kern_malloc.c revision 1.10 1 /* $NetBSD: kern_malloc.c,v 1.10 1995/03/19 23:44:44 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1987, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
36 */
37
38 #include <sys/param.h>
39 #include <sys/proc.h>
40 #include <sys/map.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43
44 #include <vm/vm.h>
45 #include <vm/vm_kern.h>
46
47 struct kmembuckets bucket[MINBUCKET + 16];
48 struct kmemstats kmemstats[M_LAST];
49 struct kmemusage *kmemusage;
50 char *kmembase, *kmemlimit;
51 char *memname[] = INITKMEMNAMES;
52
53 #ifdef DIAGNOSTIC
54 /*
55 * This structure provides a set of masks to catch unaligned frees.
56 */
57 long addrmask[] = { 0,
58 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
59 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
60 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
61 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
62 };
63
64 /*
65 * The WEIRD_ADDR is used as known text to copy into free objects so
66 * that modifications after frees can be detected.
67 */
68 #define WEIRD_ADDR 0xdeadbeef
69 #define MAX_COPY 32
70
71 /*
72 * Normally the first word of the structure is used to hold the list
73 * pointer for free objects. However, when running with diagnostics,
74 * we use the third and fourth fields, so as to catch modifications
75 * in the most commonly trashed first two words.
76 */
77 struct freelist {
78 long spare0;
79 short type;
80 long spare1;
81 caddr_t next;
82 };
83 #else /* !DIAGNOSTIC */
84 struct freelist {
85 caddr_t next;
86 };
87 #endif /* DIAGNOSTIC */
88
89 /*
90 * Allocate a block of memory
91 */
92 void *
93 malloc(size, type, flags)
94 unsigned long size;
95 int type, flags;
96 {
97 register struct kmembuckets *kbp;
98 register struct kmemusage *kup;
99 register struct freelist *freep;
100 long indx, npg, allocsize;
101 int s;
102 caddr_t va, cp, savedlist;
103 #ifdef DIAGNOSTIC
104 long *end, *lp;
105 int copysize;
106 char *savedtype;
107 #endif
108 #ifdef KMEMSTATS
109 register struct kmemstats *ksp = &kmemstats[type];
110
111 if (((unsigned long)type) > M_LAST)
112 panic("malloc - bogus type");
113 #endif
114 indx = BUCKETINDX(size);
115 kbp = &bucket[indx];
116 s = splimp();
117 #ifdef KMEMSTATS
118 while (ksp->ks_memuse >= ksp->ks_limit) {
119 if (flags & M_NOWAIT) {
120 splx(s);
121 return ((void *) NULL);
122 }
123 if (ksp->ks_limblocks < 65535)
124 ksp->ks_limblocks++;
125 tsleep((caddr_t)ksp, PSWP+2, memname[type], 0);
126 }
127 ksp->ks_size |= 1 << indx;
128 #endif
129 #ifdef DIAGNOSTIC
130 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
131 #endif
132 if (kbp->kb_next == NULL) {
133 kbp->kb_last = NULL;
134 if (size > MAXALLOCSAVE)
135 allocsize = roundup(size, CLBYTES);
136 else
137 allocsize = 1 << indx;
138 npg = clrnd(btoc(allocsize));
139 va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg),
140 !(flags & M_NOWAIT));
141 if (va == NULL) {
142 splx(s);
143 return ((void *) NULL);
144 }
145 #ifdef KMEMSTATS
146 kbp->kb_total += kbp->kb_elmpercl;
147 #endif
148 kup = btokup(va);
149 kup->ku_indx = indx;
150 if (allocsize > MAXALLOCSAVE) {
151 if (npg > 65535)
152 panic("malloc: allocation too large");
153 kup->ku_pagecnt = npg;
154 #ifdef KMEMSTATS
155 ksp->ks_memuse += allocsize;
156 #endif
157 goto out;
158 }
159 #ifdef KMEMSTATS
160 kup->ku_freecnt = kbp->kb_elmpercl;
161 kbp->kb_totalfree += kbp->kb_elmpercl;
162 #endif
163 /*
164 * Just in case we blocked while allocating memory,
165 * and someone else also allocated memory for this
166 * bucket, don't assume the list is still empty.
167 */
168 savedlist = kbp->kb_next;
169 kbp->kb_next = cp = va + (npg * NBPG) - allocsize;
170 for (;;) {
171 freep = (struct freelist *)cp;
172 #ifdef DIAGNOSTIC
173 /*
174 * Copy in known text to detect modification
175 * after freeing.
176 */
177 end = (long *)&cp[copysize];
178 for (lp = (long *)cp; lp < end; lp++)
179 *lp = WEIRD_ADDR;
180 freep->type = M_FREE;
181 #endif /* DIAGNOSTIC */
182 if (cp <= va)
183 break;
184 cp -= allocsize;
185 freep->next = cp;
186 }
187 freep->next = savedlist;
188 if (kbp->kb_last == NULL)
189 kbp->kb_last = (caddr_t)freep;
190 }
191 va = kbp->kb_next;
192 kbp->kb_next = ((struct freelist *)va)->next;
193 #ifdef DIAGNOSTIC
194 freep = (struct freelist *)va;
195 savedtype = (unsigned)freep->type < M_LAST ?
196 memname[freep->type] : "???";
197 if (kbp->kb_next &&
198 !kernacc(kbp->kb_next, sizeof(struct freelist), 0)) {
199 printf("%s of object %p size %d %s %s (invalid addr %p)\n",
200 "Data modified on freelist: word 2.5", va, size,
201 "previous type", savedtype, kbp->kb_next);
202 kbp->kb_next = NULL;
203 }
204 #if BYTE_ORDER == BIG_ENDIAN
205 freep->type = WEIRD_ADDR >> 16;
206 #endif
207 #if BYTE_ORDER == LITTLE_ENDIAN
208 freep->type = (short)WEIRD_ADDR;
209 #endif
210 if (((long)(&freep->next)) & 0x2)
211 freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
212 else
213 freep->next = (caddr_t)WEIRD_ADDR;
214 end = (long *)&va[copysize];
215 for (lp = (long *)va; lp < end; lp++) {
216 if (*lp == WEIRD_ADDR)
217 continue;
218 printf("%s %d of object %p size %d %s %s (%p != %p)\n",
219 "Data modified on freelist: word", lp - (long *)va,
220 va, size, "previous type", savedtype, *lp, WEIRD_ADDR);
221 break;
222 }
223 freep->spare0 = 0;
224 #endif /* DIAGNOSTIC */
225 #ifdef KMEMSTATS
226 kup = btokup(va);
227 if (kup->ku_indx != indx)
228 panic("malloc: wrong bucket");
229 if (kup->ku_freecnt == 0)
230 panic("malloc: lost data");
231 kup->ku_freecnt--;
232 kbp->kb_totalfree--;
233 ksp->ks_memuse += 1 << indx;
234 out:
235 kbp->kb_calls++;
236 ksp->ks_inuse++;
237 ksp->ks_calls++;
238 if (ksp->ks_memuse > ksp->ks_maxused)
239 ksp->ks_maxused = ksp->ks_memuse;
240 #else
241 out:
242 #endif
243 splx(s);
244 return ((void *) va);
245 }
246
247 /*
248 * Free a block of memory allocated by malloc.
249 */
250 void
251 free(addr, type)
252 void *addr;
253 int type;
254 {
255 register struct kmembuckets *kbp;
256 register struct kmemusage *kup;
257 register struct freelist *freep;
258 long size;
259 int s;
260 #ifdef DIAGNOSTIC
261 caddr_t cp;
262 long *end, *lp, alloc, copysize;
263 #endif
264 #ifdef KMEMSTATS
265 register struct kmemstats *ksp = &kmemstats[type];
266 #endif
267
268 kup = btokup(addr);
269 size = 1 << kup->ku_indx;
270 kbp = &bucket[kup->ku_indx];
271 s = splimp();
272 #ifdef DIAGNOSTIC
273 /*
274 * Check for returns of data that do not point to the
275 * beginning of the allocation.
276 */
277 if (size > NBPG * CLSIZE)
278 alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
279 else
280 alloc = addrmask[kup->ku_indx];
281 if (((u_long)addr & alloc) != 0)
282 panic("free: unaligned addr 0x%x, size %d, type %s, mask %d\n",
283 addr, size, memname[type], alloc);
284 #endif /* DIAGNOSTIC */
285 if (size > MAXALLOCSAVE) {
286 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
287 #ifdef KMEMSTATS
288 size = kup->ku_pagecnt << PGSHIFT;
289 ksp->ks_memuse -= size;
290 kup->ku_indx = 0;
291 kup->ku_pagecnt = 0;
292 if (ksp->ks_memuse + size >= ksp->ks_limit &&
293 ksp->ks_memuse < ksp->ks_limit)
294 wakeup((caddr_t)ksp);
295 ksp->ks_inuse--;
296 kbp->kb_total -= 1;
297 #endif
298 splx(s);
299 return;
300 }
301 freep = (struct freelist *)addr;
302 #ifdef DIAGNOSTIC
303 /*
304 * Check for multiple frees. Use a quick check to see if
305 * it looks free before laboriously searching the freelist.
306 */
307 if (freep->spare0 == WEIRD_ADDR) {
308 for (cp = kbp->kb_next; cp; cp = *(caddr_t *)cp) {
309 if (addr != cp)
310 continue;
311 printf("multiply freed item %p\n", addr);
312 panic("free: duplicated free");
313 }
314 }
315 /*
316 * Copy in known text to detect modification after freeing
317 * and to make it look free. Also, save the type being freed
318 * so we can list likely culprit if modification is detected
319 * when the object is reallocated.
320 */
321 copysize = size < MAX_COPY ? size : MAX_COPY;
322 end = (long *)&((caddr_t)addr)[copysize];
323 for (lp = (long *)addr; lp < end; lp++)
324 *lp = WEIRD_ADDR;
325 freep->type = type;
326 #endif /* DIAGNOSTIC */
327 #ifdef KMEMSTATS
328 kup->ku_freecnt++;
329 if (kup->ku_freecnt >= kbp->kb_elmpercl)
330 if (kup->ku_freecnt > kbp->kb_elmpercl)
331 panic("free: multiple frees");
332 else if (kbp->kb_totalfree > kbp->kb_highwat)
333 kbp->kb_couldfree++;
334 kbp->kb_totalfree++;
335 ksp->ks_memuse -= size;
336 if (ksp->ks_memuse + size >= ksp->ks_limit &&
337 ksp->ks_memuse < ksp->ks_limit)
338 wakeup((caddr_t)ksp);
339 ksp->ks_inuse--;
340 #endif
341 if (kbp->kb_next == NULL)
342 kbp->kb_next = addr;
343 else
344 ((struct freelist *)kbp->kb_last)->next = addr;
345 freep->next = NULL;
346 kbp->kb_last = addr;
347 splx(s);
348 }
349
350 /*
351 * Initialize the kernel memory allocator
352 */
353 kmeminit()
354 {
355 register long indx;
356 int npg;
357
358 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
359 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
360 #endif
361 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
362 ERROR!_kmeminit:_MAXALLOCSAVE_too_big
363 #endif
364 #if (MAXALLOCSAVE < CLBYTES)
365 ERROR!_kmeminit:_MAXALLOCSAVE_too_small
366 #endif
367 npg = VM_KMEM_SIZE/ NBPG;
368 kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
369 (vm_size_t)(npg * sizeof(struct kmemusage)));
370 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
371 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * NBPG), FALSE);
372 #ifdef KMEMSTATS
373 for (indx = 0; indx < MINBUCKET + 16; indx++) {
374 if (1 << indx >= CLBYTES)
375 bucket[indx].kb_elmpercl = 1;
376 else
377 bucket[indx].kb_elmpercl = CLBYTES / (1 << indx);
378 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
379 }
380 for (indx = 0; indx < M_LAST; indx++)
381 kmemstats[indx].ks_limit = npg * NBPG * 6 / 10;
382 #endif
383 }
384