kern_malloc.c revision 1.8 1 1.1 cgd /*
2 1.8 cgd * Copyright (c) 1987, 1991, 1993
3 1.8 cgd * The Regents of the University of California. All rights reserved.
4 1.1 cgd *
5 1.1 cgd * Redistribution and use in source and binary forms, with or without
6 1.1 cgd * modification, are permitted provided that the following conditions
7 1.1 cgd * are met:
8 1.1 cgd * 1. Redistributions of source code must retain the above copyright
9 1.1 cgd * notice, this list of conditions and the following disclaimer.
10 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer in the
12 1.1 cgd * documentation and/or other materials provided with the distribution.
13 1.1 cgd * 3. All advertising materials mentioning features or use of this software
14 1.1 cgd * must display the following acknowledgement:
15 1.1 cgd * This product includes software developed by the University of
16 1.1 cgd * California, Berkeley and its contributors.
17 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
18 1.1 cgd * may be used to endorse or promote products derived from this software
19 1.1 cgd * without specific prior written permission.
20 1.1 cgd *
21 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 cgd * SUCH DAMAGE.
32 1.1 cgd *
33 1.8 cgd * from: @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
34 1.8 cgd * $Id: kern_malloc.c,v 1.8 1994/05/13 08:32:17 cgd Exp $
35 1.1 cgd */
36 1.1 cgd
37 1.7 mycroft #include <sys/param.h>
38 1.7 mycroft #include <sys/proc.h>
39 1.8 cgd #include <sys/map.h>
40 1.7 mycroft #include <sys/kernel.h>
41 1.7 mycroft #include <sys/malloc.h>
42 1.7 mycroft
43 1.7 mycroft #include <vm/vm.h>
44 1.7 mycroft #include <vm/vm_kern.h>
45 1.1 cgd
46 1.1 cgd struct kmembuckets bucket[MINBUCKET + 16];
47 1.8 cgd struct kmemstats kmemstats[M_LAST];
48 1.1 cgd struct kmemusage *kmemusage;
49 1.1 cgd char *kmembase, *kmemlimit;
50 1.1 cgd char *memname[] = INITKMEMNAMES;
51 1.1 cgd
52 1.8 cgd #ifdef DIAGNOSTIC
53 1.8 cgd /*
54 1.8 cgd * This structure provides a set of masks to catch unaligned frees.
55 1.8 cgd */
56 1.8 cgd long addrmask[] = { 0,
57 1.8 cgd 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
58 1.8 cgd 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
59 1.8 cgd 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
60 1.8 cgd 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
61 1.8 cgd };
62 1.8 cgd
63 1.8 cgd /*
64 1.8 cgd * The WEIRD_ADDR is used as known text to copy into free objects so
65 1.8 cgd * that modifications after frees can be detected.
66 1.8 cgd */
67 1.8 cgd #define WEIRD_ADDR 0xdeadbeef
68 1.8 cgd #define MAX_COPY 32
69 1.8 cgd
70 1.8 cgd /*
71 1.8 cgd * Normally the first word of the structure is used to hold the list
72 1.8 cgd * pointer for free objects. However, when running with diagnostics,
73 1.8 cgd * we use the third and fourth fields, so as to catch modifications
74 1.8 cgd * in the most commonly trashed first two words.
75 1.8 cgd */
76 1.8 cgd struct freelist {
77 1.8 cgd long spare0;
78 1.8 cgd short type;
79 1.8 cgd long spare1;
80 1.8 cgd caddr_t next;
81 1.8 cgd };
82 1.8 cgd #else /* !DIAGNOSTIC */
83 1.8 cgd struct freelist {
84 1.8 cgd caddr_t next;
85 1.8 cgd };
86 1.8 cgd #endif /* DIAGNOSTIC */
87 1.8 cgd
88 1.1 cgd /*
89 1.1 cgd * Allocate a block of memory
90 1.1 cgd */
91 1.1 cgd void *
92 1.1 cgd malloc(size, type, flags)
93 1.1 cgd unsigned long size;
94 1.1 cgd int type, flags;
95 1.1 cgd {
96 1.1 cgd register struct kmembuckets *kbp;
97 1.1 cgd register struct kmemusage *kup;
98 1.8 cgd register struct freelist *freep;
99 1.5 andrew long indx, npg, allocsize;
100 1.1 cgd int s;
101 1.1 cgd caddr_t va, cp, savedlist;
102 1.8 cgd #ifdef DIAGNOSTIC
103 1.8 cgd long *end, *lp;
104 1.8 cgd int copysize;
105 1.8 cgd char *savedtype;
106 1.8 cgd #endif
107 1.1 cgd #ifdef KMEMSTATS
108 1.1 cgd register struct kmemstats *ksp = &kmemstats[type];
109 1.1 cgd
110 1.1 cgd if (((unsigned long)type) > M_LAST)
111 1.1 cgd panic("malloc - bogus type");
112 1.1 cgd #endif
113 1.1 cgd indx = BUCKETINDX(size);
114 1.1 cgd kbp = &bucket[indx];
115 1.1 cgd s = splimp();
116 1.1 cgd #ifdef KMEMSTATS
117 1.1 cgd while (ksp->ks_memuse >= ksp->ks_limit) {
118 1.1 cgd if (flags & M_NOWAIT) {
119 1.1 cgd splx(s);
120 1.1 cgd return ((void *) NULL);
121 1.1 cgd }
122 1.1 cgd if (ksp->ks_limblocks < 65535)
123 1.1 cgd ksp->ks_limblocks++;
124 1.1 cgd tsleep((caddr_t)ksp, PSWP+2, memname[type], 0);
125 1.1 cgd }
126 1.8 cgd ksp->ks_size |= 1 << indx;
127 1.8 cgd #endif
128 1.8 cgd #ifdef DIAGNOSTIC
129 1.8 cgd copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
130 1.1 cgd #endif
131 1.1 cgd if (kbp->kb_next == NULL) {
132 1.8 cgd kbp->kb_last = NULL;
133 1.1 cgd if (size > MAXALLOCSAVE)
134 1.1 cgd allocsize = roundup(size, CLBYTES);
135 1.1 cgd else
136 1.1 cgd allocsize = 1 << indx;
137 1.1 cgd npg = clrnd(btoc(allocsize));
138 1.1 cgd va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg),
139 1.1 cgd !(flags & M_NOWAIT));
140 1.1 cgd if (va == NULL) {
141 1.6 cgd splx(s);
142 1.6 cgd return ((void *) NULL);
143 1.1 cgd }
144 1.1 cgd #ifdef KMEMSTATS
145 1.1 cgd kbp->kb_total += kbp->kb_elmpercl;
146 1.1 cgd #endif
147 1.1 cgd kup = btokup(va);
148 1.1 cgd kup->ku_indx = indx;
149 1.1 cgd if (allocsize > MAXALLOCSAVE) {
150 1.1 cgd if (npg > 65535)
151 1.1 cgd panic("malloc: allocation too large");
152 1.1 cgd kup->ku_pagecnt = npg;
153 1.1 cgd #ifdef KMEMSTATS
154 1.1 cgd ksp->ks_memuse += allocsize;
155 1.1 cgd #endif
156 1.1 cgd goto out;
157 1.1 cgd }
158 1.1 cgd #ifdef KMEMSTATS
159 1.1 cgd kup->ku_freecnt = kbp->kb_elmpercl;
160 1.1 cgd kbp->kb_totalfree += kbp->kb_elmpercl;
161 1.1 cgd #endif
162 1.1 cgd /*
163 1.1 cgd * Just in case we blocked while allocating memory,
164 1.1 cgd * and someone else also allocated memory for this
165 1.1 cgd * bucket, don't assume the list is still empty.
166 1.1 cgd */
167 1.1 cgd savedlist = kbp->kb_next;
168 1.8 cgd kbp->kb_next = cp = va + (npg * NBPG) - allocsize;
169 1.8 cgd for (;;) {
170 1.8 cgd freep = (struct freelist *)cp;
171 1.8 cgd #ifdef DIAGNOSTIC
172 1.8 cgd /*
173 1.8 cgd * Copy in known text to detect modification
174 1.8 cgd * after freeing.
175 1.8 cgd */
176 1.8 cgd end = (long *)&cp[copysize];
177 1.8 cgd for (lp = (long *)cp; lp < end; lp++)
178 1.8 cgd *lp = WEIRD_ADDR;
179 1.8 cgd freep->type = M_FREE;
180 1.8 cgd #endif /* DIAGNOSTIC */
181 1.8 cgd if (cp <= va)
182 1.8 cgd break;
183 1.8 cgd cp -= allocsize;
184 1.8 cgd freep->next = cp;
185 1.8 cgd }
186 1.8 cgd freep->next = savedlist;
187 1.8 cgd if (kbp->kb_last == NULL)
188 1.8 cgd kbp->kb_last = (caddr_t)freep;
189 1.1 cgd }
190 1.1 cgd va = kbp->kb_next;
191 1.8 cgd kbp->kb_next = ((struct freelist *)va)->next;
192 1.8 cgd #ifdef DIAGNOSTIC
193 1.8 cgd freep = (struct freelist *)va;
194 1.8 cgd savedtype = (unsigned)freep->type < M_LAST ?
195 1.8 cgd memname[freep->type] : "???";
196 1.8 cgd if (kbp->kb_next &&
197 1.8 cgd !kernacc(kbp->kb_next, sizeof(struct freelist), 0)) {
198 1.8 cgd printf("%s of object 0x%x size %d %s %s (invalid addr 0x%x)\n",
199 1.8 cgd "Data modified on freelist: word 2.5", va, size,
200 1.8 cgd "previous type", savedtype, kbp->kb_next);
201 1.8 cgd kbp->kb_next = NULL;
202 1.8 cgd }
203 1.8 cgd #if BYTE_ORDER == BIG_ENDIAN
204 1.8 cgd freep->type = WEIRD_ADDR >> 16;
205 1.8 cgd #endif
206 1.8 cgd #if BYTE_ORDER == LITTLE_ENDIAN
207 1.8 cgd freep->type = (short)WEIRD_ADDR;
208 1.8 cgd #endif
209 1.8 cgd if (((long)(&freep->next)) & 0x2)
210 1.8 cgd freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
211 1.8 cgd else
212 1.8 cgd freep->next = (caddr_t)WEIRD_ADDR;
213 1.8 cgd end = (long *)&va[copysize];
214 1.8 cgd for (lp = (long *)va; lp < end; lp++) {
215 1.8 cgd if (*lp == WEIRD_ADDR)
216 1.8 cgd continue;
217 1.8 cgd printf("%s %d of object 0x%x size %d %s %s (0x%x != 0x%x)\n",
218 1.8 cgd "Data modified on freelist: word", lp - (long *)va,
219 1.8 cgd va, size, "previous type", savedtype, *lp, WEIRD_ADDR);
220 1.8 cgd break;
221 1.8 cgd }
222 1.8 cgd freep->spare0 = 0;
223 1.8 cgd #endif /* DIAGNOSTIC */
224 1.1 cgd #ifdef KMEMSTATS
225 1.1 cgd kup = btokup(va);
226 1.1 cgd if (kup->ku_indx != indx)
227 1.1 cgd panic("malloc: wrong bucket");
228 1.1 cgd if (kup->ku_freecnt == 0)
229 1.1 cgd panic("malloc: lost data");
230 1.1 cgd kup->ku_freecnt--;
231 1.1 cgd kbp->kb_totalfree--;
232 1.1 cgd ksp->ks_memuse += 1 << indx;
233 1.1 cgd out:
234 1.1 cgd kbp->kb_calls++;
235 1.1 cgd ksp->ks_inuse++;
236 1.1 cgd ksp->ks_calls++;
237 1.1 cgd if (ksp->ks_memuse > ksp->ks_maxused)
238 1.1 cgd ksp->ks_maxused = ksp->ks_memuse;
239 1.1 cgd #else
240 1.1 cgd out:
241 1.1 cgd #endif
242 1.1 cgd splx(s);
243 1.1 cgd return ((void *) va);
244 1.1 cgd }
245 1.1 cgd
246 1.1 cgd /*
247 1.1 cgd * Free a block of memory allocated by malloc.
248 1.1 cgd */
249 1.1 cgd void
250 1.1 cgd free(addr, type)
251 1.1 cgd void *addr;
252 1.1 cgd int type;
253 1.1 cgd {
254 1.1 cgd register struct kmembuckets *kbp;
255 1.1 cgd register struct kmemusage *kup;
256 1.8 cgd register struct freelist *freep;
257 1.8 cgd long size;
258 1.8 cgd int s;
259 1.5 andrew #ifdef DIAGNOSTIC
260 1.8 cgd caddr_t cp;
261 1.8 cgd long *end, *lp, alloc, copysize;
262 1.5 andrew #endif
263 1.1 cgd #ifdef KMEMSTATS
264 1.1 cgd register struct kmemstats *ksp = &kmemstats[type];
265 1.1 cgd #endif
266 1.1 cgd
267 1.1 cgd kup = btokup(addr);
268 1.1 cgd size = 1 << kup->ku_indx;
269 1.8 cgd kbp = &bucket[kup->ku_indx];
270 1.8 cgd s = splimp();
271 1.1 cgd #ifdef DIAGNOSTIC
272 1.8 cgd /*
273 1.8 cgd * Check for returns of data that do not point to the
274 1.8 cgd * beginning of the allocation.
275 1.8 cgd */
276 1.1 cgd if (size > NBPG * CLSIZE)
277 1.1 cgd alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
278 1.1 cgd else
279 1.1 cgd alloc = addrmask[kup->ku_indx];
280 1.8 cgd if (((u_long)addr & alloc) != 0)
281 1.8 cgd panic("free: unaligned addr 0x%x, size %d, type %s, mask %d\n",
282 1.8 cgd addr, size, memname[type], alloc);
283 1.1 cgd #endif /* DIAGNOSTIC */
284 1.1 cgd if (size > MAXALLOCSAVE) {
285 1.1 cgd kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
286 1.1 cgd #ifdef KMEMSTATS
287 1.1 cgd size = kup->ku_pagecnt << PGSHIFT;
288 1.1 cgd ksp->ks_memuse -= size;
289 1.1 cgd kup->ku_indx = 0;
290 1.1 cgd kup->ku_pagecnt = 0;
291 1.1 cgd if (ksp->ks_memuse + size >= ksp->ks_limit &&
292 1.1 cgd ksp->ks_memuse < ksp->ks_limit)
293 1.1 cgd wakeup((caddr_t)ksp);
294 1.1 cgd ksp->ks_inuse--;
295 1.1 cgd kbp->kb_total -= 1;
296 1.1 cgd #endif
297 1.1 cgd splx(s);
298 1.1 cgd return;
299 1.1 cgd }
300 1.8 cgd freep = (struct freelist *)addr;
301 1.8 cgd #ifdef DIAGNOSTIC
302 1.8 cgd /*
303 1.8 cgd * Check for multiple frees. Use a quick check to see if
304 1.8 cgd * it looks free before laboriously searching the freelist.
305 1.8 cgd */
306 1.8 cgd if (freep->spare0 == WEIRD_ADDR) {
307 1.8 cgd for (cp = kbp->kb_next; cp; cp = *(caddr_t *)cp) {
308 1.8 cgd if (addr != cp)
309 1.8 cgd continue;
310 1.8 cgd printf("multiply freed item 0x%x\n", addr);
311 1.8 cgd panic("free: duplicated free");
312 1.8 cgd }
313 1.8 cgd }
314 1.8 cgd /*
315 1.8 cgd * Copy in known text to detect modification after freeing
316 1.8 cgd * and to make it look free. Also, save the type being freed
317 1.8 cgd * so we can list likely culprit if modification is detected
318 1.8 cgd * when the object is reallocated.
319 1.8 cgd */
320 1.8 cgd copysize = size < MAX_COPY ? size : MAX_COPY;
321 1.8 cgd end = (long *)&((caddr_t)addr)[copysize];
322 1.8 cgd for (lp = (long *)addr; lp < end; lp++)
323 1.8 cgd *lp = WEIRD_ADDR;
324 1.8 cgd freep->type = type;
325 1.8 cgd #endif /* DIAGNOSTIC */
326 1.1 cgd #ifdef KMEMSTATS
327 1.1 cgd kup->ku_freecnt++;
328 1.1 cgd if (kup->ku_freecnt >= kbp->kb_elmpercl)
329 1.1 cgd if (kup->ku_freecnt > kbp->kb_elmpercl)
330 1.1 cgd panic("free: multiple frees");
331 1.1 cgd else if (kbp->kb_totalfree > kbp->kb_highwat)
332 1.1 cgd kbp->kb_couldfree++;
333 1.1 cgd kbp->kb_totalfree++;
334 1.1 cgd ksp->ks_memuse -= size;
335 1.1 cgd if (ksp->ks_memuse + size >= ksp->ks_limit &&
336 1.1 cgd ksp->ks_memuse < ksp->ks_limit)
337 1.1 cgd wakeup((caddr_t)ksp);
338 1.1 cgd ksp->ks_inuse--;
339 1.1 cgd #endif
340 1.8 cgd if (kbp->kb_next == NULL)
341 1.8 cgd kbp->kb_next = addr;
342 1.8 cgd else
343 1.8 cgd ((struct freelist *)kbp->kb_last)->next = addr;
344 1.8 cgd freep->next = NULL;
345 1.8 cgd kbp->kb_last = addr;
346 1.1 cgd splx(s);
347 1.1 cgd }
348 1.1 cgd
349 1.1 cgd /*
350 1.1 cgd * Initialize the kernel memory allocator
351 1.1 cgd */
352 1.1 cgd kmeminit()
353 1.1 cgd {
354 1.1 cgd register long indx;
355 1.1 cgd int npg;
356 1.1 cgd
357 1.1 cgd #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
358 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
359 1.1 cgd #endif
360 1.1 cgd #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
361 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_too_big
362 1.1 cgd #endif
363 1.1 cgd #if (MAXALLOCSAVE < CLBYTES)
364 1.1 cgd ERROR!_kmeminit:_MAXALLOCSAVE_too_small
365 1.1 cgd #endif
366 1.1 cgd npg = VM_KMEM_SIZE/ NBPG;
367 1.1 cgd kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
368 1.1 cgd (vm_size_t)(npg * sizeof(struct kmemusage)));
369 1.1 cgd kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
370 1.1 cgd (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * NBPG), FALSE);
371 1.1 cgd #ifdef KMEMSTATS
372 1.1 cgd for (indx = 0; indx < MINBUCKET + 16; indx++) {
373 1.1 cgd if (1 << indx >= CLBYTES)
374 1.1 cgd bucket[indx].kb_elmpercl = 1;
375 1.1 cgd else
376 1.1 cgd bucket[indx].kb_elmpercl = CLBYTES / (1 << indx);
377 1.1 cgd bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
378 1.1 cgd }
379 1.8 cgd for (indx = 0; indx < M_LAST; indx++)
380 1.1 cgd kmemstats[indx].ks_limit = npg * NBPG * 6 / 10;
381 1.1 cgd #endif
382 1.1 cgd }
383