kern_malloc.c revision 1.108.2.2 1 /* $NetBSD: kern_malloc.c,v 1.108.2.2 2007/03/21 20:10:21 ad Exp $ */
2
3 /*
4 * Copyright (c) 1987, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
32 */
33
34 /*
35 * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.108.2.2 2007/03/21 20:10:21 ad Exp $");
70
71 #include <sys/param.h>
72 #include <sys/proc.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/systm.h>
76 #include <sys/debug.h>
77 #include <sys/mutex.h>
78
79 #include <uvm/uvm_extern.h>
80
81 static struct vm_map_kernel kmem_map_store;
82 struct vm_map *kmem_map = NULL;
83
84 #include "opt_kmempages.h"
85
86 #ifdef NKMEMCLUSTERS
87 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
88 #endif
89
90 /*
91 * Default number of pages in kmem_map. We attempt to calculate this
92 * at run-time, but allow it to be either patched or set in the kernel
93 * config file.
94 */
95 #ifndef NKMEMPAGES
96 #define NKMEMPAGES 0
97 #endif
98 int nkmempages = NKMEMPAGES;
99
100 /*
101 * Defaults for lower- and upper-bounds for the kmem_map page count.
102 * Can be overridden by kernel config options.
103 */
104 #ifndef NKMEMPAGES_MIN
105 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
106 #endif
107
108 #ifndef NKMEMPAGES_MAX
109 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
110 #endif
111
112 #include "opt_kmemstats.h"
113 #include "opt_malloclog.h"
114 #include "opt_malloc_debug.h"
115
116 #define MINALLOCSIZE (1 << MINBUCKET)
117 #define BUCKETINDX(size) \
118 ((size) <= (MINALLOCSIZE * 128) \
119 ? (size) <= (MINALLOCSIZE * 8) \
120 ? (size) <= (MINALLOCSIZE * 2) \
121 ? (size) <= (MINALLOCSIZE * 1) \
122 ? (MINBUCKET + 0) \
123 : (MINBUCKET + 1) \
124 : (size) <= (MINALLOCSIZE * 4) \
125 ? (MINBUCKET + 2) \
126 : (MINBUCKET + 3) \
127 : (size) <= (MINALLOCSIZE* 32) \
128 ? (size) <= (MINALLOCSIZE * 16) \
129 ? (MINBUCKET + 4) \
130 : (MINBUCKET + 5) \
131 : (size) <= (MINALLOCSIZE * 64) \
132 ? (MINBUCKET + 6) \
133 : (MINBUCKET + 7) \
134 : (size) <= (MINALLOCSIZE * 2048) \
135 ? (size) <= (MINALLOCSIZE * 512) \
136 ? (size) <= (MINALLOCSIZE * 256) \
137 ? (MINBUCKET + 8) \
138 : (MINBUCKET + 9) \
139 : (size) <= (MINALLOCSIZE * 1024) \
140 ? (MINBUCKET + 10) \
141 : (MINBUCKET + 11) \
142 : (size) <= (MINALLOCSIZE * 8192) \
143 ? (size) <= (MINALLOCSIZE * 4096) \
144 ? (MINBUCKET + 12) \
145 : (MINBUCKET + 13) \
146 : (size) <= (MINALLOCSIZE * 16384) \
147 ? (MINBUCKET + 14) \
148 : (MINBUCKET + 15))
149
150 /*
151 * Array of descriptors that describe the contents of each page
152 */
153 struct kmemusage {
154 short ku_indx; /* bucket index */
155 union {
156 u_short freecnt;/* for small allocations, free pieces in page */
157 u_short pagecnt;/* for large allocations, pages alloced */
158 } ku_un;
159 };
160 #define ku_freecnt ku_un.freecnt
161 #define ku_pagecnt ku_un.pagecnt
162
163 struct kmembuckets kmembuckets[MINBUCKET + 16];
164 struct kmemusage *kmemusage;
165 char *kmembase, *kmemlimit;
166
167 #ifdef DEBUG
168 static void *malloc_freecheck;
169 #endif
170
171 /*
172 * Turn virtual addresses into kmem map indicies
173 */
174 #define btokup(addr) (&kmemusage[((char *)(addr) - kmembase) >> PGSHIFT])
175
176 struct malloc_type *kmemstatistics;
177
178 #ifdef MALLOCLOG
179 #ifndef MALLOCLOGSIZE
180 #define MALLOCLOGSIZE 100000
181 #endif
182
183 struct malloclog {
184 void *addr;
185 long size;
186 struct malloc_type *type;
187 int action;
188 const char *file;
189 long line;
190 } malloclog[MALLOCLOGSIZE];
191
192 long malloclogptr;
193
194 static void
195 domlog(void *a, long size, struct malloc_type *type, int action,
196 const char *file, long line)
197 {
198
199 malloclog[malloclogptr].addr = a;
200 malloclog[malloclogptr].size = size;
201 malloclog[malloclogptr].type = type;
202 malloclog[malloclogptr].action = action;
203 malloclog[malloclogptr].file = file;
204 malloclog[malloclogptr].line = line;
205 malloclogptr++;
206 if (malloclogptr >= MALLOCLOGSIZE)
207 malloclogptr = 0;
208 }
209
210 static void
211 hitmlog(void *a)
212 {
213 struct malloclog *lp;
214 long l;
215
216 #define PRT do { \
217 lp = &malloclog[l]; \
218 if (lp->addr == a && lp->action) { \
219 printf("malloc log entry %ld:\n", l); \
220 printf("\taddr = %p\n", lp->addr); \
221 printf("\tsize = %ld\n", lp->size); \
222 printf("\ttype = %s\n", lp->type->ks_shortdesc); \
223 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
224 printf("\tfile = %s\n", lp->file); \
225 printf("\tline = %ld\n", lp->line); \
226 } \
227 } while (/* CONSTCOND */0)
228
229 for (l = malloclogptr; l < MALLOCLOGSIZE; l++)
230 PRT;
231
232 for (l = 0; l < malloclogptr; l++)
233 PRT;
234 #undef PRT
235 }
236 #endif /* MALLOCLOG */
237
238 #ifdef DIAGNOSTIC
239 /*
240 * This structure provides a set of masks to catch unaligned frees.
241 */
242 const long addrmask[] = { 0,
243 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
244 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
245 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
246 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
247 };
248
249 /*
250 * The WEIRD_ADDR is used as known text to copy into free objects so
251 * that modifications after frees can be detected.
252 */
253 #define WEIRD_ADDR ((uint32_t) 0xdeadbeef)
254 #ifdef DEBUG
255 #define MAX_COPY PAGE_SIZE
256 #else
257 #define MAX_COPY 32
258 #endif
259
260 /*
261 * Normally the freelist structure is used only to hold the list pointer
262 * for free objects. However, when running with diagnostics, the first
263 * 8/16 bytes of the structure is unused except for diagnostic information,
264 * and the free list pointer is at offset 8/16 in the structure. Since the
265 * first 8 bytes is the portion of the structure most often modified, this
266 * helps to detect memory reuse problems and avoid free list corruption.
267 */
268 struct freelist {
269 uint32_t spare0;
270 #ifdef _LP64
271 uint32_t spare1; /* explicit padding */
272 #endif
273 struct malloc_type *type;
274 void * next;
275 };
276 #else /* !DIAGNOSTIC */
277 struct freelist {
278 void * next;
279 };
280 #endif /* DIAGNOSTIC */
281
282 /*
283 * The following are standard, built-in malloc types and are not
284 * specific to any subsystem.
285 */
286 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
287 MALLOC_DEFINE(M_DMAMAP, "DMA map", "bus_dma(9) structures");
288 MALLOC_DEFINE(M_FREE, "free", "should be on free list");
289 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
290 MALLOC_DEFINE(M_SOFTINTR, "softintr", "Softinterrupt structures");
291 MALLOC_DEFINE(M_TEMP, "temp", "misc. temporary data buffers");
292
293 /* XXX These should all be elsewhere. */
294 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
295 MALLOC_DEFINE(M_FTABLE, "fragtbl", "fragment reassembly header");
296 MALLOC_DEFINE(M_UFSMNT, "UFS mount", "UFS mount structure");
297 MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
298 MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
299 MALLOC_DEFINE(M_IPMADDR, "in_multi", "internet multicast address");
300 MALLOC_DEFINE(M_MRTABLE, "mrt", "multicast routing tables");
301 MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
302 MALLOC_DEFINE(M_1394DATA, "1394data", "IEEE 1394 data buffers");
303
304 kmutex_t malloc_lock;
305
306 /*
307 * Allocate a block of memory
308 */
309 #ifdef MALLOCLOG
310 void *
311 _malloc(unsigned long size, struct malloc_type *ksp, int flags,
312 const char *file, long line)
313 #else
314 void *
315 malloc(unsigned long size, struct malloc_type *ksp, int flags)
316 #endif /* MALLOCLOG */
317 {
318 struct kmembuckets *kbp;
319 struct kmemusage *kup;
320 struct freelist *freep;
321 long indx, npg, allocsize;
322 char *va, *cp, *savedlist;
323 #ifdef DIAGNOSTIC
324 uint32_t *end, *lp;
325 int copysize;
326 #endif
327
328 #ifdef LOCKDEBUG
329 if ((flags & M_NOWAIT) == 0)
330 ASSERT_SLEEPABLE(NULL, "malloc");
331 #endif
332 #ifdef MALLOC_DEBUG
333 if (debug_malloc(size, ksp, flags, (void *) &va)) {
334 if (va != 0)
335 FREECHECK_OUT(&malloc_freecheck, (void *)va);
336 return ((void *) va);
337 }
338 #endif
339 indx = BUCKETINDX(size);
340 kbp = &kmembuckets[indx];
341 mutex_enter(&malloc_lock);
342 #ifdef KMEMSTATS
343 while (ksp->ks_memuse >= ksp->ks_limit) {
344 if (flags & M_NOWAIT) {
345 mutex_exit(&malloc_lock);
346 return ((void *) NULL);
347 }
348 if (ksp->ks_limblocks < 65535)
349 ksp->ks_limblocks++;
350 mtsleep((void *)ksp, PSWP+2, ksp->ks_shortdesc, 0,
351 &malloc_lock);
352 }
353 ksp->ks_size |= 1 << indx;
354 #endif
355 #ifdef DIAGNOSTIC
356 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
357 #endif
358 if (kbp->kb_next == NULL) {
359 kbp->kb_last = NULL;
360 if (size > MAXALLOCSAVE)
361 allocsize = round_page(size);
362 else
363 allocsize = 1 << indx;
364 npg = btoc(allocsize);
365 mutex_exit(&malloc_lock);
366 va = (void *) uvm_km_alloc(kmem_map,
367 (vsize_t)ctob(npg), 0,
368 ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
369 ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0) |
370 UVM_KMF_WIRED);
371 if (__predict_false(va == NULL)) {
372 /*
373 * Kmem_malloc() can return NULL, even if it can
374 * wait, if there is no map space available, because
375 * it can't fix that problem. Neither can we,
376 * right now. (We should release pages which
377 * are completely free and which are in kmembuckets
378 * with too many free elements.)
379 */
380 if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
381 panic("malloc: out of space in kmem_map");
382 return (NULL);
383 }
384 mutex_enter(&malloc_lock);
385 #ifdef KMEMSTATS
386 kbp->kb_total += kbp->kb_elmpercl;
387 #endif
388 kup = btokup(va);
389 kup->ku_indx = indx;
390 if (allocsize > MAXALLOCSAVE) {
391 if (npg > 65535)
392 panic("malloc: allocation too large");
393 kup->ku_pagecnt = npg;
394 #ifdef KMEMSTATS
395 ksp->ks_memuse += allocsize;
396 #endif
397 goto out;
398 }
399 #ifdef KMEMSTATS
400 kup->ku_freecnt = kbp->kb_elmpercl;
401 kbp->kb_totalfree += kbp->kb_elmpercl;
402 #endif
403 /*
404 * Just in case we blocked while allocating memory,
405 * and someone else also allocated memory for this
406 * kmembucket, don't assume the list is still empty.
407 */
408 savedlist = kbp->kb_next;
409 kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
410 for (;;) {
411 freep = (struct freelist *)cp;
412 #ifdef DIAGNOSTIC
413 /*
414 * Copy in known text to detect modification
415 * after freeing.
416 */
417 end = (uint32_t *)&cp[copysize];
418 for (lp = (uint32_t *)cp; lp < end; lp++)
419 *lp = WEIRD_ADDR;
420 freep->type = M_FREE;
421 #endif /* DIAGNOSTIC */
422 if (cp <= va)
423 break;
424 cp -= allocsize;
425 freep->next = cp;
426 }
427 freep->next = savedlist;
428 if (kbp->kb_last == NULL)
429 kbp->kb_last = (void *)freep;
430 }
431 va = kbp->kb_next;
432 kbp->kb_next = ((struct freelist *)va)->next;
433 #ifdef DIAGNOSTIC
434 freep = (struct freelist *)va;
435 /* XXX potential to get garbage pointer here. */
436 if (kbp->kb_next) {
437 int rv;
438 vaddr_t addr = (vaddr_t)kbp->kb_next;
439
440 vm_map_lock(kmem_map);
441 rv = uvm_map_checkprot(kmem_map, addr,
442 addr + sizeof(struct freelist), VM_PROT_WRITE);
443 vm_map_unlock(kmem_map);
444
445 if (__predict_false(rv == 0)) {
446 printf("Data modified on freelist: "
447 "word %ld of object %p size %ld previous type %s "
448 "(invalid addr %p)\n",
449 (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
450 va, size, "foo", kbp->kb_next);
451 #ifdef MALLOCLOG
452 hitmlog(va);
453 #endif
454 kbp->kb_next = NULL;
455 }
456 }
457
458 /* Fill the fields that we've used with WEIRD_ADDR */
459 #ifdef _LP64
460 freep->type = (struct malloc_type *)
461 (WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32));
462 #else
463 freep->type = (struct malloc_type *) WEIRD_ADDR;
464 #endif
465 end = (uint32_t *)&freep->next +
466 (sizeof(freep->next) / sizeof(int32_t));
467 for (lp = (uint32_t *)&freep->next; lp < end; lp++)
468 *lp = WEIRD_ADDR;
469
470 /* and check that the data hasn't been modified. */
471 end = (uint32_t *)&va[copysize];
472 for (lp = (uint32_t *)va; lp < end; lp++) {
473 if (__predict_true(*lp == WEIRD_ADDR))
474 continue;
475 printf("Data modified on freelist: "
476 "word %ld of object %p size %ld previous type %s "
477 "(0x%x != 0x%x)\n",
478 (long)(lp - (uint32_t *)va), va, size,
479 "bar", *lp, WEIRD_ADDR);
480 #ifdef MALLOCLOG
481 hitmlog(va);
482 #endif
483 break;
484 }
485
486 freep->spare0 = 0;
487 #endif /* DIAGNOSTIC */
488 #ifdef KMEMSTATS
489 kup = btokup(va);
490 if (kup->ku_indx != indx)
491 panic("malloc: wrong bucket");
492 if (kup->ku_freecnt == 0)
493 panic("malloc: lost data");
494 kup->ku_freecnt--;
495 kbp->kb_totalfree--;
496 ksp->ks_memuse += 1 << indx;
497 out:
498 kbp->kb_calls++;
499 ksp->ks_inuse++;
500 ksp->ks_calls++;
501 if (ksp->ks_memuse > ksp->ks_maxused)
502 ksp->ks_maxused = ksp->ks_memuse;
503 #else
504 out:
505 #endif
506 #ifdef MALLOCLOG
507 domlog(va, size, ksp, 1, file, line);
508 #endif
509 mutex_exit(&malloc_lock);
510 if ((flags & M_ZERO) != 0)
511 memset(va, 0, size);
512 FREECHECK_OUT(&malloc_freecheck, (void *)va);
513 return ((void *) va);
514 }
515
516 /*
517 * Free a block of memory allocated by malloc.
518 */
519 #ifdef MALLOCLOG
520 void
521 _free(void *addr, struct malloc_type *ksp, const char *file, long line)
522 #else
523 void
524 free(void *addr, struct malloc_type *ksp)
525 #endif /* MALLOCLOG */
526 {
527 struct kmembuckets *kbp;
528 struct kmemusage *kup;
529 struct freelist *freep;
530 long size;
531 #ifdef DIAGNOSTIC
532 void *cp;
533 int32_t *end, *lp;
534 long alloc, copysize;
535 #endif
536
537 FREECHECK_IN(&malloc_freecheck, addr);
538
539 #ifdef MALLOC_DEBUG
540 if (debug_free(addr, ksp))
541 return;
542 #endif
543
544 #ifdef DIAGNOSTIC
545 /*
546 * Ensure that we're free'ing something that we could
547 * have allocated in the first place. That is, check
548 * to see that the address is within kmem_map.
549 */
550 if (__predict_false((vaddr_t)addr < vm_map_min(kmem_map) ||
551 (vaddr_t)addr >= vm_map_max(kmem_map)))
552 panic("free: addr %p not within kmem_map", addr);
553 #endif
554
555 kup = btokup(addr);
556 size = 1 << kup->ku_indx;
557 kbp = &kmembuckets[kup->ku_indx];
558 mutex_enter(&malloc_lock);
559 #ifdef MALLOCLOG
560 domlog(addr, 0, ksp, 2, file, line);
561 #endif
562 #ifdef DIAGNOSTIC
563 /*
564 * Check for returns of data that do not point to the
565 * beginning of the allocation.
566 */
567 if (size > PAGE_SIZE)
568 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
569 else
570 alloc = addrmask[kup->ku_indx];
571 if (((u_long)addr & alloc) != 0)
572 panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
573 addr, size, ksp->ks_shortdesc, alloc);
574 #endif /* DIAGNOSTIC */
575 if (size > MAXALLOCSAVE) {
576 uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt),
577 UVM_KMF_WIRED);
578 #ifdef KMEMSTATS
579 size = kup->ku_pagecnt << PGSHIFT;
580 ksp->ks_memuse -= size;
581 kup->ku_indx = 0;
582 kup->ku_pagecnt = 0;
583 if (ksp->ks_memuse + size >= ksp->ks_limit &&
584 ksp->ks_memuse < ksp->ks_limit)
585 wakeup((void *)ksp);
586 #ifdef DIAGNOSTIC
587 if (ksp->ks_inuse == 0)
588 panic("free 1: inuse 0, probable double free");
589 #endif
590 ksp->ks_inuse--;
591 kbp->kb_total -= 1;
592 #endif
593 mutex_exit(&malloc_lock);
594 return;
595 }
596 freep = (struct freelist *)addr;
597 #ifdef DIAGNOSTIC
598 /*
599 * Check for multiple frees. Use a quick check to see if
600 * it looks free before laboriously searching the freelist.
601 */
602 if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
603 for (cp = kbp->kb_next; cp;
604 cp = ((struct freelist *)cp)->next) {
605 if (addr != cp)
606 continue;
607 printf("multiply freed item %p\n", addr);
608 #ifdef MALLOCLOG
609 hitmlog(addr);
610 #endif
611 panic("free: duplicated free");
612 }
613 }
614
615 /*
616 * Copy in known text to detect modification after freeing
617 * and to make it look free. Also, save the type being freed
618 * so we can list likely culprit if modification is detected
619 * when the object is reallocated.
620 */
621 copysize = size < MAX_COPY ? size : MAX_COPY;
622 end = (int32_t *)&((char *)addr)[copysize];
623 for (lp = (int32_t *)addr; lp < end; lp++)
624 *lp = WEIRD_ADDR;
625 freep->type = ksp;
626 #endif /* DIAGNOSTIC */
627 #ifdef KMEMSTATS
628 kup->ku_freecnt++;
629 if (kup->ku_freecnt >= kbp->kb_elmpercl) {
630 if (kup->ku_freecnt > kbp->kb_elmpercl)
631 panic("free: multiple frees");
632 else if (kbp->kb_totalfree > kbp->kb_highwat)
633 kbp->kb_couldfree++;
634 }
635 kbp->kb_totalfree++;
636 ksp->ks_memuse -= size;
637 if (ksp->ks_memuse + size >= ksp->ks_limit &&
638 ksp->ks_memuse < ksp->ks_limit)
639 wakeup((void *)ksp);
640 #ifdef DIAGNOSTIC
641 if (ksp->ks_inuse == 0)
642 panic("free 2: inuse 0, probable double free");
643 #endif
644 ksp->ks_inuse--;
645 #endif
646 if (kbp->kb_next == NULL)
647 kbp->kb_next = addr;
648 else
649 ((struct freelist *)kbp->kb_last)->next = addr;
650 freep->next = NULL;
651 kbp->kb_last = addr;
652 mutex_exit(&malloc_lock);
653 }
654
655 /*
656 * Change the size of a block of memory.
657 */
658 void *
659 realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp,
660 int flags)
661 {
662 struct kmemusage *kup;
663 unsigned long cursize;
664 void *newaddr;
665 #ifdef DIAGNOSTIC
666 long alloc;
667 #endif
668
669 /*
670 * realloc() with a NULL pointer is the same as malloc().
671 */
672 if (curaddr == NULL)
673 return (malloc(newsize, ksp, flags));
674
675 /*
676 * realloc() with zero size is the same as free().
677 */
678 if (newsize == 0) {
679 free(curaddr, ksp);
680 return (NULL);
681 }
682
683 #ifdef LOCKDEBUG
684 if ((flags & M_NOWAIT) == 0)
685 ASSERT_SLEEPABLE(NULL, "realloc");
686 #endif
687
688 /*
689 * Find out how large the old allocation was (and do some
690 * sanity checking).
691 */
692 kup = btokup(curaddr);
693 cursize = 1 << kup->ku_indx;
694
695 #ifdef DIAGNOSTIC
696 /*
697 * Check for returns of data that do not point to the
698 * beginning of the allocation.
699 */
700 if (cursize > PAGE_SIZE)
701 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
702 else
703 alloc = addrmask[kup->ku_indx];
704 if (((u_long)curaddr & alloc) != 0)
705 panic("realloc: "
706 "unaligned addr %p, size %ld, type %s, mask %ld\n",
707 curaddr, cursize, ksp->ks_shortdesc, alloc);
708 #endif /* DIAGNOSTIC */
709
710 if (cursize > MAXALLOCSAVE)
711 cursize = ctob(kup->ku_pagecnt);
712
713 /*
714 * If we already actually have as much as they want, we're done.
715 */
716 if (newsize <= cursize)
717 return (curaddr);
718
719 /*
720 * Can't satisfy the allocation with the existing block.
721 * Allocate a new one and copy the data.
722 */
723 newaddr = malloc(newsize, ksp, flags);
724 if (__predict_false(newaddr == NULL)) {
725 /*
726 * malloc() failed, because flags included M_NOWAIT.
727 * Return NULL to indicate that failure. The old
728 * pointer is still valid.
729 */
730 return (NULL);
731 }
732 memcpy(newaddr, curaddr, cursize);
733
734 /*
735 * We were successful: free the old allocation and return
736 * the new one.
737 */
738 free(curaddr, ksp);
739 return (newaddr);
740 }
741
742 /*
743 * Roundup size to the actual allocation size.
744 */
745 unsigned long
746 malloc_roundup(unsigned long size)
747 {
748
749 if (size > MAXALLOCSAVE)
750 return (roundup(size, PAGE_SIZE));
751 else
752 return (1 << BUCKETINDX(size));
753 }
754
755 /*
756 * Add a malloc type to the system.
757 */
758 void
759 malloc_type_attach(struct malloc_type *type)
760 {
761
762 if (nkmempages == 0)
763 panic("malloc_type_attach: nkmempages == 0");
764
765 if (type->ks_magic != M_MAGIC)
766 panic("malloc_type_attach: bad magic");
767
768 #ifdef DIAGNOSTIC
769 {
770 struct malloc_type *ksp;
771 for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
772 if (ksp == type)
773 panic("malloc_type_attach: already on list");
774 }
775 }
776 #endif
777
778 #ifdef KMEMSTATS
779 if (type->ks_limit == 0)
780 type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U;
781 #else
782 type->ks_limit = 0;
783 #endif
784
785 type->ks_next = kmemstatistics;
786 kmemstatistics = type;
787 }
788
789 /*
790 * Remove a malloc type from the system..
791 */
792 void
793 malloc_type_detach(struct malloc_type *type)
794 {
795 struct malloc_type *ksp;
796
797 #ifdef DIAGNOSTIC
798 if (type->ks_magic != M_MAGIC)
799 panic("malloc_type_detach: bad magic");
800 #endif
801
802 if (type == kmemstatistics)
803 kmemstatistics = type->ks_next;
804 else {
805 for (ksp = kmemstatistics; ksp->ks_next != NULL;
806 ksp = ksp->ks_next) {
807 if (ksp->ks_next == type) {
808 ksp->ks_next = type->ks_next;
809 break;
810 }
811 }
812 #ifdef DIAGNOSTIC
813 if (ksp->ks_next == NULL)
814 panic("malloc_type_detach: not on list");
815 #endif
816 }
817 type->ks_next = NULL;
818 }
819
820 /*
821 * Set the limit on a malloc type.
822 */
823 void
824 malloc_type_setlimit(struct malloc_type *type, u_long limit)
825 {
826 #ifdef KMEMSTATS
827 mutex_enter(&malloc_lock);
828 type->ks_limit = limit;
829 mutex_exit(&malloc_lock);
830 #endif
831 }
832
833 /*
834 * Compute the number of pages that kmem_map will map, that is,
835 * the size of the kernel malloc arena.
836 */
837 void
838 kmeminit_nkmempages(void)
839 {
840 int npages;
841
842 if (nkmempages != 0) {
843 /*
844 * It's already been set (by us being here before, or
845 * by patching or kernel config options), bail out now.
846 */
847 return;
848 }
849
850 npages = physmem;
851
852 if (npages > NKMEMPAGES_MAX)
853 npages = NKMEMPAGES_MAX;
854
855 if (npages < NKMEMPAGES_MIN)
856 npages = NKMEMPAGES_MIN;
857
858 nkmempages = npages;
859 }
860
861 /*
862 * Initialize the kernel memory allocator
863 */
864 void
865 kmeminit(void)
866 {
867 __link_set_decl(malloc_types, struct malloc_type);
868 struct malloc_type * const *ksp;
869 vaddr_t kmb, kml;
870 #ifdef KMEMSTATS
871 long indx;
872 #endif
873
874 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
875 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
876 #endif
877 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
878 ERROR!_kmeminit:_MAXALLOCSAVE_too_big
879 #endif
880 #if (MAXALLOCSAVE < NBPG)
881 ERROR!_kmeminit:_MAXALLOCSAVE_too_small
882 #endif
883
884 if (sizeof(struct freelist) > (1 << MINBUCKET))
885 panic("minbucket too small/struct freelist too big");
886
887 mutex_init(&malloc_lock, MUTEX_DRIVER, IPL_VM);
888
889 /*
890 * Compute the number of kmem_map pages, if we have not
891 * done so already.
892 */
893 kmeminit_nkmempages();
894
895 kmemusage = (struct kmemusage *) uvm_km_alloc(kernel_map,
896 (vsize_t)(nkmempages * sizeof(struct kmemusage)), 0,
897 UVM_KMF_WIRED|UVM_KMF_ZERO);
898 kmb = 0;
899 kmem_map = uvm_km_suballoc(kernel_map, &kmb,
900 &kml, ((vsize_t)nkmempages << PAGE_SHIFT),
901 VM_MAP_INTRSAFE, false, &kmem_map_store);
902 uvm_km_vacache_init(kmem_map, "kvakmem", 0);
903 kmembase = (char *)kmb;
904 kmemlimit = (char *)kml;
905 #ifdef KMEMSTATS
906 for (indx = 0; indx < MINBUCKET + 16; indx++) {
907 if (1 << indx >= PAGE_SIZE)
908 kmembuckets[indx].kb_elmpercl = 1;
909 else
910 kmembuckets[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
911 kmembuckets[indx].kb_highwat =
912 5 * kmembuckets[indx].kb_elmpercl;
913 }
914 #endif
915
916 /* Attach all of the statically-linked malloc types. */
917 __link_set_foreach(ksp, malloc_types)
918 malloc_type_attach(*ksp);
919
920 #ifdef MALLOC_DEBUG
921 debug_malloc_init();
922 #endif
923 }
924
925 #ifdef DDB
926 #include <ddb/db_output.h>
927
928 /*
929 * Dump kmem statistics from ddb.
930 *
931 * usage: call dump_kmemstats
932 */
933 void dump_kmemstats(void);
934
935 void
936 dump_kmemstats(void)
937 {
938 #ifdef KMEMSTATS
939 struct malloc_type *ksp;
940
941 for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
942 if (ksp->ks_memuse == 0)
943 continue;
944 db_printf("%s%.*s %ld\n", ksp->ks_shortdesc,
945 (int)(20 - strlen(ksp->ks_shortdesc)),
946 " ",
947 ksp->ks_memuse);
948 }
949 #else
950 db_printf("Kmem stats are not being collected.\n");
951 #endif /* KMEMSTATS */
952 }
953 #endif /* DDB */
954
955
956 #if 0
957 /*
958 * Diagnostic messages about "Data modified on
959 * freelist" indicate a memory corruption, but
960 * they do not help tracking it down.
961 * This function can be called at various places
962 * to sanity check malloc's freelist and discover
963 * where does the corruption take place.
964 */
965 int
966 freelist_sanitycheck(void) {
967 int i,j;
968 struct kmembuckets *kbp;
969 struct freelist *freep;
970 int rv = 0;
971
972 for (i = MINBUCKET; i <= MINBUCKET + 15; i++) {
973 kbp = &kmembuckets[i];
974 freep = (struct freelist *)kbp->kb_next;
975 j = 0;
976 while(freep) {
977 vm_map_lock(kmem_map);
978 rv = uvm_map_checkprot(kmem_map, (vaddr_t)freep,
979 (vaddr_t)freep + sizeof(struct freelist),
980 VM_PROT_WRITE);
981 vm_map_unlock(kmem_map);
982
983 if ((rv == 0) || (*(int *)freep != WEIRD_ADDR)) {
984 printf("bucket %i, chunck %d at %p modified\n",
985 i, j, freep);
986 return 1;
987 }
988 freep = (struct freelist *)freep->next;
989 j++;
990 }
991 }
992
993 return 0;
994 }
995 #endif
996