kern_malloc.c revision 1.17 1 1.17 cgd /* $NetBSD: kern_malloc.c,v 1.17 1996/06/13 16:53:34 cgd Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.8 cgd * Copyright (c) 1987, 1991, 1993
5 1.8 cgd * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.1 cgd * 3. All advertising materials mentioning features or use of this software
16 1.1 cgd * must display the following acknowledgement:
17 1.1 cgd * This product includes software developed by the University of
18 1.1 cgd * California, Berkeley and its contributors.
19 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
20 1.1 cgd * may be used to endorse or promote products derived from this software
21 1.1 cgd * without specific prior written permission.
22 1.1 cgd *
23 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 cgd * SUCH DAMAGE.
34 1.1 cgd *
35 1.9 cgd * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
36 1.1 cgd */
37 1.1 cgd
38 1.7 mycroft #include <sys/param.h>
39 1.7 mycroft #include <sys/proc.h>
40 1.8 cgd #include <sys/map.h>
41 1.7 mycroft #include <sys/kernel.h>
42 1.7 mycroft #include <sys/malloc.h>
43 1.12 christos #include <sys/systm.h>
44 1.7 mycroft
45 1.7 mycroft #include <vm/vm.h>
46 1.7 mycroft #include <vm/vm_kern.h>
47 1.12 christos
48 1.1 cgd struct kmembuckets bucket[MINBUCKET + 16];
49 1.8 cgd struct kmemstats kmemstats[M_LAST];
50 1.1 cgd struct kmemusage *kmemusage;
51 1.1 cgd char *kmembase, *kmemlimit;
52 1.1 cgd char *memname[] = INITKMEMNAMES;
53 1.1 cgd
54 1.8 cgd #ifdef DIAGNOSTIC
55 1.8 cgd /*
56 1.8 cgd * This structure provides a set of masks to catch unaligned frees.
57 1.8 cgd */
58 1.8 cgd long addrmask[] = { 0,
59 1.8 cgd 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
60 1.8 cgd 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
61 1.8 cgd 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
62 1.8 cgd 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
63 1.8 cgd };
64 1.8 cgd
65 1.8 cgd /*
66 1.8 cgd * The WEIRD_ADDR is used as known text to copy into free objects so
67 1.8 cgd * that modifications after frees can be detected.
68 1.8 cgd */
69 1.12 christos #define WEIRD_ADDR ((unsigned) 0xdeadbeef)
70 1.8 cgd #define MAX_COPY 32
71 1.8 cgd
72 1.8 cgd /*
73 1.11 cgd * Normally the freelist structure is used only to hold the list pointer
74 1.11 cgd * for free objects. However, when running with diagnostics, the first
75 1.11 cgd * 8 bytes of the structure is unused except for diagnostic information,
76 1.11 cgd * and the free list pointer is at offst 8 in the structure. Since the
77 1.11 cgd * first 8 bytes is the portion of the structure most often modified, this
78 1.11 cgd * helps to detect memory reuse problems and avoid free list corruption.
79 1.8 cgd */
80 1.8 cgd struct freelist {
81 1.11 cgd int32_t spare0;
82 1.11 cgd int16_t type;
83 1.11 cgd int16_t spare1;
84 1.8 cgd caddr_t next;
85 1.8 cgd };
86 1.8 cgd #else /* !DIAGNOSTIC */
87 1.8 cgd struct freelist {
88 1.8 cgd caddr_t next;
89 1.8 cgd };
90 1.8 cgd #endif /* DIAGNOSTIC */
91 1.8 cgd
92 1.1 cgd /*
93 1.1 cgd * Allocate a block of memory
94 1.1 cgd */
95 1.1 cgd void *
96 1.1 cgd malloc(size, type, flags)
97 1.1 cgd unsigned long size;
98 1.1 cgd int type, flags;
99 1.1 cgd {
100 1.1 cgd register struct kmembuckets *kbp;
101 1.1 cgd register struct kmemusage *kup;
102 1.8 cgd register struct freelist *freep;
103 1.5 andrew long indx, npg, allocsize;
104 1.1 cgd int s;
105 1.1 cgd caddr_t va, cp, savedlist;
106 1.8 cgd #ifdef DIAGNOSTIC
107 1.11 cgd int32_t *end, *lp;
108 1.8 cgd int copysize;
109 1.8 cgd char *savedtype;
110 1.8 cgd #endif
111 1.1 cgd #ifdef KMEMSTATS
112 1.1 cgd register struct kmemstats *ksp = &kmemstats[type];
113 1.1 cgd
114 1.1 cgd if (((unsigned long)type) > M_LAST)
115 1.1 cgd panic("malloc - bogus type");
116 1.1 cgd #endif
117 1.1 cgd indx = BUCKETINDX(size);
118 1.1 cgd kbp = &bucket[indx];
119 1.1 cgd s = splimp();
120 1.1 cgd #ifdef KMEMSTATS
121 1.1 cgd while (ksp->ks_memuse >= ksp->ks_limit) {
122 1.1 cgd if (flags & M_NOWAIT) {
123 1.1 cgd splx(s);
124 1.1 cgd return ((void *) NULL);
125 1.1 cgd }
126 1.1 cgd if (ksp->ks_limblocks < 65535)
127 1.1 cgd ksp->ks_limblocks++;
128 1.1 cgd tsleep((caddr_t)ksp, PSWP+2, memname[type], 0);
129 1.1 cgd }
130 1.8 cgd ksp->ks_size |= 1 << indx;
131 1.8 cgd #endif
132 1.8 cgd #ifdef DIAGNOSTIC
133 1.8 cgd copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
134 1.1 cgd #endif
135 1.1 cgd if (kbp->kb_next == NULL) {
136 1.8 cgd kbp->kb_last = NULL;
137 1.1 cgd if (size > MAXALLOCSAVE)
138 1.1 cgd allocsize = roundup(size, CLBYTES);
139 1.1 cgd else
140 1.1 cgd allocsize = 1 << indx;
141 1.1 cgd npg = clrnd(btoc(allocsize));
142 1.1 cgd va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg),
143 1.1 cgd !(flags & M_NOWAIT));
144 1.1 cgd if (va == NULL) {
145 1.17 cgd /*
146 1.17 cgd * Kmem_malloc() can return NULL, even if it can
147 1.17 cgd * wait, if there is no map space avaiable, because
148 1.17 cgd * it can't fix that problem. Neither can we,
149 1.17 cgd * right now. (We should release pages which
150 1.17 cgd * are completely free and which are in buckets
151 1.17 cgd * with too many free elements.)
152 1.17 cgd */
153 1.17 cgd if ((flags & M_NOWAIT) == 0)
154 1.17 cgd panic("malloc: out of space in kmem_map");
155 1.6 cgd splx(s);
156 1.6 cgd return ((void *) NULL);
157 1.1 cgd }
158 1.1 cgd #ifdef KMEMSTATS
159 1.1 cgd kbp->kb_total += kbp->kb_elmpercl;
160 1.1 cgd #endif
161 1.1 cgd kup = btokup(va);
162 1.1 cgd kup->ku_indx = indx;
163 1.1 cgd if (allocsize > MAXALLOCSAVE) {
164 1.1 cgd if (npg > 65535)
165 1.1 cgd panic("malloc: allocation too large");
166 1.1 cgd kup->ku_pagecnt = npg;
167 1.1 cgd #ifdef KMEMSTATS
168 1.1 cgd ksp->ks_memuse += allocsize;
169 1.1 cgd #endif
170 1.1 cgd goto out;
171 1.1 cgd }
172 1.1 cgd #ifdef KMEMSTATS
173 1.1 cgd kup->ku_freecnt = kbp->kb_elmpercl;
174 1.1 cgd kbp->kb_totalfree += kbp->kb_elmpercl;
175 1.1 cgd #endif
176 1.1 cgd /*
177 1.1 cgd * Just in case we blocked while allocating memory,
178 1.1 cgd * and someone else also allocated memory for this
179 1.1 cgd * bucket, don't assume the list is still empty.
180 1.1 cgd */
181 1.1 cgd savedlist = kbp->kb_next;
182 1.8 cgd kbp->kb_next = cp = va + (npg * NBPG) - allocsize;
183 1.8 cgd for (;;) {
184 1.8 cgd freep = (struct freelist *)cp;
185 1.8 cgd #ifdef DIAGNOSTIC
186 1.8 cgd /*
187 1.8 cgd * Copy in known text to detect modification
188 1.8 cgd * after freeing.
189 1.8 cgd */
190 1.11 cgd end = (int32_t *)&cp[copysize];
191 1.11 cgd for (lp = (int32_t *)cp; lp < end; lp++)
192 1.8 cgd *lp = WEIRD_ADDR;
193 1.8 cgd freep->type = M_FREE;
194 1.8 cgd #endif /* DIAGNOSTIC */
195 1.8 cgd if (cp <= va)
196 1.8 cgd break;
197 1.8 cgd cp -= allocsize;
198 1.8 cgd freep->next = cp;
199 1.8 cgd }
200 1.8 cgd freep->next = savedlist;
201 1.8 cgd if (kbp->kb_last == NULL)
202 1.8 cgd kbp->kb_last = (caddr_t)freep;
203 1.1 cgd }
204 1.1 cgd va = kbp->kb_next;
205 1.8 cgd kbp->kb_next = ((struct freelist *)va)->next;
206 1.8 cgd #ifdef DIAGNOSTIC
207 1.8 cgd freep = (struct freelist *)va;
208 1.8 cgd savedtype = (unsigned)freep->type < M_LAST ?
209 1.8 cgd memname[freep->type] : "???";
210 1.8 cgd if (kbp->kb_next &&
211 1.8 cgd !kernacc(kbp->kb_next, sizeof(struct freelist), 0)) {
212 1.15 christos printf("%s %d of object %p size %ld %s %s (invalid addr %p)\n",
213 1.11 cgd "Data modified on freelist: word",
214 1.11 cgd (int32_t *)&kbp->kb_next - (int32_t *)kbp, va, size,
215 1.8 cgd "previous type", savedtype, kbp->kb_next);
216 1.8 cgd kbp->kb_next = NULL;
217 1.8 cgd }
218 1.11 cgd
219 1.11 cgd /* Fill the fields that we've used with WEIRD_ADDR */
220 1.8 cgd #if BYTE_ORDER == BIG_ENDIAN
221 1.8 cgd freep->type = WEIRD_ADDR >> 16;
222 1.8 cgd #endif
223 1.8 cgd #if BYTE_ORDER == LITTLE_ENDIAN
224 1.8 cgd freep->type = (short)WEIRD_ADDR;
225 1.8 cgd #endif
226 1.11 cgd end = (int32_t *)&freep->next +
227 1.11 cgd (sizeof(freep->next) / sizeof(int32_t));
228 1.11 cgd for (lp = (int32_t *)&freep->next; lp < end; lp++)
229 1.11 cgd *lp = WEIRD_ADDR;
230 1.11 cgd
231 1.11 cgd /* and check that the data hasn't been modified. */
232 1.11 cgd end = (int32_t *)&va[copysize];
233 1.11 cgd for (lp = (int32_t *)va; lp < end; lp++) {
234 1.8 cgd if (*lp == WEIRD_ADDR)
235 1.8 cgd continue;
236 1.15 christos printf("%s %d of object %p size %ld %s %s (0x%x != 0x%x)\n",
237 1.11 cgd "Data modified on freelist: word", lp - (int32_t *)va,
238 1.14 cgd va, size, "previous type", savedtype, *lp, WEIRD_ADDR);
239 1.8 cgd break;
240 1.8 cgd }
241 1.11 cgd
242 1.8 cgd freep->spare0 = 0;
243 1.8 cgd #endif /* DIAGNOSTIC */
244 1.1 cgd #ifdef KMEMSTATS
245 1.1 cgd kup = btokup(va);
246 1.1 cgd if (kup->ku_indx != indx)
247 1.1 cgd panic("malloc: wrong bucket");
248 1.1 cgd if (kup->ku_freecnt == 0)
249 1.1 cgd panic("malloc: lost data");
250 1.1 cgd kup->ku_freecnt--;
251 1.1 cgd kbp->kb_totalfree--;
252 1.1 cgd ksp->ks_memuse += 1 << indx;
253 1.1 cgd out:
254 1.1 cgd kbp->kb_calls++;
255 1.1 cgd ksp->ks_inuse++;
256 1.1 cgd ksp->ks_calls++;
257 1.1 cgd if (ksp->ks_memuse > ksp->ks_maxused)
258 1.1 cgd ksp->ks_maxused = ksp->ks_memuse;
259 1.1 cgd #else
260 1.1 cgd out:
261 1.1 cgd #endif
262 1.1 cgd splx(s);
263 1.1 cgd return ((void *) va);
264 1.1 cgd }
265 1.1 cgd
266 1.1 cgd /*
267 1.1 cgd * Free a block of memory allocated by malloc.
268 1.1 cgd */
269 1.1 cgd void
270 1.1 cgd free(addr, type)
271 1.1 cgd void *addr;
272 1.1 cgd int type;
273 1.1 cgd {
274 1.1 cgd register struct kmembuckets *kbp;
275 1.1 cgd register struct kmemusage *kup;
276 1.8 cgd register struct freelist *freep;
277 1.8 cgd long size;
278 1.8 cgd int s;
279 1.5 andrew #ifdef DIAGNOSTIC
280 1.8 cgd caddr_t cp;
281 1.11 cgd int32_t *end, *lp;
282 1.11 cgd long alloc, copysize;
283 1.5 andrew #endif
284 1.1 cgd #ifdef KMEMSTATS
285 1.1 cgd register struct kmemstats *ksp = &kmemstats[type];
286 1.1 cgd #endif
287 1.1 cgd
288 1.1 cgd kup = btokup(addr);
289 1.1 cgd size = 1 << kup->ku_indx;
290 1.8 cgd kbp = &bucket[kup->ku_indx];
291 1.8 cgd s = splimp();
292 1.1 cgd #ifdef DIAGNOSTIC
293 1.8 cgd /*
294 1.8 cgd * Check for returns of data that do not point to the
295 1.8 cgd * beginning of the allocation.
296 1.8 cgd */
297 1.1 cgd if (size > NBPG * CLSIZE)
298 1.1 cgd alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
299 1.1 cgd else
300 1.1 cgd alloc = addrmask[kup->ku_indx];
301 1.8 cgd if (((u_long)addr & alloc) != 0)
302 1.15 christos panic("free: unaligned addr %p, size %ld, type %s, mask %ld\n",
303 1.8 cgd addr, size, memname[type], alloc);
304 1.1 cgd #endif /* DIAGNOSTIC */
305 1.1 cgd if (size > MAXALLOCSAVE) {
306 1.1 cgd kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
307 1.1 cgd #ifdef KMEMSTATS
308 1.1 cgd size = kup->ku_pagecnt << PGSHIFT;
309 1.1 cgd ksp->ks_memuse -= size;
310 1.1 cgd kup->ku_indx = 0;
311 1.1 cgd kup->ku_pagecnt = 0;
312 1.1 cgd if (ksp->ks_memuse + size >= ksp->ks_limit &&
313 1.1 cgd ksp->ks_memuse < ksp->ks_limit)
314 1.1 cgd wakeup((caddr_t)ksp);
315 1.1 cgd ksp->ks_inuse--;
316 1.1 cgd kbp->kb_total -= 1;
317 1.1 cgd #endif
318 1.1 cgd splx(s);
319 1.1 cgd return;
320 1.1 cgd }
321 1.8 cgd freep = (struct freelist *)addr;
322 1.8 cgd #ifdef DIAGNOSTIC
323 1.8 cgd /*
324 1.8 cgd * Check for multiple frees. Use a quick check to see if
325 1.8 cgd * it looks free before laboriously searching the freelist.
326 1.8 cgd */
327 1.8 cgd if (freep->spare0 == WEIRD_ADDR) {
328 1.16 cgd for (cp = kbp->kb_next; cp;
329 1.16 cgd cp = ((struct freelist *)cp)->next) {
330 1.8 cgd if (addr != cp)
331 1.8 cgd continue;
332 1.10 mycroft printf("multiply freed item %p\n", addr);
333 1.8 cgd panic("free: duplicated free");
334 1.8 cgd }
335 1.8 cgd }
336 1.8 cgd /*
337 1.8 cgd * Copy in known text to detect modification after freeing
338 1.8 cgd * and to make it look free. Also, save the type being freed
339 1.8 cgd * so we can list likely culprit if modification is detected
340 1.8 cgd * when the object is reallocated.
341 1.8 cgd */
342 1.8 cgd copysize = size < MAX_COPY ? size : MAX_COPY;
343 1.11 cgd end = (int32_t *)&((caddr_t)addr)[copysize];
344 1.11 cgd for (lp = (int32_t *)addr; lp < end; lp++)
345 1.8 cgd *lp = WEIRD_ADDR;
346 1.8 cgd freep->type = type;
347 1.8 cgd #endif /* DIAGNOSTIC */
348 1.1 cgd #ifdef KMEMSTATS
349 1.1 cgd kup->ku_freecnt++;
350 1.1 cgd if (kup->ku_freecnt >= kbp->kb_elmpercl)
351 1.1 cgd if (kup->ku_freecnt > kbp->kb_elmpercl)
352 1.1 cgd panic("free: multiple frees");
353 1.1 cgd else if (kbp->kb_totalfree > kbp->kb_highwat)
354 1.1 cgd kbp->kb_couldfree++;
355 1.1 cgd kbp->kb_totalfree++;
356 1.1 cgd ksp->ks_memuse -= size;
357 1.1 cgd if (ksp->ks_memuse + size >= ksp->ks_limit &&
358 1.1 cgd ksp->ks_memuse < ksp->ks_limit)
359 1.1 cgd wakeup((caddr_t)ksp);
360 1.1 cgd ksp->ks_inuse--;
361 1.1 cgd #endif
362 1.8 cgd if (kbp->kb_next == NULL)
363 1.8 cgd kbp->kb_next = addr;
364 1.8 cgd else
365 1.8 cgd ((struct freelist *)kbp->kb_last)->next = addr;
366 1.8 cgd freep->next = NULL;
367 1.8 cgd kbp->kb_last = addr;
368 1.1 cgd splx(s);
369 1.1 cgd }
370 1.1 cgd
371 1.1 cgd /*
372 1.1 cgd * Initialize the kernel memory allocator
373 1.1 cgd */
374 1.12 christos void
375 1.1 cgd kmeminit()
376 1.1 cgd {
377 1.1 cgd register long indx;
378 1.1 cgd int npg;
379 1.1 cgd
380 1.1 cgd #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
381 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
382 1.1 cgd #endif
383 1.1 cgd #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
384 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_too_big
385 1.1 cgd #endif
386 1.1 cgd #if (MAXALLOCSAVE < CLBYTES)
387 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_too_small
388 1.1 cgd #endif
389 1.11 cgd
390 1.11 cgd if (sizeof(struct freelist) > (1 << MINBUCKET))
391 1.11 cgd panic("minbucket too small/struct freelist too big");
392 1.11 cgd
393 1.1 cgd npg = VM_KMEM_SIZE/ NBPG;
394 1.1 cgd kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
395 1.1 cgd (vm_size_t)(npg * sizeof(struct kmemusage)));
396 1.1 cgd kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
397 1.1 cgd (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * NBPG), FALSE);
398 1.1 cgd #ifdef KMEMSTATS
399 1.1 cgd for (indx = 0; indx < MINBUCKET + 16; indx++) {
400 1.1 cgd if (1 << indx >= CLBYTES)
401 1.1 cgd bucket[indx].kb_elmpercl = 1;
402 1.1 cgd else
403 1.1 cgd bucket[indx].kb_elmpercl = CLBYTES / (1 << indx);
404 1.1 cgd bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
405 1.1 cgd }
406 1.8 cgd for (indx = 0; indx < M_LAST; indx++)
407 1.1 cgd kmemstats[indx].ks_limit = npg * NBPG * 6 / 10;
408 1.1 cgd #endif
409 1.1 cgd }
410