kern_malloc.c revision 1.22 1 1.22 christos /* $NetBSD: kern_malloc.c,v 1.22 1996/10/13 02:32:32 christos Exp $ */
2 1.9 cgd
3 1.1 cgd /*
4 1.20 cgd * Copyright 1996 Christopher G. Demetriou. All rights reserved.
5 1.8 cgd * Copyright (c) 1987, 1991, 1993
6 1.8 cgd * The Regents of the University of California. All rights reserved.
7 1.1 cgd *
8 1.1 cgd * Redistribution and use in source and binary forms, with or without
9 1.1 cgd * modification, are permitted provided that the following conditions
10 1.1 cgd * are met:
11 1.1 cgd * 1. Redistributions of source code must retain the above copyright
12 1.1 cgd * notice, this list of conditions and the following disclaimer.
13 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 cgd * notice, this list of conditions and the following disclaimer in the
15 1.1 cgd * documentation and/or other materials provided with the distribution.
16 1.1 cgd * 3. All advertising materials mentioning features or use of this software
17 1.1 cgd * must display the following acknowledgement:
18 1.1 cgd * This product includes software developed by the University of
19 1.1 cgd * California, Berkeley and its contributors.
20 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
21 1.1 cgd * may be used to endorse or promote products derived from this software
22 1.1 cgd * without specific prior written permission.
23 1.1 cgd *
24 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 cgd * SUCH DAMAGE.
35 1.1 cgd *
36 1.9 cgd * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
37 1.1 cgd */
38 1.1 cgd
39 1.7 mycroft #include <sys/param.h>
40 1.7 mycroft #include <sys/proc.h>
41 1.8 cgd #include <sys/map.h>
42 1.7 mycroft #include <sys/kernel.h>
43 1.7 mycroft #include <sys/malloc.h>
44 1.12 christos #include <sys/systm.h>
45 1.7 mycroft
46 1.7 mycroft #include <vm/vm.h>
47 1.7 mycroft #include <vm/vm_kern.h>
48 1.12 christos
49 1.1 cgd struct kmembuckets bucket[MINBUCKET + 16];
50 1.8 cgd struct kmemstats kmemstats[M_LAST];
51 1.1 cgd struct kmemusage *kmemusage;
52 1.1 cgd char *kmembase, *kmemlimit;
53 1.1 cgd char *memname[] = INITKMEMNAMES;
54 1.1 cgd
55 1.8 cgd #ifdef DIAGNOSTIC
56 1.8 cgd /*
57 1.8 cgd * This structure provides a set of masks to catch unaligned frees.
58 1.8 cgd */
59 1.8 cgd long addrmask[] = { 0,
60 1.8 cgd 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
61 1.8 cgd 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
62 1.8 cgd 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
63 1.8 cgd 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
64 1.8 cgd };
65 1.8 cgd
66 1.8 cgd /*
67 1.8 cgd * The WEIRD_ADDR is used as known text to copy into free objects so
68 1.8 cgd * that modifications after frees can be detected.
69 1.8 cgd */
70 1.12 christos #define WEIRD_ADDR ((unsigned) 0xdeadbeef)
71 1.8 cgd #define MAX_COPY 32
72 1.8 cgd
73 1.8 cgd /*
74 1.11 cgd * Normally the freelist structure is used only to hold the list pointer
75 1.11 cgd * for free objects. However, when running with diagnostics, the first
76 1.11 cgd * 8 bytes of the structure is unused except for diagnostic information,
77 1.11 cgd * and the free list pointer is at offst 8 in the structure. Since the
78 1.11 cgd * first 8 bytes is the portion of the structure most often modified, this
79 1.11 cgd * helps to detect memory reuse problems and avoid free list corruption.
80 1.8 cgd */
81 1.8 cgd struct freelist {
82 1.11 cgd int32_t spare0;
83 1.11 cgd int16_t type;
84 1.11 cgd int16_t spare1;
85 1.8 cgd caddr_t next;
86 1.8 cgd };
87 1.8 cgd #else /* !DIAGNOSTIC */
88 1.8 cgd struct freelist {
89 1.8 cgd caddr_t next;
90 1.8 cgd };
91 1.8 cgd #endif /* DIAGNOSTIC */
92 1.8 cgd
93 1.1 cgd /*
94 1.1 cgd * Allocate a block of memory
95 1.1 cgd */
96 1.1 cgd void *
97 1.1 cgd malloc(size, type, flags)
98 1.1 cgd unsigned long size;
99 1.1 cgd int type, flags;
100 1.1 cgd {
101 1.1 cgd register struct kmembuckets *kbp;
102 1.1 cgd register struct kmemusage *kup;
103 1.8 cgd register struct freelist *freep;
104 1.5 andrew long indx, npg, allocsize;
105 1.1 cgd int s;
106 1.1 cgd caddr_t va, cp, savedlist;
107 1.8 cgd #ifdef DIAGNOSTIC
108 1.11 cgd int32_t *end, *lp;
109 1.8 cgd int copysize;
110 1.8 cgd char *savedtype;
111 1.8 cgd #endif
112 1.1 cgd #ifdef KMEMSTATS
113 1.1 cgd register struct kmemstats *ksp = &kmemstats[type];
114 1.1 cgd
115 1.1 cgd if (((unsigned long)type) > M_LAST)
116 1.1 cgd panic("malloc - bogus type");
117 1.1 cgd #endif
118 1.1 cgd indx = BUCKETINDX(size);
119 1.1 cgd kbp = &bucket[indx];
120 1.1 cgd s = splimp();
121 1.1 cgd #ifdef KMEMSTATS
122 1.1 cgd while (ksp->ks_memuse >= ksp->ks_limit) {
123 1.1 cgd if (flags & M_NOWAIT) {
124 1.1 cgd splx(s);
125 1.1 cgd return ((void *) NULL);
126 1.1 cgd }
127 1.1 cgd if (ksp->ks_limblocks < 65535)
128 1.1 cgd ksp->ks_limblocks++;
129 1.1 cgd tsleep((caddr_t)ksp, PSWP+2, memname[type], 0);
130 1.1 cgd }
131 1.8 cgd ksp->ks_size |= 1 << indx;
132 1.8 cgd #endif
133 1.8 cgd #ifdef DIAGNOSTIC
134 1.8 cgd copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
135 1.1 cgd #endif
136 1.1 cgd if (kbp->kb_next == NULL) {
137 1.8 cgd kbp->kb_last = NULL;
138 1.1 cgd if (size > MAXALLOCSAVE)
139 1.1 cgd allocsize = roundup(size, CLBYTES);
140 1.1 cgd else
141 1.1 cgd allocsize = 1 << indx;
142 1.1 cgd npg = clrnd(btoc(allocsize));
143 1.1 cgd va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg),
144 1.1 cgd !(flags & M_NOWAIT));
145 1.1 cgd if (va == NULL) {
146 1.17 cgd /*
147 1.17 cgd * Kmem_malloc() can return NULL, even if it can
148 1.17 cgd * wait, if there is no map space avaiable, because
149 1.17 cgd * it can't fix that problem. Neither can we,
150 1.17 cgd * right now. (We should release pages which
151 1.17 cgd * are completely free and which are in buckets
152 1.17 cgd * with too many free elements.)
153 1.17 cgd */
154 1.17 cgd if ((flags & M_NOWAIT) == 0)
155 1.17 cgd panic("malloc: out of space in kmem_map");
156 1.6 cgd splx(s);
157 1.6 cgd return ((void *) NULL);
158 1.1 cgd }
159 1.1 cgd #ifdef KMEMSTATS
160 1.1 cgd kbp->kb_total += kbp->kb_elmpercl;
161 1.1 cgd #endif
162 1.1 cgd kup = btokup(va);
163 1.1 cgd kup->ku_indx = indx;
164 1.1 cgd if (allocsize > MAXALLOCSAVE) {
165 1.1 cgd if (npg > 65535)
166 1.1 cgd panic("malloc: allocation too large");
167 1.1 cgd kup->ku_pagecnt = npg;
168 1.1 cgd #ifdef KMEMSTATS
169 1.1 cgd ksp->ks_memuse += allocsize;
170 1.1 cgd #endif
171 1.1 cgd goto out;
172 1.1 cgd }
173 1.1 cgd #ifdef KMEMSTATS
174 1.1 cgd kup->ku_freecnt = kbp->kb_elmpercl;
175 1.1 cgd kbp->kb_totalfree += kbp->kb_elmpercl;
176 1.1 cgd #endif
177 1.1 cgd /*
178 1.1 cgd * Just in case we blocked while allocating memory,
179 1.1 cgd * and someone else also allocated memory for this
180 1.1 cgd * bucket, don't assume the list is still empty.
181 1.1 cgd */
182 1.1 cgd savedlist = kbp->kb_next;
183 1.8 cgd kbp->kb_next = cp = va + (npg * NBPG) - allocsize;
184 1.8 cgd for (;;) {
185 1.8 cgd freep = (struct freelist *)cp;
186 1.8 cgd #ifdef DIAGNOSTIC
187 1.8 cgd /*
188 1.8 cgd * Copy in known text to detect modification
189 1.8 cgd * after freeing.
190 1.8 cgd */
191 1.11 cgd end = (int32_t *)&cp[copysize];
192 1.11 cgd for (lp = (int32_t *)cp; lp < end; lp++)
193 1.8 cgd *lp = WEIRD_ADDR;
194 1.8 cgd freep->type = M_FREE;
195 1.8 cgd #endif /* DIAGNOSTIC */
196 1.8 cgd if (cp <= va)
197 1.8 cgd break;
198 1.8 cgd cp -= allocsize;
199 1.8 cgd freep->next = cp;
200 1.8 cgd }
201 1.8 cgd freep->next = savedlist;
202 1.8 cgd if (kbp->kb_last == NULL)
203 1.8 cgd kbp->kb_last = (caddr_t)freep;
204 1.1 cgd }
205 1.1 cgd va = kbp->kb_next;
206 1.8 cgd kbp->kb_next = ((struct freelist *)va)->next;
207 1.8 cgd #ifdef DIAGNOSTIC
208 1.8 cgd freep = (struct freelist *)va;
209 1.8 cgd savedtype = (unsigned)freep->type < M_LAST ?
210 1.8 cgd memname[freep->type] : "???";
211 1.8 cgd if (kbp->kb_next &&
212 1.8 cgd !kernacc(kbp->kb_next, sizeof(struct freelist), 0)) {
213 1.22 christos printf(
214 1.21 christos "%s %ld of object %p size %ld %s %s (invalid addr %p)\n",
215 1.21 christos "Data modified on freelist: word",
216 1.21 christos (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
217 1.21 christos va, size, "previous type", savedtype, kbp->kb_next);
218 1.8 cgd kbp->kb_next = NULL;
219 1.8 cgd }
220 1.11 cgd
221 1.11 cgd /* Fill the fields that we've used with WEIRD_ADDR */
222 1.8 cgd #if BYTE_ORDER == BIG_ENDIAN
223 1.8 cgd freep->type = WEIRD_ADDR >> 16;
224 1.8 cgd #endif
225 1.8 cgd #if BYTE_ORDER == LITTLE_ENDIAN
226 1.8 cgd freep->type = (short)WEIRD_ADDR;
227 1.8 cgd #endif
228 1.11 cgd end = (int32_t *)&freep->next +
229 1.11 cgd (sizeof(freep->next) / sizeof(int32_t));
230 1.11 cgd for (lp = (int32_t *)&freep->next; lp < end; lp++)
231 1.11 cgd *lp = WEIRD_ADDR;
232 1.11 cgd
233 1.11 cgd /* and check that the data hasn't been modified. */
234 1.11 cgd end = (int32_t *)&va[copysize];
235 1.11 cgd for (lp = (int32_t *)va; lp < end; lp++) {
236 1.8 cgd if (*lp == WEIRD_ADDR)
237 1.8 cgd continue;
238 1.22 christos printf("%s %ld of object %p size %ld %s %s (0x%x != 0x%x)\n",
239 1.21 christos "Data modified on freelist: word",
240 1.21 christos (long)(lp - (int32_t *)va), va, size, "previous type",
241 1.21 christos savedtype, *lp, WEIRD_ADDR);
242 1.8 cgd break;
243 1.8 cgd }
244 1.11 cgd
245 1.8 cgd freep->spare0 = 0;
246 1.8 cgd #endif /* DIAGNOSTIC */
247 1.1 cgd #ifdef KMEMSTATS
248 1.1 cgd kup = btokup(va);
249 1.1 cgd if (kup->ku_indx != indx)
250 1.1 cgd panic("malloc: wrong bucket");
251 1.1 cgd if (kup->ku_freecnt == 0)
252 1.1 cgd panic("malloc: lost data");
253 1.1 cgd kup->ku_freecnt--;
254 1.1 cgd kbp->kb_totalfree--;
255 1.1 cgd ksp->ks_memuse += 1 << indx;
256 1.1 cgd out:
257 1.1 cgd kbp->kb_calls++;
258 1.1 cgd ksp->ks_inuse++;
259 1.1 cgd ksp->ks_calls++;
260 1.1 cgd if (ksp->ks_memuse > ksp->ks_maxused)
261 1.1 cgd ksp->ks_maxused = ksp->ks_memuse;
262 1.1 cgd #else
263 1.1 cgd out:
264 1.1 cgd #endif
265 1.1 cgd splx(s);
266 1.1 cgd return ((void *) va);
267 1.1 cgd }
268 1.1 cgd
269 1.1 cgd /*
270 1.1 cgd * Free a block of memory allocated by malloc.
271 1.1 cgd */
272 1.1 cgd void
273 1.1 cgd free(addr, type)
274 1.1 cgd void *addr;
275 1.1 cgd int type;
276 1.1 cgd {
277 1.1 cgd register struct kmembuckets *kbp;
278 1.1 cgd register struct kmemusage *kup;
279 1.8 cgd register struct freelist *freep;
280 1.8 cgd long size;
281 1.8 cgd int s;
282 1.5 andrew #ifdef DIAGNOSTIC
283 1.8 cgd caddr_t cp;
284 1.11 cgd int32_t *end, *lp;
285 1.11 cgd long alloc, copysize;
286 1.5 andrew #endif
287 1.1 cgd #ifdef KMEMSTATS
288 1.1 cgd register struct kmemstats *ksp = &kmemstats[type];
289 1.1 cgd #endif
290 1.1 cgd
291 1.1 cgd kup = btokup(addr);
292 1.1 cgd size = 1 << kup->ku_indx;
293 1.8 cgd kbp = &bucket[kup->ku_indx];
294 1.8 cgd s = splimp();
295 1.1 cgd #ifdef DIAGNOSTIC
296 1.8 cgd /*
297 1.8 cgd * Check for returns of data that do not point to the
298 1.8 cgd * beginning of the allocation.
299 1.8 cgd */
300 1.1 cgd if (size > NBPG * CLSIZE)
301 1.1 cgd alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
302 1.1 cgd else
303 1.1 cgd alloc = addrmask[kup->ku_indx];
304 1.8 cgd if (((u_long)addr & alloc) != 0)
305 1.15 christos panic("free: unaligned addr %p, size %ld, type %s, mask %ld\n",
306 1.8 cgd addr, size, memname[type], alloc);
307 1.1 cgd #endif /* DIAGNOSTIC */
308 1.1 cgd if (size > MAXALLOCSAVE) {
309 1.1 cgd kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
310 1.1 cgd #ifdef KMEMSTATS
311 1.1 cgd size = kup->ku_pagecnt << PGSHIFT;
312 1.1 cgd ksp->ks_memuse -= size;
313 1.1 cgd kup->ku_indx = 0;
314 1.1 cgd kup->ku_pagecnt = 0;
315 1.1 cgd if (ksp->ks_memuse + size >= ksp->ks_limit &&
316 1.1 cgd ksp->ks_memuse < ksp->ks_limit)
317 1.1 cgd wakeup((caddr_t)ksp);
318 1.1 cgd ksp->ks_inuse--;
319 1.1 cgd kbp->kb_total -= 1;
320 1.1 cgd #endif
321 1.1 cgd splx(s);
322 1.1 cgd return;
323 1.1 cgd }
324 1.8 cgd freep = (struct freelist *)addr;
325 1.8 cgd #ifdef DIAGNOSTIC
326 1.8 cgd /*
327 1.8 cgd * Check for multiple frees. Use a quick check to see if
328 1.8 cgd * it looks free before laboriously searching the freelist.
329 1.8 cgd */
330 1.8 cgd if (freep->spare0 == WEIRD_ADDR) {
331 1.16 cgd for (cp = kbp->kb_next; cp;
332 1.16 cgd cp = ((struct freelist *)cp)->next) {
333 1.8 cgd if (addr != cp)
334 1.8 cgd continue;
335 1.22 christos printf("multiply freed item %p\n", addr);
336 1.8 cgd panic("free: duplicated free");
337 1.8 cgd }
338 1.8 cgd }
339 1.8 cgd /*
340 1.8 cgd * Copy in known text to detect modification after freeing
341 1.8 cgd * and to make it look free. Also, save the type being freed
342 1.8 cgd * so we can list likely culprit if modification is detected
343 1.8 cgd * when the object is reallocated.
344 1.8 cgd */
345 1.8 cgd copysize = size < MAX_COPY ? size : MAX_COPY;
346 1.11 cgd end = (int32_t *)&((caddr_t)addr)[copysize];
347 1.11 cgd for (lp = (int32_t *)addr; lp < end; lp++)
348 1.8 cgd *lp = WEIRD_ADDR;
349 1.8 cgd freep->type = type;
350 1.8 cgd #endif /* DIAGNOSTIC */
351 1.1 cgd #ifdef KMEMSTATS
352 1.1 cgd kup->ku_freecnt++;
353 1.1 cgd if (kup->ku_freecnt >= kbp->kb_elmpercl)
354 1.1 cgd if (kup->ku_freecnt > kbp->kb_elmpercl)
355 1.1 cgd panic("free: multiple frees");
356 1.1 cgd else if (kbp->kb_totalfree > kbp->kb_highwat)
357 1.1 cgd kbp->kb_couldfree++;
358 1.1 cgd kbp->kb_totalfree++;
359 1.1 cgd ksp->ks_memuse -= size;
360 1.1 cgd if (ksp->ks_memuse + size >= ksp->ks_limit &&
361 1.1 cgd ksp->ks_memuse < ksp->ks_limit)
362 1.1 cgd wakeup((caddr_t)ksp);
363 1.1 cgd ksp->ks_inuse--;
364 1.1 cgd #endif
365 1.8 cgd if (kbp->kb_next == NULL)
366 1.8 cgd kbp->kb_next = addr;
367 1.8 cgd else
368 1.8 cgd ((struct freelist *)kbp->kb_last)->next = addr;
369 1.8 cgd freep->next = NULL;
370 1.8 cgd kbp->kb_last = addr;
371 1.1 cgd splx(s);
372 1.20 cgd }
373 1.20 cgd
374 1.20 cgd /*
375 1.20 cgd * Change the size of a block of memory.
376 1.20 cgd */
377 1.20 cgd void *
378 1.20 cgd realloc(curaddr, newsize, type, flags)
379 1.20 cgd void *curaddr;
380 1.20 cgd unsigned long newsize;
381 1.20 cgd int type, flags;
382 1.20 cgd {
383 1.20 cgd register struct kmemusage *kup;
384 1.20 cgd long cursize;
385 1.20 cgd void *newaddr;
386 1.20 cgd #ifdef DIAGNOSTIC
387 1.20 cgd long alloc;
388 1.20 cgd #endif
389 1.20 cgd
390 1.20 cgd /*
391 1.20 cgd * Realloc() with a NULL pointer is the same as malloc().
392 1.20 cgd */
393 1.20 cgd if (curaddr == NULL)
394 1.20 cgd return (malloc(newsize, type, flags));
395 1.20 cgd
396 1.20 cgd /*
397 1.20 cgd * Realloc() with zero size is the same as free().
398 1.20 cgd */
399 1.20 cgd if (newsize == 0) {
400 1.20 cgd free(curaddr, type);
401 1.20 cgd return (NULL);
402 1.20 cgd }
403 1.20 cgd
404 1.20 cgd /*
405 1.20 cgd * Find out how large the old allocation was (and do some
406 1.20 cgd * sanity checking).
407 1.20 cgd */
408 1.20 cgd kup = btokup(curaddr);
409 1.20 cgd cursize = 1 << kup->ku_indx;
410 1.20 cgd
411 1.20 cgd #ifdef DIAGNOSTIC
412 1.20 cgd /*
413 1.20 cgd * Check for returns of data that do not point to the
414 1.20 cgd * beginning of the allocation.
415 1.20 cgd */
416 1.20 cgd if (cursize > NBPG * CLSIZE)
417 1.20 cgd alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
418 1.20 cgd else
419 1.20 cgd alloc = addrmask[kup->ku_indx];
420 1.20 cgd if (((u_long)curaddr & alloc) != 0)
421 1.20 cgd panic("realloc: unaligned addr %p, size %ld, type %s, mask %ld\n",
422 1.20 cgd curaddr, cursize, memname[type], alloc);
423 1.20 cgd #endif /* DIAGNOSTIC */
424 1.20 cgd
425 1.20 cgd if (cursize > MAXALLOCSAVE)
426 1.20 cgd cursize = ctob(kup->ku_pagecnt);
427 1.20 cgd
428 1.20 cgd /*
429 1.20 cgd * If we already actually have as much as they want, we're done.
430 1.20 cgd */
431 1.20 cgd if (newsize <= cursize)
432 1.20 cgd return (curaddr);
433 1.20 cgd
434 1.20 cgd /*
435 1.20 cgd * Can't satisfy the allocation with the existing block.
436 1.20 cgd * Allocate a new one and copy the data.
437 1.20 cgd */
438 1.20 cgd newaddr = malloc(newsize, type, flags);
439 1.20 cgd if (newaddr == NULL) {
440 1.20 cgd /*
441 1.20 cgd * Malloc() failed, because flags included M_NOWAIT.
442 1.20 cgd * Return NULL to indicate that failure. The old
443 1.20 cgd * pointer is still valid.
444 1.20 cgd */
445 1.20 cgd return NULL;
446 1.20 cgd }
447 1.20 cgd bcopy(curaddr, newaddr, cursize);
448 1.20 cgd
449 1.20 cgd /*
450 1.20 cgd * We were successful: free the old allocation and return
451 1.20 cgd * the new one.
452 1.20 cgd */
453 1.20 cgd free(curaddr, type);
454 1.20 cgd return (newaddr);
455 1.1 cgd }
456 1.1 cgd
457 1.1 cgd /*
458 1.1 cgd * Initialize the kernel memory allocator
459 1.1 cgd */
460 1.12 christos void
461 1.1 cgd kmeminit()
462 1.1 cgd {
463 1.1 cgd register long indx;
464 1.1 cgd int npg;
465 1.1 cgd
466 1.1 cgd #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
467 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
468 1.1 cgd #endif
469 1.1 cgd #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
470 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_too_big
471 1.1 cgd #endif
472 1.1 cgd #if (MAXALLOCSAVE < CLBYTES)
473 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_too_small
474 1.1 cgd #endif
475 1.11 cgd
476 1.11 cgd if (sizeof(struct freelist) > (1 << MINBUCKET))
477 1.11 cgd panic("minbucket too small/struct freelist too big");
478 1.11 cgd
479 1.1 cgd npg = VM_KMEM_SIZE/ NBPG;
480 1.1 cgd kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
481 1.1 cgd (vm_size_t)(npg * sizeof(struct kmemusage)));
482 1.1 cgd kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
483 1.1 cgd (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * NBPG), FALSE);
484 1.1 cgd #ifdef KMEMSTATS
485 1.1 cgd for (indx = 0; indx < MINBUCKET + 16; indx++) {
486 1.1 cgd if (1 << indx >= CLBYTES)
487 1.1 cgd bucket[indx].kb_elmpercl = 1;
488 1.1 cgd else
489 1.1 cgd bucket[indx].kb_elmpercl = CLBYTES / (1 << indx);
490 1.1 cgd bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
491 1.1 cgd }
492 1.8 cgd for (indx = 0; indx < M_LAST; indx++)
493 1.1 cgd kmemstats[indx].ks_limit = npg * NBPG * 6 / 10;
494 1.1 cgd #endif
495 1.1 cgd }
496