endif /* MALLOCLOG */
277 1.27 thorpej
278 1.8 cgd #ifdef DIAGNOSTIC
279 1.8 cgd /*
280 1.8 cgd * This structure provides a set of masks to catch unaligned frees.
281 1.8 cgd */
282 1.57 jdolecek const long addrmask[] = { 0,
283 1.8 cgd 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
284 1.8 cgd 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
285 1.8 cgd 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
286 1.8 cgd 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
287 1.8 cgd };
288 1.8 cgd
289 1.8 cgd /*
290 1.8 cgd * The WEIRD_ADDR is used as known text to copy into free objects so
291 1.8 cgd * that modifications after frees can be detected.
292 1.8 cgd */
293 1.76 thorpej #define WEIRD_ADDR ((uint32_t) 0xdeadbeef)
294 1.55 chs #ifdef DEBUG
295 1.69 enami #define MAX_COPY PAGE_SIZE
296 1.55 chs #else
297 1.69 enami #define MAX_COPY 32
298 1.55 chs #endif
299 1.8 cgd
300 1.8 cgd /*
301 1.11 cgd * Normally the freelist structure is used only to hold the list pointer
302 1.11 cgd * for free objects. However, when running with diagnostics, the first
303 1.77 thorpej * 8/16 bytes of the structure is unused except for diagnostic information,
304 1.77 thorpej * and the free list pointer is at offset 8/16 in the structure. Since the
305 1.11 cgd * first 8 bytes is the portion of the structure most often modified, this
306 1.11 cgd * helps to detect memory reuse problems and avoid free list corruption.
307 1.8 cgd */
308 1.8 cgd struct freelist {
309 1.76 thorpej uint32_t spare0;
310 1.77 thorpej #ifdef _LP64
311 1.77 thorpej uint32_t spare1; /* explicit padding */
312 1.77 thorpej #endif
313 1.77 thorpej struct malloc_type *type;
314 1.108 christos void * next;
315 1.8 cgd };
316 1.8 cgd #else /* !DIAGNOSTIC */
317 1.8 cgd struct freelist {
318 1.108 christos void * next;
319 1.8 cgd };
320 1.8 cgd #endif /* DIAGNOSTIC */
321 1.8 cgd
322 1.109 ad kmutex_t malloc_lock;
323 1.78 pk
324 1.77 thorpej /*
325 1.1 cgd * Allocate a block of memory
326 1.1 cgd */
327 1.27 thorpej #ifdef MALLOCLOG
328 1.27 thorpej void *
329 1.119.4.1 yamt _kern_malloc(unsigned long size, struct malloc_type *ksp, int flags,
330 1.77 thorpej const char *file, long line)
331 1.27 thorpej #else
332 1.1 cgd void *
333 1.119.4.1 yamt kern_malloc(unsigned long size, struct malloc_type *ksp, int flags)
334 1.27 thorpej #endif /* MALLOCLOG */
335 1.1 cgd {
336 1.50 augustss struct kmembuckets *kbp;
337 1.50 augustss struct kmemusage *kup;
338 1.50 augustss struct freelist *freep;
339 1.5 andrew long indx, npg, allocsize;
340 1.108 christos char *va, *cp, *savedlist;
341 1.8 cgd #ifdef DIAGNOSTIC
342 1.76 thorpej uint32_t *end, *lp;
343 1.8 cgd int copysize;
344 1.8 cgd #endif
345 1.1 cgd
346 1.59 thorpej #ifdef LOCKDEBUG
347 1.119 ad if ((flags & M_NOWAIT) == 0) {
348 1.118 yamt ASSERT_SLEEPABLE();
349 1.119 ad }
350 1.59 thorpej #endif
351 1.62 thorpej #ifdef MALLOC_DEBUG
352 1.106 ad if (debug_malloc(size, ksp, flags, (void *) &va)) {
353 1.119.4.1 yamt if (va != 0) {
354 1.106 ad FREECHECK_OUT(&malloc_freecheck, (void *)va);
355 1.119.4.1 yamt }
356 1.62 thorpej return ((void *) va);
357 1.106 ad }
358 1.62 thorpej #endif
359 1.1 cgd indx = BUCKETINDX(size);
360 1.99 chs kbp = &kmembuckets[indx];
361 1.113 ad mutex_spin_enter(&malloc_lock);
362 1.1 cgd #ifdef KMEMSTATS
363 1.1 cgd while (ksp->ks_memuse >= ksp->ks_limit) {
364 1.1 cgd if (flags & M_NOWAIT) {
365 1.113 ad mutex_spin_exit(&malloc_lock);
366 1.1 cgd return ((void *) NULL);
367 1.1 cgd }
368 1.1 cgd if (ksp->ks_limblocks < 65535)
369 1.1 cgd ksp->ks_limblocks++;
370 1.109 ad mtsleep((void *)ksp, PSWP+2, ksp->ks_shortdesc, 0,
371 1.109 ad &malloc_lock);
372 1.1 cgd }
373 1.8 cgd ksp->ks_size |= 1 << indx;
374 1.8 cgd #endif
375 1.8 cgd #ifdef DIAGNOSTIC
376 1.8 cgd copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
377 1.1 cgd #endif
378 1.1 cgd if (kbp->kb_next == NULL) {
379 1.111 yamt int s;
380 1.8 cgd kbp->kb_last = NULL;
381 1.1 cgd if (size > MAXALLOCSAVE)
382 1.66 enami allocsize = round_page(size);
383 1.1 cgd else
384 1.1 cgd allocsize = 1 << indx;
385 1.47 ragge npg = btoc(allocsize);
386 1.113 ad mutex_spin_exit(&malloc_lock);
387 1.111 yamt s = splvm();
388 1.108 christos va = (void *) uvm_km_alloc(kmem_map,
389 1.97 yamt (vsize_t)ctob(npg), 0,
390 1.73 chs ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
391 1.97 yamt ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0) |
392 1.97 yamt UVM_KMF_WIRED);
393 1.111 yamt splx(s);
394 1.51 thorpej if (__predict_false(va == NULL)) {
395 1.17 cgd /*
396 1.17 cgd * Kmem_malloc() can return NULL, even if it can
397 1.91 simonb * wait, if there is no map space available, because
398 1.17 cgd * it can't fix that problem. Neither can we,
399 1.17 cgd * right now. (We should release pages which
400 1.99 chs * are completely free and which are in kmembuckets
401 1.17 cgd * with too many free elements.)
402 1.17 cgd */
403 1.68 jdolecek if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
404 1.17 cgd panic("malloc: out of space in kmem_map");
405 1.73 chs return (NULL);
406 1.1 cgd }
407 1.113 ad mutex_spin_enter(&malloc_lock);
408 1.1 cgd #ifdef KMEMSTATS
409 1.1 cgd kbp->kb_total += kbp->kb_elmpercl;
410 1.1 cgd #endif
411 1.1 cgd kup = btokup(va);
412 1.1 cgd kup->ku_indx = indx;
413 1.1 cgd if (allocsize > MAXALLOCSAVE) {
414 1.1 cgd if (npg > 65535)
415 1.1 cgd panic("malloc: allocation too large");
416 1.1 cgd kup->ku_pagecnt = npg;
417 1.1 cgd #ifdef KMEMSTATS
418 1.1 cgd ksp->ks_memuse += allocsize;
419 1.1 cgd #endif
420 1.1 cgd goto out;
421 1.1 cgd }
422 1.1 cgd #ifdef KMEMSTATS
423 1.1 cgd kup->ku_freecnt = kbp->kb_elmpercl;
424 1.1 cgd kbp->kb_totalfree += kbp->kb_elmpercl;
425 1.1 cgd #endif
426 1.1 cgd /*
427 1.1 cgd * Just in case we blocked while allocating memory,
428 1.1 cgd * and someone else also allocated memory for this
429 1.99 chs * kmembucket, don't assume the list is still empty.
430 1.1 cgd */
431 1.1 cgd savedlist = kbp->kb_next;
432 1.49 thorpej kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
433 1.8 cgd for (;;) {
434 1.8 cgd freep = (struct freelist *)cp;
435 1.8 cgd #ifdef DIAGNOSTIC
436 1.8 cgd /*
437 1.8 cgd * Copy in known text to detect modification
438 1.8 cgd * after freeing.
439 1.8 cgd */
440 1.86 ragge end = (uint32_t *)&cp[copysize];
441 1.86 ragge for (lp = (uint32_t *)cp; lp < end; lp++)
442 1.8 cgd *lp = WEIRD_ADDR;
443 1.8 cgd freep->type = M_FREE;
444 1.8 cgd #endif /* DIAGNOSTIC */
445 1.8 cgd if (cp <= va)
446 1.8 cgd break;
447 1.8 cgd cp -= allocsize;
448 1.8 cgd freep->next = cp;
449 1.8 cgd }
450 1.8 cgd freep->next = savedlist;
451 1.117 yamt if (savedlist == NULL)
452 1.108 christos kbp->kb_last = (void *)freep;
453 1.1 cgd }
454 1.1 cgd va = kbp->kb_next;
455 1.8 cgd kbp->kb_next = ((struct freelist *)va)->next;
456 1.8 cgd #ifdef DIAGNOSTIC
457 1.8 cgd freep = (struct freelist *)va;
458 1.77 thorpej /* XXX potential to get garbage pointer here. */
459 1.29 chs if (kbp->kb_next) {
460 1.29 chs int rv;
461 1.35 eeh vaddr_t addr = (vaddr_t)kbp->kb_next;
462 1.29 chs
463 1.43 thorpej vm_map_lock(kmem_map);
464 1.29 chs rv = uvm_map_checkprot(kmem_map, addr,
465 1.69 enami addr + sizeof(struct freelist), VM_PROT_WRITE);
466 1.43 thorpej vm_map_unlock(kmem_map);
467 1.29 chs
468 1.51 thorpej if (__predict_false(rv == 0)) {
469 1.69 enami printf("Data modified on freelist: "
470 1.69 enami "word %ld of object %p size %ld previous type %s "
471 1.69 enami "(invalid addr %p)\n",
472 1.41 mrg (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
473 1.80 manu va, size, "foo", kbp->kb_next);
474 1.27 thorpej #ifdef MALLOCLOG
475 1.41 mrg hitmlog(va);
476 1.27 thorpej #endif
477 1.41 mrg kbp->kb_next = NULL;
478 1.29 chs }
479 1.8 cgd }
480 1.11 cgd
481 1.11 cgd /* Fill the fields that we've used with WEIRD_ADDR */
482 1.77 thorpej #ifdef _LP64
483 1.77 thorpej freep->type = (struct malloc_type *)
484 1.77 thorpej (WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32));
485 1.77 thorpej #else
486 1.77 thorpej freep->type = (struct malloc_type *) WEIRD_ADDR;
487 1.8 cgd #endif
488 1.86 ragge end = (uint32_t *)&freep->next +
489 1.11 cgd (sizeof(freep->next) / sizeof(int32_t));
490 1.86 ragge for (lp = (uint32_t *)&freep->next; lp < end; lp++)
491 1.11 cgd *lp = WEIRD_ADDR;
492 1.11 cgd
493 1.11 cgd /* and check that the data hasn't been modified. */
494 1.76 thorpej end = (uint32_t *)&va[copysize];
495 1.86 ragge for (lp = (uint32_t *)va; lp < end; lp++) {
496 1.51 thorpej if (__predict_true(*lp == WEIRD_ADDR))
497 1.8 cgd continue;
498 1.69 enami printf("Data modified on freelist: "
499 1.69 enami "word %ld of object %p size %ld previous type %s "
500 1.69 enami "(0x%x != 0x%x)\n",
501 1.76 thorpej (long)(lp - (uint32_t *)va), va, size,
502 1.80 manu "bar", *lp, WEIRD_ADDR);
503 1.27 thorpej #ifdef MALLOCLOG
504 1.27 thorpej hitmlog(va);
505 1.27 thorpej #endif
506 1.8 cgd break;
507 1.8 cgd }
508 1.11 cgd
509 1.8 cgd freep->spare0 = 0;
510 1.8 cgd #endif /* DIAGNOSTIC */
511 1.1 cgd #ifdef KMEMSTATS
512 1.1 cgd kup = btokup(va);
513 1.1 cgd if (kup->ku_indx != indx)
514 1.1 cgd panic("malloc: wrong bucket");
515 1.1 cgd if (kup->ku_freecnt == 0)
516 1.1 cgd panic("malloc: lost data");
517 1.1 cgd kup->ku_freecnt--;
518 1.1 cgd kbp->kb_totalfree--;
519 1.1 cgd ksp->ks_memuse += 1 << indx;
520 1.1 cgd out:
521 1.1 cgd kbp->kb_calls++;
522 1.1 cgd ksp->ks_inuse++;
523 1.1 cgd ksp->ks_calls++;
524 1.1 cgd if (ksp->ks_memuse > ksp->ks_maxused)
525 1.1 cgd ksp->ks_maxused = ksp->ks_memuse;
526 1.1 cgd #else
527 1.1 cgd out:
528 1.1 cgd #endif
529 1.27 thorpej #ifdef MALLOCLOG
530 1.80 manu domlog(va, size, ksp, 1, file, line);
531 1.27 thorpej #endif
532 1.113 ad mutex_spin_exit(&malloc_lock);
533 1.67 enami if ((flags & M_ZERO) != 0)
534 1.65 lukem memset(va, 0, size);
535 1.106 ad FREECHECK_OUT(&malloc_freecheck, (void *)va);
536 1.1 cgd return ((void *) va);
537 1.1 cgd }
538 1.1 cgd
539 1.1 cgd /*
540 1.1 cgd * Free a block of memory allocated by malloc.
541 1.1 cgd */
542 1.27 thorpej #ifdef MALLOCLOG
543 1.27 thorpej void
544 1.119.4.1 yamt _kern_free(void *addr, struct malloc_type *ksp, const char *file, long line)
545 1.27 thorpej #else
546 1.1 cgd void
547 1.119.4.1 yamt kern_free(void *addr, struct malloc_type *ksp)
548 1.27 thorpej #endif /* MALLOCLOG */
549 1.1 cgd {
550 1.50 augustss struct kmembuckets *kbp;
551 1.50 augustss struct kmemusage *kup;
552 1.50 augustss struct freelist *freep;
553 1.8 cgd long size;
554 1.5 andrew #ifdef DIAGNOSTIC
555 1.108 christos void *cp;
556 1.11 cgd int32_t *end, *lp;
557 1.11 cgd long alloc, copysize;
558 1.5 andrew #endif
559 1.48 thorpej
560 1.106 ad FREECHECK_IN(&malloc_freecheck, addr);
561 1.62 thorpej #ifdef MALLOC_DEBUG
562 1.77 thorpej if (debug_free(addr, ksp))
563 1.62 thorpej return;
564 1.62 thorpej #endif
565 1.62 thorpej
566 1.48 thorpej #ifdef DIAGNOSTIC
567 1.48 thorpej /*
568 1.48 thorpej * Ensure that we're free'ing something that we could
569 1.48 thorpej * have allocated in the first place. That is, check
570 1.48 thorpej * to see that the address is within kmem_map.
571 1.48 thorpej */
572 1.83 enami if (__predict_false((vaddr_t)addr < vm_map_min(kmem_map) ||
573 1.83 enami (vaddr_t)addr >= vm_map_max(kmem_map)))
574 1.48 thorpej panic("free: addr %p not within kmem_map", addr);
575 1.1 cgd #endif
576 1.1 cgd
577 1.1 cgd kup = btokup(addr);
578 1.1 cgd size = 1 << kup->ku_indx;
579 1.99 chs kbp = &kmembuckets[kup->ku_indx];
580 1.113 ad
581 1.115 yamt LOCKDEBUG_MEM_CHECK(addr,
582 1.115 yamt size <= MAXALLOCSAVE ? size : ctob(kup->ku_pagecnt));
583 1.113 ad
584 1.113 ad mutex_spin_enter(&malloc_lock);
585 1.27 thorpej #ifdef MALLOCLOG
586 1.80 manu domlog(addr, 0, ksp, 2, file, line);
587 1.27 thorpej #endif
588 1.1 cgd #ifdef DIAGNOSTIC
589 1.8 cgd /*
590 1.8 cgd * Check for returns of data that do not point to the
591 1.8 cgd * beginning of the allocation.
592 1.8 cgd */
593 1.49 thorpej if (size > PAGE_SIZE)
594 1.49 thorpej alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
595 1.1 cgd else
596 1.1 cgd alloc = addrmask[kup->ku_indx];
597 1.8 cgd if (((u_long)addr & alloc) != 0)
598 1.75 provos panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
599 1.77 thorpej addr, size, ksp->ks_shortdesc, alloc);
600 1.1 cgd #endif /* DIAGNOSTIC */
601 1.1 cgd if (size > MAXALLOCSAVE) {
602 1.97 yamt uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt),
603 1.97 yamt UVM_KMF_WIRED);
604 1.1 cgd #ifdef KMEMSTATS
605 1.1 cgd size = kup->ku_pagecnt << PGSHIFT;
606 1.1 cgd ksp->ks_memuse -= size;
607 1.1 cgd kup->ku_indx = 0;
608 1.1 cgd kup->ku_pagecnt = 0;
609 1.1 cgd if (ksp->ks_memuse + size >= ksp->ks_limit &&
610 1.1 cgd ksp->ks_memuse < ksp->ks_limit)
611 1.108 christos wakeup((void *)ksp);
612 1.79 fvdl #ifdef DIAGNOSTIC
613 1.79 fvdl if (ksp->ks_inuse == 0)
614 1.79 fvdl panic("free 1: inuse 0, probable double free");
615 1.79 fvdl #endif
616 1.1 cgd ksp->ks_inuse--;
617 1.1 cgd kbp->kb_total -= 1;
618 1.1 cgd #endif
619 1.113 ad mutex_spin_exit(&malloc_lock);
620 1.1 cgd return;
621 1.1 cgd }
622 1.8 cgd freep = (struct freelist *)addr;
623 1.8 cgd #ifdef DIAGNOSTIC
624 1.8 cgd /*
625 1.8 cgd * Check for multiple frees. Use a quick check to see if
626 1.8 cgd * it looks free before laboriously searching the freelist.
627 1.8 cgd */
628 1.51 thorpej if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
629 1.16 cgd for (cp = kbp->kb_next; cp;
630 1.16 cgd cp = ((struct freelist *)cp)->next) {
631 1.8 cgd if (addr != cp)
632 1.8 cgd continue;
633 1.22 christos printf("multiply freed item %p\n", addr);
634 1.27 thorpej #ifdef MALLOCLOG
635 1.27 thorpej hitmlog(addr);
636 1.27 thorpej #endif
637 1.8 cgd panic("free: duplicated free");
638 1.8 cgd }
639 1.8 cgd }
640 1.112 ad
641 1.8 cgd /*
642 1.8 cgd * Copy in known text to detect modification after freeing
643 1.8 cgd * and to make it look free. Also, save the type being freed
644 1.8 cgd * so we can list likely culprit if modification is detected
645 1.8 cgd * when the object is reallocated.
646 1.8 cgd */
647 1.8 cgd copysize = size < MAX_COPY ? size : MAX_COPY;
648 1.108 christos end = (int32_t *)&((char *)addr)[copysize];
649 1.11 cgd for (lp = (int32_t *)addr; lp < end; lp++)
650 1.8 cgd *lp = WEIRD_ADDR;
651 1.77 thorpej freep->type = ksp;
652 1.8 cgd #endif /* DIAGNOSTIC */
653 1.1 cgd #ifdef KMEMSTATS
654 1.1 cgd kup->ku_freecnt++;
655 1.36 thorpej if (kup->ku_freecnt >= kbp->kb_elmpercl) {
656 1.1 cgd if (kup->ku_freecnt > kbp->kb_elmpercl)
657 1.1 cgd panic("free: multiple frees");
658 1.1 cgd else if (kbp->kb_totalfree > kbp->kb_highwat)
659 1.1 cgd kbp->kb_couldfree++;
660 1.36 thorpej }
661 1.1 cgd kbp->kb_totalfree++;
662 1.1 cgd ksp->ks_memuse -= size;
663 1.1 cgd if (ksp->ks_memuse + size >= ksp->ks_limit &&
664 1.1 cgd ksp->ks_memuse < ksp->ks_limit)
665 1.108 christos wakeup((void *)ksp);
666 1.79 fvdl #ifdef DIAGNOSTIC
667 1.79 fvdl if (ksp->ks_inuse == 0)
668 1.79 fvdl panic("free 2: inuse 0, probable double free");
669 1.79 fvdl #endif
670 1.1 cgd ksp->ks_inuse--;
671 1.1 cgd #endif
672 1.8 cgd if (kbp->kb_next == NULL)
673 1.8 cgd kbp->kb_next = addr;
674 1.8 cgd else
675 1.8 cgd ((struct freelist *)kbp->kb_last)->next = addr;
676 1.8 cgd freep->next = NULL;
677 1.8 cgd kbp->kb_last = addr;
678 1.113 ad mutex_spin_exit(&malloc_lock);
679 1.20 cgd }
680 1.20 cgd
681 1.20 cgd /*
682 1.20 cgd * Change the size of a block of memory.
683 1.20 cgd */
684 1.20 cgd void *
685 1.119.4.1 yamt kern_realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp,
686 1.77 thorpej int flags)
687 1.20 cgd {
688 1.50 augustss struct kmemusage *kup;
689 1.72 thorpej unsigned long cursize;
690 1.20 cgd void *newaddr;
691 1.20 cgd #ifdef DIAGNOSTIC
692 1.20 cgd long alloc;
693 1.20 cgd #endif
694 1.20 cgd
695 1.20 cgd /*
696 1.69 enami * realloc() with a NULL pointer is the same as malloc().
697 1.20 cgd */
698 1.20 cgd if (curaddr == NULL)
699 1.77 thorpej return (malloc(newsize, ksp, flags));
700 1.20 cgd
701 1.20 cgd /*
702 1.69 enami * realloc() with zero size is the same as free().
703 1.20 cgd */
704 1.20 cgd if (newsize == 0) {
705 1.77 thorpej free(curaddr, ksp);
706 1.20 cgd return (NULL);
707 1.20 cgd }
708 1.59 thorpej
709 1.59 thorpej #ifdef LOCKDEBUG
710 1.119 ad if ((flags & M_NOWAIT) == 0) {
711 1.118 yamt ASSERT_SLEEPABLE();
712 1.119 ad }
713 1.59 thorpej #endif
714 1.20 cgd
715 1.20 cgd /*
716 1.20 cgd * Find out how large the old allocation was (and do some
717 1.20 cgd * sanity checking).
718 1.20 cgd */
719 1.20 cgd kup = btokup(curaddr);
720 1.20 cgd cursize = 1 << kup->ku_indx;
721 1.20 cgd
722 1.20 cgd #ifdef DIAGNOSTIC
723 1.20 cgd /*
724 1.20 cgd * Check for returns of data that do not point to the
725 1.20 cgd * beginning of the allocation.
726 1.20 cgd */
727 1.49 thorpej if (cursize > PAGE_SIZE)
728 1.49 thorpej alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
729 1.20 cgd else
730 1.20 cgd alloc = addrmask[kup->ku_indx];
731 1.20 cgd if (((u_long)curaddr & alloc) != 0)
732 1.69 enami panic("realloc: "
733 1.69 enami "unaligned addr %p, size %ld, type %s, mask %ld\n",
734 1.77 thorpej curaddr, cursize, ksp->ks_shortdesc, alloc);
735 1.20 cgd #endif /* DIAGNOSTIC */
736 1.20 cgd
737 1.20 cgd if (cursize > MAXALLOCSAVE)
738 1.20 cgd cursize = ctob(kup->ku_pagecnt);
739 1.20 cgd
740 1.20 cgd /*
741 1.20 cgd * If we already actually have as much as they want, we're done.
742 1.20 cgd */
743 1.20 cgd if (newsize <= cursize)
744 1.20 cgd return (curaddr);
745 1.20 cgd
746 1.20 cgd /*
747 1.20 cgd * Can't satisfy the allocation with the existing block.
748 1.20 cgd * Allocate a new one and copy the data.
749 1.20 cgd */
750 1.77 thorpej newaddr = malloc(newsize, ksp, flags);
751 1.51 thorpej if (__predict_false(newaddr == NULL)) {
752 1.20 cgd /*
753 1.69 enami * malloc() failed, because flags included M_NOWAIT.
754 1.20 cgd * Return NULL to indicate that failure. The old
755 1.20 cgd * pointer is still valid.
756 1.20 cgd */
757 1.69 enami return (NULL);
758 1.20 cgd }
759 1.34 perry memcpy(newaddr, curaddr, cursize);
760 1.20 cgd
761 1.20 cgd /*
762 1.20 cgd * We were successful: free the old allocation and return
763 1.20 cgd * the new one.
764 1.20 cgd */
765 1.77 thorpej free(curaddr, ksp);
766 1.20 cgd return (newaddr);
767 1.70 enami }
768 1.70 enami
769 1.70 enami /*
770 1.70 enami * Roundup size to the actual allocation size.
771 1.70 enami */
772 1.70 enami unsigned long
773 1.70 enami malloc_roundup(unsigned long size)
774 1.70 enami {
775 1.70 enami
776 1.70 enami if (size > MAXALLOCSAVE)
777 1.70 enami return (roundup(size, PAGE_SIZE));
778 1.70 enami else
779 1.70 enami return (1 << BUCKETINDX(size));
780 1.1 cgd }
781 1.1 cgd
782 1.1 cgd /*
783 1.77 thorpej * Add a malloc type to the system.
784 1.77 thorpej */
785 1.77 thorpej void
786 1.77 thorpej malloc_type_attach(struct malloc_type *type)
787 1.77 thorpej {
788 1.77 thorpej
789 1.77 thorpej if (nkmempages == 0)
790 1.77 thorpej panic("malloc_type_attach: nkmempages == 0");
791 1.77 thorpej
792 1.77 thorpej if (type->ks_magic != M_MAGIC)
793 1.77 thorpej panic("malloc_type_attach: bad magic");
794 1.77 thorpej
795 1.77 thorpej #ifdef DIAGNOSTIC
796 1.77 thorpej {
797 1.77 thorpej struct malloc_type *ksp;
798 1.77 thorpej for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
799 1.77 thorpej if (ksp == type)
800 1.77 thorpej panic("malloc_type_attach: already on list");
801 1.77 thorpej }
802 1.77 thorpej }
803 1.77 thorpej #endif
804 1.77 thorpej
805 1.77 thorpej #ifdef KMEMSTATS
806 1.77 thorpej if (type->ks_limit == 0)
807 1.77 thorpej type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U;
808 1.77 thorpej #else
809 1.77 thorpej type->ks_limit = 0;
810 1.77 thorpej #endif
811 1.77 thorpej
812 1.77 thorpej type->ks_next = kmemstatistics;
813 1.77 thorpej kmemstatistics = type;
814 1.77 thorpej }
815 1.77 thorpej
816 1.77 thorpej /*
817 1.77 thorpej * Remove a malloc type from the system..
818 1.77 thorpej */
819 1.77 thorpej void
820 1.77 thorpej malloc_type_detach(struct malloc_type *type)
821 1.77 thorpej {
822 1.77 thorpej struct malloc_type *ksp;
823 1.77 thorpej
824 1.77 thorpej #ifdef DIAGNOSTIC
825 1.77 thorpej if (type->ks_magic != M_MAGIC)
826 1.77 thorpej panic("malloc_type_detach: bad magic");
827 1.77 thorpej #endif
828 1.77 thorpej
829 1.77 thorpej if (type == kmemstatistics)
830 1.77 thorpej kmemstatistics = type->ks_next;
831 1.77 thorpej else {
832 1.77 thorpej for (ksp = kmemstatistics; ksp->ks_next != NULL;
833 1.77 thorpej ksp = ksp->ks_next) {
834 1.77 thorpej if (ksp->ks_next == type) {
835 1.77 thorpej ksp->ks_next = type->ks_next;
836 1.77 thorpej break;
837 1.77 thorpej }
838 1.77 thorpej }
839 1.77 thorpej #ifdef DIAGNOSTIC
840 1.77 thorpej if (ksp->ks_next == NULL)
841 1.77 thorpej panic("malloc_type_detach: not on list");
842 1.77 thorpej #endif
843 1.77 thorpej }
844 1.77 thorpej type->ks_next = NULL;
845 1.77 thorpej }
846 1.77 thorpej
847 1.77 thorpej /*
848 1.77 thorpej * Set the limit on a malloc type.
849 1.77 thorpej */
850 1.77 thorpej void
851 1.105 yamt malloc_type_setlimit(struct malloc_type *type, u_long limit)
852 1.77 thorpej {
853 1.77 thorpej #ifdef KMEMSTATS
854 1.113 ad mutex_spin_enter(&malloc_lock);
855 1.77 thorpej type->ks_limit = limit;
856 1.113 ad mutex_spin_exit(&malloc_lock);
857 1.77 thorpej #endif
858 1.77 thorpej }
859 1.77 thorpej
860 1.77 thorpej /*
861 1.49 thorpej * Compute the number of pages that kmem_map will map, that is,
862 1.49 thorpej * the size of the kernel malloc arena.
863 1.49 thorpej */
864 1.49 thorpej void
865 1.69 enami kmeminit_nkmempages(void)
866 1.49 thorpej {
867 1.49 thorpej int npages;
868 1.49 thorpej
869 1.49 thorpej if (nkmempages != 0) {
870 1.49 thorpej /*
871 1.49 thorpej * It's already been set (by us being here before, or
872 1.49 thorpej * by patching or kernel config options), bail out now.
873 1.49 thorpej */
874 1.49 thorpej return;
875 1.49 thorpej }
876 1.49 thorpej
877 1.94 yamt npages = physmem;
878 1.49 thorpej
879 1.49 thorpej if (npages > NKMEMPAGES_MAX)
880 1.49 thorpej npages = NKMEMPAGES_MAX;
881 1.49 thorpej
882 1.49 thorpej if (npages < NKMEMPAGES_MIN)
883 1.49 thorpej npages = NKMEMPAGES_MIN;
884 1.49 thorpej
885 1.49 thorpej nkmempages = npages;
886 1.49 thorpej }
887 1.49 thorpej
888 1.49 thorpej /*
889 1.1 cgd * Initialize the kernel memory allocator
890 1.1 cgd */
891 1.12 christos void
892 1.69 enami kmeminit(void)
893 1.1 cgd {
894 1.77 thorpej __link_set_decl(malloc_types, struct malloc_type);
895 1.77 thorpej struct malloc_type * const *ksp;
896 1.84 ragge vaddr_t kmb, kml;
897 1.23 tls #ifdef KMEMSTATS
898 1.50 augustss long indx;
899 1.23 tls #endif
900 1.1 cgd
901 1.1 cgd #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
902 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
903 1.1 cgd #endif
904 1.1 cgd #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
905 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_too_big
906 1.1 cgd #endif
907 1.47 ragge #if (MAXALLOCSAVE < NBPG)
908 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_too_small
909 1.1 cgd #endif
910 1.11 cgd
911 1.11 cgd if (sizeof(struct freelist) > (1 << MINBUCKET))
912 1.11 cgd panic("minbucket too small/struct freelist too big");
913 1.11 cgd
914 1.116 ad mutex_init(&malloc_lock, MUTEX_DEFAULT, IPL_VM);
915 1.109 ad
916 1.49 thorpej /*
917 1.49 thorpej * Compute the number of kmem_map pages, if we have not
918 1.49 thorpej * done so already.
919 1.49 thorpej */
920 1.49 thorpej kmeminit_nkmempages();
921 1.49 thorpej
922 1.97 yamt kmemusage = (struct kmemusage *) uvm_km_alloc(kernel_map,
923 1.97 yamt (vsize_t)(nkmempages * sizeof(struct kmemusage)), 0,
924 1.97 yamt UVM_KMF_WIRED|UVM_KMF_ZERO);
925 1.85 fvdl kmb = 0;
926 1.84 ragge kmem_map = uvm_km_suballoc(kernel_map, &kmb,
927 1.96 perry &kml, ((vsize_t)nkmempages << PAGE_SHIFT),
928 1.107 thorpej VM_MAP_INTRSAFE, false, &kmem_map_store);
929 1.93 yamt uvm_km_vacache_init(kmem_map, "kvakmem", 0);
930 1.84 ragge kmembase = (char *)kmb;
931 1.84 ragge kmemlimit = (char *)kml;
932 1.1 cgd #ifdef KMEMSTATS
933 1.1 cgd for (indx = 0; indx < MINBUCKET + 16; indx++) {
934 1.49 thorpej if (1 << indx >= PAGE_SIZE)
935 1.99 chs kmembuckets[indx].kb_elmpercl = 1;
936 1.1 cgd else
937 1.99 chs kmembuckets[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
938 1.99 chs kmembuckets[indx].kb_highwat =
939 1.99 chs 5 * kmembuckets[indx].kb_elmpercl;
940 1.1 cgd }
941 1.62 thorpej #endif
942 1.77 thorpej
943 1.77 thorpej /* Attach all of the statically-linked malloc types. */
944 1.77 thorpej __link_set_foreach(ksp, malloc_types)
945 1.77 thorpej malloc_type_attach(*ksp);
946 1.119.4.2 yamt
947 1.119.4.2 yamt #ifdef MALLOC_DEBUG
948 1.119.4.2 yamt debug_malloc_init();
949 1.119.4.2 yamt #endif
950 1.1 cgd }
951 1.39 thorpej
952 1.39 thorpej #ifdef DDB
953 1.39 thorpej #include <ddb/db_output.h>
954 1.39 thorpej
955 1.39 thorpej /*
956 1.39 thorpej * Dump kmem statistics from ddb.
957 1.39 thorpej *
958 1.39 thorpej * usage: call dump_kmemstats
959 1.39 thorpej */
960 1.69 enami void dump_kmemstats(void);
961 1.39 thorpej
962 1.39 thorpej void
963 1.69 enami dump_kmemstats(void)
964 1.39 thorpej {
965 1.39 thorpej #ifdef KMEMSTATS
966 1.77 thorpej struct malloc_type *ksp;
967 1.39 thorpej
968 1.77 thorpej for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
969 1.77 thorpej if (ksp->ks_memuse == 0)
970 1.77 thorpej continue;
971 1.77 thorpej db_printf("%s%.*s %ld\n", ksp->ks_shortdesc,
972 1.77 thorpej (int)(20 - strlen(ksp->ks_shortdesc)),
973 1.77 thorpej " ",
974 1.77 thorpej ksp->ks_memuse);
975 1.39 thorpej }
976 1.39 thorpej #else
977 1.39 thorpej db_printf("Kmem stats are not being collected.\n");
978 1.39 thorpej #endif /* KMEMSTATS */
979 1.39 thorpej }
980 1.39 thorpej #endif /* DDB */
981 1.82 manu
982 1.82 manu
983 1.82 manu #if 0
984 1.96 perry /*
985 1.82 manu * Diagnostic messages about "Data modified on
986 1.82 manu * freelist" indicate a memory corruption, but
987 1.82 manu * they do not help tracking it down.
988 1.96 perry * This function can be called at various places
989 1.82 manu * to sanity check malloc's freelist and discover
990 1.82 manu * where does the corruption take place.
991 1.82 manu */
992 1.82 manu int
993 1.82 manu freelist_sanitycheck(void) {
994 1.82 manu int i,j;
995 1.82 manu struct kmembuckets *kbp;
996 1.82 manu struct freelist *freep;
997 1.82 manu int rv = 0;
998 1.96 perry
999 1.82 manu for (i = MINBUCKET; i <= MINBUCKET + 15; i++) {
1000 1.99 chs kbp = &kmembuckets[i];
1001 1.82 manu freep = (struct freelist *)kbp->kb_next;
1002 1.82 manu j = 0;
1003 1.82 manu while(freep) {
1004 1.82 manu vm_map_lock(kmem_map);
1005 1.82 manu rv = uvm_map_checkprot(kmem_map, (vaddr_t)freep,
1006 1.96 perry (vaddr_t)freep + sizeof(struct freelist),
1007 1.82 manu VM_PROT_WRITE);
1008 1.82 manu vm_map_unlock(kmem_map);
1009 1.82 manu
1010 1.82 manu if ((rv == 0) || (*(int *)freep != WEIRD_ADDR)) {
1011 1.82 manu printf("bucket %i, chunck %d at %p modified\n",
1012 1.82 manu i, j, freep);
1013 1.82 manu return 1;
1014 1.82 manu }
1015 1.82 manu freep = (struct freelist *)freep->next;
1016 1.82 manu j++;
1017 1.82 manu }
1018 1.82 manu }
1019 1.82 manu
1020 1.82 manu return 0;
1021 1.82 manu }
1022 1.82 manu #endif
1023