kern_malloc.c revision 1.1.1.2 1 /*
2 * Copyright (c) 1987, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
34 */
35
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/map.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41
42 #include <vm/vm.h>
43 #include <vm/vm_kern.h>
44
45 struct kmembuckets bucket[MINBUCKET + 16];
46 struct kmemstats kmemstats[M_LAST];
47 struct kmemusage *kmemusage;
48 char *kmembase, *kmemlimit;
49 char *memname[] = INITKMEMNAMES;
50
51 #ifdef DIAGNOSTIC
52 /*
53 * This structure provides a set of masks to catch unaligned frees.
54 */
55 long addrmask[] = { 0,
56 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
57 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
58 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
59 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
60 };
61
62 /*
63 * The WEIRD_ADDR is used as known text to copy into free objects so
64 * that modifications after frees can be detected.
65 */
66 #define WEIRD_ADDR 0xdeadbeef
67 #define MAX_COPY 32
68
69 /*
70 * Normally the first word of the structure is used to hold the list
71 * pointer for free objects. However, when running with diagnostics,
72 * we use the third and fourth fields, so as to catch modifications
73 * in the most commonly trashed first two words.
74 */
75 struct freelist {
76 long spare0;
77 short type;
78 long spare1;
79 caddr_t next;
80 };
81 #else /* !DIAGNOSTIC */
82 struct freelist {
83 caddr_t next;
84 };
85 #endif /* DIAGNOSTIC */
86
87 /*
88 * Allocate a block of memory
89 */
90 void *
91 malloc(size, type, flags)
92 unsigned long size;
93 int type, flags;
94 {
95 register struct kmembuckets *kbp;
96 register struct kmemusage *kup;
97 register struct freelist *freep;
98 long indx, npg, allocsize;
99 int s;
100 caddr_t va, cp, savedlist;
101 #ifdef DIAGNOSTIC
102 long *end, *lp;
103 int copysize;
104 char *savedtype;
105 #endif
106 #ifdef KMEMSTATS
107 register struct kmemstats *ksp = &kmemstats[type];
108
109 if (((unsigned long)type) > M_LAST)
110 panic("malloc - bogus type");
111 #endif
112 indx = BUCKETINDX(size);
113 kbp = &bucket[indx];
114 s = splimp();
115 #ifdef KMEMSTATS
116 while (ksp->ks_memuse >= ksp->ks_limit) {
117 if (flags & M_NOWAIT) {
118 splx(s);
119 return ((void *) NULL);
120 }
121 if (ksp->ks_limblocks < 65535)
122 ksp->ks_limblocks++;
123 tsleep((caddr_t)ksp, PSWP+2, memname[type], 0);
124 }
125 ksp->ks_size |= 1 << indx;
126 #endif
127 #ifdef DIAGNOSTIC
128 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
129 #endif
130 if (kbp->kb_next == NULL) {
131 kbp->kb_last = NULL;
132 if (size > MAXALLOCSAVE)
133 allocsize = roundup(size, CLBYTES);
134 else
135 allocsize = 1 << indx;
136 npg = clrnd(btoc(allocsize));
137 va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg),
138 !(flags & M_NOWAIT));
139 if (va == NULL) {
140 splx(s);
141 return ((void *) NULL);
142 }
143 #ifdef KMEMSTATS
144 kbp->kb_total += kbp->kb_elmpercl;
145 #endif
146 kup = btokup(va);
147 kup->ku_indx = indx;
148 if (allocsize > MAXALLOCSAVE) {
149 if (npg > 65535)
150 panic("malloc: allocation too large");
151 kup->ku_pagecnt = npg;
152 #ifdef KMEMSTATS
153 ksp->ks_memuse += allocsize;
154 #endif
155 goto out;
156 }
157 #ifdef KMEMSTATS
158 kup->ku_freecnt = kbp->kb_elmpercl;
159 kbp->kb_totalfree += kbp->kb_elmpercl;
160 #endif
161 /*
162 * Just in case we blocked while allocating memory,
163 * and someone else also allocated memory for this
164 * bucket, don't assume the list is still empty.
165 */
166 savedlist = kbp->kb_next;
167 kbp->kb_next = cp = va + (npg * NBPG) - allocsize;
168 for (;;) {
169 freep = (struct freelist *)cp;
170 #ifdef DIAGNOSTIC
171 /*
172 * Copy in known text to detect modification
173 * after freeing.
174 */
175 end = (long *)&cp[copysize];
176 for (lp = (long *)cp; lp < end; lp++)
177 *lp = WEIRD_ADDR;
178 freep->type = M_FREE;
179 #endif /* DIAGNOSTIC */
180 if (cp <= va)
181 break;
182 cp -= allocsize;
183 freep->next = cp;
184 }
185 freep->next = savedlist;
186 if (kbp->kb_last == NULL)
187 kbp->kb_last = (caddr_t)freep;
188 }
189 va = kbp->kb_next;
190 kbp->kb_next = ((struct freelist *)va)->next;
191 #ifdef DIAGNOSTIC
192 freep = (struct freelist *)va;
193 savedtype = (unsigned)freep->type < M_LAST ?
194 memname[freep->type] : "???";
195 if (kbp->kb_next &&
196 !kernacc(kbp->kb_next, sizeof(struct freelist), 0)) {
197 printf("%s of object 0x%x size %d %s %s (invalid addr 0x%x)\n",
198 "Data modified on freelist: word 2.5", va, size,
199 "previous type", savedtype, kbp->kb_next);
200 kbp->kb_next = NULL;
201 }
202 #if BYTE_ORDER == BIG_ENDIAN
203 freep->type = WEIRD_ADDR >> 16;
204 #endif
205 #if BYTE_ORDER == LITTLE_ENDIAN
206 freep->type = (short)WEIRD_ADDR;
207 #endif
208 if (((long)(&freep->next)) & 0x2)
209 freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
210 else
211 freep->next = (caddr_t)WEIRD_ADDR;
212 end = (long *)&va[copysize];
213 for (lp = (long *)va; lp < end; lp++) {
214 if (*lp == WEIRD_ADDR)
215 continue;
216 printf("%s %d of object 0x%x size %d %s %s (0x%x != 0x%x)\n",
217 "Data modified on freelist: word", lp - (long *)va,
218 va, size, "previous type", savedtype, *lp, WEIRD_ADDR);
219 break;
220 }
221 freep->spare0 = 0;
222 #endif /* DIAGNOSTIC */
223 #ifdef KMEMSTATS
224 kup = btokup(va);
225 if (kup->ku_indx != indx)
226 panic("malloc: wrong bucket");
227 if (kup->ku_freecnt == 0)
228 panic("malloc: lost data");
229 kup->ku_freecnt--;
230 kbp->kb_totalfree--;
231 ksp->ks_memuse += 1 << indx;
232 out:
233 kbp->kb_calls++;
234 ksp->ks_inuse++;
235 ksp->ks_calls++;
236 if (ksp->ks_memuse > ksp->ks_maxused)
237 ksp->ks_maxused = ksp->ks_memuse;
238 #else
239 out:
240 #endif
241 splx(s);
242 return ((void *) va);
243 }
244
245 /*
246 * Free a block of memory allocated by malloc.
247 */
248 void
249 free(addr, type)
250 void *addr;
251 int type;
252 {
253 register struct kmembuckets *kbp;
254 register struct kmemusage *kup;
255 register struct freelist *freep;
256 long size;
257 int s;
258 #ifdef DIAGNOSTIC
259 caddr_t cp;
260 long *end, *lp, alloc, copysize;
261 #endif
262 #ifdef KMEMSTATS
263 register struct kmemstats *ksp = &kmemstats[type];
264 #endif
265
266 kup = btokup(addr);
267 size = 1 << kup->ku_indx;
268 kbp = &bucket[kup->ku_indx];
269 s = splimp();
270 #ifdef DIAGNOSTIC
271 /*
272 * Check for returns of data that do not point to the
273 * beginning of the allocation.
274 */
275 if (size > NBPG * CLSIZE)
276 alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
277 else
278 alloc = addrmask[kup->ku_indx];
279 if (((u_long)addr & alloc) != 0)
280 panic("free: unaligned addr 0x%x, size %d, type %s, mask %d\n",
281 addr, size, memname[type], alloc);
282 #endif /* DIAGNOSTIC */
283 if (size > MAXALLOCSAVE) {
284 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
285 #ifdef KMEMSTATS
286 size = kup->ku_pagecnt << PGSHIFT;
287 ksp->ks_memuse -= size;
288 kup->ku_indx = 0;
289 kup->ku_pagecnt = 0;
290 if (ksp->ks_memuse + size >= ksp->ks_limit &&
291 ksp->ks_memuse < ksp->ks_limit)
292 wakeup((caddr_t)ksp);
293 ksp->ks_inuse--;
294 kbp->kb_total -= 1;
295 #endif
296 splx(s);
297 return;
298 }
299 freep = (struct freelist *)addr;
300 #ifdef DIAGNOSTIC
301 /*
302 * Check for multiple frees. Use a quick check to see if
303 * it looks free before laboriously searching the freelist.
304 */
305 if (freep->spare0 == WEIRD_ADDR) {
306 for (cp = kbp->kb_next; cp; cp = *(caddr_t *)cp) {
307 if (addr != cp)
308 continue;
309 printf("multiply freed item 0x%x\n", addr);
310 panic("free: duplicated free");
311 }
312 }
313 /*
314 * Copy in known text to detect modification after freeing
315 * and to make it look free. Also, save the type being freed
316 * so we can list likely culprit if modification is detected
317 * when the object is reallocated.
318 */
319 copysize = size < MAX_COPY ? size : MAX_COPY;
320 end = (long *)&((caddr_t)addr)[copysize];
321 for (lp = (long *)addr; lp < end; lp++)
322 *lp = WEIRD_ADDR;
323 freep->type = type;
324 #endif /* DIAGNOSTIC */
325 #ifdef KMEMSTATS
326 kup->ku_freecnt++;
327 if (kup->ku_freecnt >= kbp->kb_elmpercl)
328 if (kup->ku_freecnt > kbp->kb_elmpercl)
329 panic("free: multiple frees");
330 else if (kbp->kb_totalfree > kbp->kb_highwat)
331 kbp->kb_couldfree++;
332 kbp->kb_totalfree++;
333 ksp->ks_memuse -= size;
334 if (ksp->ks_memuse + size >= ksp->ks_limit &&
335 ksp->ks_memuse < ksp->ks_limit)
336 wakeup((caddr_t)ksp);
337 ksp->ks_inuse--;
338 #endif
339 if (kbp->kb_next == NULL)
340 kbp->kb_next = addr;
341 else
342 ((struct freelist *)kbp->kb_last)->next = addr;
343 freep->next = NULL;
344 kbp->kb_last = addr;
345 splx(s);
346 }
347
348 /*
349 * Initialize the kernel memory allocator
350 */
351 kmeminit()
352 {
353 register long indx;
354 int npg;
355
356 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
357 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
358 #endif
359 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
360 ERROR!_kmeminit:_MAXALLOCSAVE_too_big
361 #endif
362 #if (MAXALLOCSAVE < CLBYTES)
363 ERROR!_kmeminit:_MAXALLOCSAVE_too_small
364 #endif
365 npg = VM_KMEM_SIZE/ NBPG;
366 kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
367 (vm_size_t)(npg * sizeof(struct kmemusage)));
368 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
369 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * NBPG), FALSE);
370 #ifdef KMEMSTATS
371 for (indx = 0; indx < MINBUCKET + 16; indx++) {
372 if (1 << indx >= CLBYTES)
373 bucket[indx].kb_elmpercl = 1;
374 else
375 bucket[indx].kb_elmpercl = CLBYTES / (1 << indx);
376 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
377 }
378 for (indx = 0; indx < M_LAST; indx++)
379 kmemstats[indx].ks_limit = npg * NBPG * 6 / 10;
380 #endif
381 }
382