kern_malloc.c revision 1.111.10.1 1 /* $NetBSD: kern_malloc.c,v 1.111.10.1 2007/10/14 11:48:41 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1987, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
32 */
33
34 /*
35 * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.111.10.1 2007/10/14 11:48:41 yamt Exp $");
70
71 #include <sys/param.h>
72 #include <sys/proc.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/systm.h>
76 #include <sys/debug.h>
77 #include <sys/mutex.h>
78
79 #include <uvm/uvm_extern.h>
80
81 static struct vm_map_kernel kmem_map_store;
82 struct vm_map *kmem_map = NULL;
83
84 #include "opt_kmempages.h"
85
86 #ifdef NKMEMCLUSTERS
87 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
88 #endif
89
90 /*
91 * Default number of pages in kmem_map. We attempt to calculate this
92 * at run-time, but allow it to be either patched or set in the kernel
93 * config file.
94 */
95 #ifndef NKMEMPAGES
96 #define NKMEMPAGES 0
97 #endif
98 int nkmempages = NKMEMPAGES;
99
100 /*
101 * Defaults for lower- and upper-bounds for the kmem_map page count.
102 * Can be overridden by kernel config options.
103 */
104 #ifndef NKMEMPAGES_MIN
105 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
106 #endif
107
108 #ifndef NKMEMPAGES_MAX
109 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
110 #endif
111
112 #include "opt_kmemstats.h"
113 #include "opt_malloclog.h"
114 #include "opt_malloc_debug.h"
115
116 #define MINALLOCSIZE (1 << MINBUCKET)
117 #define BUCKETINDX(size) \
118 ((size) <= (MINALLOCSIZE * 128) \
119 ? (size) <= (MINALLOCSIZE * 8) \
120 ? (size) <= (MINALLOCSIZE * 2) \
121 ? (size) <= (MINALLOCSIZE * 1) \
122 ? (MINBUCKET + 0) \
123 : (MINBUCKET + 1) \
124 : (size) <= (MINALLOCSIZE * 4) \
125 ? (MINBUCKET + 2) \
126 : (MINBUCKET + 3) \
127 : (size) <= (MINALLOCSIZE* 32) \
128 ? (size) <= (MINALLOCSIZE * 16) \
129 ? (MINBUCKET + 4) \
130 : (MINBUCKET + 5) \
131 : (size) <= (MINALLOCSIZE * 64) \
132 ? (MINBUCKET + 6) \
133 : (MINBUCKET + 7) \
134 : (size) <= (MINALLOCSIZE * 2048) \
135 ? (size) <= (MINALLOCSIZE * 512) \
136 ? (size) <= (MINALLOCSIZE * 256) \
137 ? (MINBUCKET + 8) \
138 : (MINBUCKET + 9) \
139 : (size) <= (MINALLOCSIZE * 1024) \
140 ? (MINBUCKET + 10) \
141 : (MINBUCKET + 11) \
142 : (size) <= (MINALLOCSIZE * 8192) \
143 ? (size) <= (MINALLOCSIZE * 4096) \
144 ? (MINBUCKET + 12) \
145 : (MINBUCKET + 13) \
146 : (size) <= (MINALLOCSIZE * 16384) \
147 ? (MINBUCKET + 14) \
148 : (MINBUCKET + 15))
149
150 /*
151 * Array of descriptors that describe the contents of each page
152 */
153 struct kmemusage {
154 short ku_indx; /* bucket index */
155 union {
156 u_short freecnt;/* for small allocations, free pieces in page */
157 u_short pagecnt;/* for large allocations, pages alloced */
158 } ku_un;
159 };
160 #define ku_freecnt ku_un.freecnt
161 #define ku_pagecnt ku_un.pagecnt
162
163 struct kmembuckets kmembuckets[MINBUCKET + 16];
164 struct kmemusage *kmemusage;
165 char *kmembase, *kmemlimit;
166
167 #ifdef DEBUG
168 static void *malloc_freecheck;
169 #endif
170
171 /*
172 * Turn virtual addresses into kmem map indicies
173 */
174 #define btokup(addr) (&kmemusage[((char *)(addr) - kmembase) >> PGSHIFT])
175
176 struct malloc_type *kmemstatistics;
177
178 #ifdef MALLOCLOG
179 #ifndef MALLOCLOGSIZE
180 #define MALLOCLOGSIZE 100000
181 #endif
182
183 struct malloclog {
184 void *addr;
185 long size;
186 struct malloc_type *type;
187 int action;
188 const char *file;
189 long line;
190 } malloclog[MALLOCLOGSIZE];
191
192 long malloclogptr;
193
194 static void
195 domlog(void *a, long size, struct malloc_type *type, int action,
196 const char *file, long line)
197 {
198
199 malloclog[malloclogptr].addr = a;
200 malloclog[malloclogptr].size = size;
201 malloclog[malloclogptr].type = type;
202 malloclog[malloclogptr].action = action;
203 malloclog[malloclogptr].file = file;
204 malloclog[malloclogptr].line = line;
205 malloclogptr++;
206 if (malloclogptr >= MALLOCLOGSIZE)
207 malloclogptr = 0;
208 }
209
210 static void
211 hitmlog(void *a)
212 {
213 struct malloclog *lp;
214 long l;
215
216 #define PRT do { \
217 lp = &malloclog[l]; \
218 if (lp->addr == a && lp->action) { \
219 printf("malloc log entry %ld:\n", l); \
220 printf("\taddr = %p\n", lp->addr); \
221 printf("\tsize = %ld\n", lp->size); \
222 printf("\ttype = %s\n", lp->type->ks_shortdesc); \
223 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
224 printf("\tfile = %s\n", lp->file); \
225 printf("\tline = %ld\n", lp->line); \
226 } \
227 } while (/* CONSTCOND */0)
228
229 for (l = malloclogptr; l < MALLOCLOGSIZE; l++)
230 PRT;
231
232 for (l = 0; l < malloclogptr; l++)
233 PRT;
234 #undef PRT
235 }
236 #endif /* MALLOCLOG */
237
238 #ifdef DIAGNOSTIC
239 /*
240 * This structure provides a set of masks to catch unaligned frees.
241 */
242 const long addrmask[] = { 0,
243 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
244 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
245 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
246 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
247 };
248
249 /*
250 * The WEIRD_ADDR is used as known text to copy into free objects so
251 * that modifications after frees can be detected.
252 */
253 #define WEIRD_ADDR ((uint32_t) 0xdeadbeef)
254 #ifdef DEBUG
255 #define MAX_COPY PAGE_SIZE
256 #else
257 #define MAX_COPY 32
258 #endif
259
260 /*
261 * Normally the freelist structure is used only to hold the list pointer
262 * for free objects. However, when running with diagnostics, the first
263 * 8/16 bytes of the structure is unused except for diagnostic information,
264 * and the free list pointer is at offset 8/16 in the structure. Since the
265 * first 8 bytes is the portion of the structure most often modified, this
266 * helps to detect memory reuse problems and avoid free list corruption.
267 */
268 struct freelist {
269 uint32_t spare0;
270 #ifdef _LP64
271 uint32_t spare1; /* explicit padding */
272 #endif
273 struct malloc_type *type;
274 void * next;
275 };
276 #else /* !DIAGNOSTIC */
277 struct freelist {
278 void * next;
279 };
280 #endif /* DIAGNOSTIC */
281
282 /*
283 * The following are standard, built-in malloc types and are not
284 * specific to any subsystem.
285 */
286 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
287 MALLOC_DEFINE(M_DMAMAP, "DMA map", "bus_dma(9) structures");
288 MALLOC_DEFINE(M_FREE, "free", "should be on free list");
289 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
290 MALLOC_DEFINE(M_SOFTINTR, "softintr", "Softinterrupt structures");
291 MALLOC_DEFINE(M_TEMP, "temp", "misc. temporary data buffers");
292
293 /* XXX These should all be elsewhere. */
294 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
295 MALLOC_DEFINE(M_FTABLE, "fragtbl", "fragment reassembly header");
296 MALLOC_DEFINE(M_UFSMNT, "UFS mount", "UFS mount structure");
297 MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
298 MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
299 MALLOC_DEFINE(M_IPMADDR, "in_multi", "internet multicast address");
300 MALLOC_DEFINE(M_MRTABLE, "mrt", "multicast routing tables");
301 MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
302 MALLOC_DEFINE(M_1394DATA, "1394data", "IEEE 1394 data buffers");
303
304 kmutex_t malloc_lock;
305
306 /*
307 * Allocate a block of memory
308 */
309 #ifdef MALLOCLOG
310 void *
311 _malloc(unsigned long size, struct malloc_type *ksp, int flags,
312 const char *file, long line)
313 #else
314 void *
315 malloc(unsigned long size, struct malloc_type *ksp, int flags)
316 #endif /* MALLOCLOG */
317 {
318 struct kmembuckets *kbp;
319 struct kmemusage *kup;
320 struct freelist *freep;
321 long indx, npg, allocsize;
322 char *va, *cp, *savedlist;
323 #ifdef DIAGNOSTIC
324 uint32_t *end, *lp;
325 int copysize;
326 #endif
327
328 #ifdef LOCKDEBUG
329 if ((flags & M_NOWAIT) == 0)
330 ASSERT_SLEEPABLE(NULL, "malloc");
331 #endif
332 #ifdef MALLOC_DEBUG
333 if (debug_malloc(size, ksp, flags, (void *) &va)) {
334 if (va != 0)
335 FREECHECK_OUT(&malloc_freecheck, (void *)va);
336 return ((void *) va);
337 }
338 #endif
339 indx = BUCKETINDX(size);
340 kbp = &kmembuckets[indx];
341 mutex_enter(&malloc_lock);
342 #ifdef KMEMSTATS
343 while (ksp->ks_memuse >= ksp->ks_limit) {
344 if (flags & M_NOWAIT) {
345 mutex_exit(&malloc_lock);
346 return ((void *) NULL);
347 }
348 if (ksp->ks_limblocks < 65535)
349 ksp->ks_limblocks++;
350 mtsleep((void *)ksp, PSWP+2, ksp->ks_shortdesc, 0,
351 &malloc_lock);
352 }
353 ksp->ks_size |= 1 << indx;
354 #endif
355 #ifdef DIAGNOSTIC
356 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
357 #endif
358 if (kbp->kb_next == NULL) {
359 int s;
360 kbp->kb_last = NULL;
361 if (size > MAXALLOCSAVE)
362 allocsize = round_page(size);
363 else
364 allocsize = 1 << indx;
365 npg = btoc(allocsize);
366 mutex_exit(&malloc_lock);
367 s = splvm();
368 va = (void *) uvm_km_alloc(kmem_map,
369 (vsize_t)ctob(npg), 0,
370 ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
371 ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0) |
372 UVM_KMF_WIRED);
373 splx(s);
374 if (__predict_false(va == NULL)) {
375 /*
376 * Kmem_malloc() can return NULL, even if it can
377 * wait, if there is no map space available, because
378 * it can't fix that problem. Neither can we,
379 * right now. (We should release pages which
380 * are completely free and which are in kmembuckets
381 * with too many free elements.)
382 */
383 if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
384 panic("malloc: out of space in kmem_map");
385 return (NULL);
386 }
387 mutex_enter(&malloc_lock);
388 #ifdef KMEMSTATS
389 kbp->kb_total += kbp->kb_elmpercl;
390 #endif
391 kup = btokup(va);
392 kup->ku_indx = indx;
393 if (allocsize > MAXALLOCSAVE) {
394 if (npg > 65535)
395 panic("malloc: allocation too large");
396 kup->ku_pagecnt = npg;
397 #ifdef KMEMSTATS
398 ksp->ks_memuse += allocsize;
399 #endif
400 goto out;
401 }
402 #ifdef KMEMSTATS
403 kup->ku_freecnt = kbp->kb_elmpercl;
404 kbp->kb_totalfree += kbp->kb_elmpercl;
405 #endif
406 /*
407 * Just in case we blocked while allocating memory,
408 * and someone else also allocated memory for this
409 * kmembucket, don't assume the list is still empty.
410 */
411 savedlist = kbp->kb_next;
412 kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
413 for (;;) {
414 freep = (struct freelist *)cp;
415 #ifdef DIAGNOSTIC
416 /*
417 * Copy in known text to detect modification
418 * after freeing.
419 */
420 end = (uint32_t *)&cp[copysize];
421 for (lp = (uint32_t *)cp; lp < end; lp++)
422 *lp = WEIRD_ADDR;
423 freep->type = M_FREE;
424 #endif /* DIAGNOSTIC */
425 if (cp <= va)
426 break;
427 cp -= allocsize;
428 freep->next = cp;
429 }
430 freep->next = savedlist;
431 if (kbp->kb_last == NULL)
432 kbp->kb_last = (void *)freep;
433 }
434 va = kbp->kb_next;
435 kbp->kb_next = ((struct freelist *)va)->next;
436 #ifdef DIAGNOSTIC
437 freep = (struct freelist *)va;
438 /* XXX potential to get garbage pointer here. */
439 if (kbp->kb_next) {
440 int rv;
441 vaddr_t addr = (vaddr_t)kbp->kb_next;
442
443 vm_map_lock(kmem_map);
444 rv = uvm_map_checkprot(kmem_map, addr,
445 addr + sizeof(struct freelist), VM_PROT_WRITE);
446 vm_map_unlock(kmem_map);
447
448 if (__predict_false(rv == 0)) {
449 printf("Data modified on freelist: "
450 "word %ld of object %p size %ld previous type %s "
451 "(invalid addr %p)\n",
452 (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
453 va, size, "foo", kbp->kb_next);
454 #ifdef MALLOCLOG
455 hitmlog(va);
456 #endif
457 kbp->kb_next = NULL;
458 }
459 }
460
461 /* Fill the fields that we've used with WEIRD_ADDR */
462 #ifdef _LP64
463 freep->type = (struct malloc_type *)
464 (WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32));
465 #else
466 freep->type = (struct malloc_type *) WEIRD_ADDR;
467 #endif
468 end = (uint32_t *)&freep->next +
469 (sizeof(freep->next) / sizeof(int32_t));
470 for (lp = (uint32_t *)&freep->next; lp < end; lp++)
471 *lp = WEIRD_ADDR;
472
473 /* and check that the data hasn't been modified. */
474 end = (uint32_t *)&va[copysize];
475 for (lp = (uint32_t *)va; lp < end; lp++) {
476 if (__predict_true(*lp == WEIRD_ADDR))
477 continue;
478 printf("Data modified on freelist: "
479 "word %ld of object %p size %ld previous type %s "
480 "(0x%x != 0x%x)\n",
481 (long)(lp - (uint32_t *)va), va, size,
482 "bar", *lp, WEIRD_ADDR);
483 #ifdef MALLOCLOG
484 hitmlog(va);
485 #endif
486 break;
487 }
488
489 freep->spare0 = 0;
490 #endif /* DIAGNOSTIC */
491 #ifdef KMEMSTATS
492 kup = btokup(va);
493 if (kup->ku_indx != indx)
494 panic("malloc: wrong bucket");
495 if (kup->ku_freecnt == 0)
496 panic("malloc: lost data");
497 kup->ku_freecnt--;
498 kbp->kb_totalfree--;
499 ksp->ks_memuse += 1 << indx;
500 out:
501 kbp->kb_calls++;
502 ksp->ks_inuse++;
503 ksp->ks_calls++;
504 if (ksp->ks_memuse > ksp->ks_maxused)
505 ksp->ks_maxused = ksp->ks_memuse;
506 #else
507 out:
508 #endif
509 #ifdef MALLOCLOG
510 domlog(va, size, ksp, 1, file, line);
511 #endif
512 mutex_exit(&malloc_lock);
513 if ((flags & M_ZERO) != 0)
514 memset(va, 0, size);
515 FREECHECK_OUT(&malloc_freecheck, (void *)va);
516 return ((void *) va);
517 }
518
519 /*
520 * Free a block of memory allocated by malloc.
521 */
522 #ifdef MALLOCLOG
523 void
524 _free(void *addr, struct malloc_type *ksp, const char *file, long line)
525 #else
526 void
527 free(void *addr, struct malloc_type *ksp)
528 #endif /* MALLOCLOG */
529 {
530 struct kmembuckets *kbp;
531 struct kmemusage *kup;
532 struct freelist *freep;
533 long size;
534 #ifdef DIAGNOSTIC
535 void *cp;
536 int32_t *end, *lp;
537 long alloc, copysize;
538 #endif
539
540 FREECHECK_IN(&malloc_freecheck, addr);
541
542 #ifdef MALLOC_DEBUG
543 if (debug_free(addr, ksp))
544 return;
545 #endif
546
547 #ifdef DIAGNOSTIC
548 /*
549 * Ensure that we're free'ing something that we could
550 * have allocated in the first place. That is, check
551 * to see that the address is within kmem_map.
552 */
553 if (__predict_false((vaddr_t)addr < vm_map_min(kmem_map) ||
554 (vaddr_t)addr >= vm_map_max(kmem_map)))
555 panic("free: addr %p not within kmem_map", addr);
556 #endif
557
558 kup = btokup(addr);
559 size = 1 << kup->ku_indx;
560 kbp = &kmembuckets[kup->ku_indx];
561 mutex_enter(&malloc_lock);
562 #ifdef MALLOCLOG
563 domlog(addr, 0, ksp, 2, file, line);
564 #endif
565 #ifdef DIAGNOSTIC
566 /*
567 * Check for returns of data that do not point to the
568 * beginning of the allocation.
569 */
570 if (size > PAGE_SIZE)
571 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
572 else
573 alloc = addrmask[kup->ku_indx];
574 if (((u_long)addr & alloc) != 0)
575 panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
576 addr, size, ksp->ks_shortdesc, alloc);
577 #endif /* DIAGNOSTIC */
578 if (size > MAXALLOCSAVE) {
579 uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt),
580 UVM_KMF_WIRED);
581 #ifdef KMEMSTATS
582 size = kup->ku_pagecnt << PGSHIFT;
583 ksp->ks_memuse -= size;
584 kup->ku_indx = 0;
585 kup->ku_pagecnt = 0;
586 if (ksp->ks_memuse + size >= ksp->ks_limit &&
587 ksp->ks_memuse < ksp->ks_limit)
588 wakeup((void *)ksp);
589 #ifdef DIAGNOSTIC
590 if (ksp->ks_inuse == 0)
591 panic("free 1: inuse 0, probable double free");
592 #endif
593 ksp->ks_inuse--;
594 kbp->kb_total -= 1;
595 #endif
596 mutex_exit(&malloc_lock);
597 return;
598 }
599 freep = (struct freelist *)addr;
600 #ifdef DIAGNOSTIC
601 /*
602 * Check for multiple frees. Use a quick check to see if
603 * it looks free before laboriously searching the freelist.
604 */
605 if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
606 for (cp = kbp->kb_next; cp;
607 cp = ((struct freelist *)cp)->next) {
608 if (addr != cp)
609 continue;
610 printf("multiply freed item %p\n", addr);
611 #ifdef MALLOCLOG
612 hitmlog(addr);
613 #endif
614 panic("free: duplicated free");
615 }
616 }
617
618 /*
619 * Copy in known text to detect modification after freeing
620 * and to make it look free. Also, save the type being freed
621 * so we can list likely culprit if modification is detected
622 * when the object is reallocated.
623 */
624 copysize = size < MAX_COPY ? size : MAX_COPY;
625 end = (int32_t *)&((char *)addr)[copysize];
626 for (lp = (int32_t *)addr; lp < end; lp++)
627 *lp = WEIRD_ADDR;
628 freep->type = ksp;
629 #endif /* DIAGNOSTIC */
630 #ifdef KMEMSTATS
631 kup->ku_freecnt++;
632 if (kup->ku_freecnt >= kbp->kb_elmpercl) {
633 if (kup->ku_freecnt > kbp->kb_elmpercl)
634 panic("free: multiple frees");
635 else if (kbp->kb_totalfree > kbp->kb_highwat)
636 kbp->kb_couldfree++;
637 }
638 kbp->kb_totalfree++;
639 ksp->ks_memuse -= size;
640 if (ksp->ks_memuse + size >= ksp->ks_limit &&
641 ksp->ks_memuse < ksp->ks_limit)
642 wakeup((void *)ksp);
643 #ifdef DIAGNOSTIC
644 if (ksp->ks_inuse == 0)
645 panic("free 2: inuse 0, probable double free");
646 #endif
647 ksp->ks_inuse--;
648 #endif
649 if (kbp->kb_next == NULL)
650 kbp->kb_next = addr;
651 else
652 ((struct freelist *)kbp->kb_last)->next = addr;
653 freep->next = NULL;
654 kbp->kb_last = addr;
655 mutex_exit(&malloc_lock);
656 }
657
658 /*
659 * Change the size of a block of memory.
660 */
661 void *
662 realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp,
663 int flags)
664 {
665 struct kmemusage *kup;
666 unsigned long cursize;
667 void *newaddr;
668 #ifdef DIAGNOSTIC
669 long alloc;
670 #endif
671
672 /*
673 * realloc() with a NULL pointer is the same as malloc().
674 */
675 if (curaddr == NULL)
676 return (malloc(newsize, ksp, flags));
677
678 /*
679 * realloc() with zero size is the same as free().
680 */
681 if (newsize == 0) {
682 free(curaddr, ksp);
683 return (NULL);
684 }
685
686 #ifdef LOCKDEBUG
687 if ((flags & M_NOWAIT) == 0)
688 ASSERT_SLEEPABLE(NULL, "realloc");
689 #endif
690
691 /*
692 * Find out how large the old allocation was (and do some
693 * sanity checking).
694 */
695 kup = btokup(curaddr);
696 cursize = 1 << kup->ku_indx;
697
698 #ifdef DIAGNOSTIC
699 /*
700 * Check for returns of data that do not point to the
701 * beginning of the allocation.
702 */
703 if (cursize > PAGE_SIZE)
704 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
705 else
706 alloc = addrmask[kup->ku_indx];
707 if (((u_long)curaddr & alloc) != 0)
708 panic("realloc: "
709 "unaligned addr %p, size %ld, type %s, mask %ld\n",
710 curaddr, cursize, ksp->ks_shortdesc, alloc);
711 #endif /* DIAGNOSTIC */
712
713 if (cursize > MAXALLOCSAVE)
714 cursize = ctob(kup->ku_pagecnt);
715
716 /*
717 * If we already actually have as much as they want, we're done.
718 */
719 if (newsize <= cursize)
720 return (curaddr);
721
722 /*
723 * Can't satisfy the allocation with the existing block.
724 * Allocate a new one and copy the data.
725 */
726 newaddr = malloc(newsize, ksp, flags);
727 if (__predict_false(newaddr == NULL)) {
728 /*
729 * malloc() failed, because flags included M_NOWAIT.
730 * Return NULL to indicate that failure. The old
731 * pointer is still valid.
732 */
733 return (NULL);
734 }
735 memcpy(newaddr, curaddr, cursize);
736
737 /*
738 * We were successful: free the old allocation and return
739 * the new one.
740 */
741 free(curaddr, ksp);
742 return (newaddr);
743 }
744
745 /*
746 * Roundup size to the actual allocation size.
747 */
748 unsigned long
749 malloc_roundup(unsigned long size)
750 {
751
752 if (size > MAXALLOCSAVE)
753 return (roundup(size, PAGE_SIZE));
754 else
755 return (1 << BUCKETINDX(size));
756 }
757
758 /*
759 * Add a malloc type to the system.
760 */
761 void
762 malloc_type_attach(struct malloc_type *type)
763 {
764
765 if (nkmempages == 0)
766 panic("malloc_type_attach: nkmempages == 0");
767
768 if (type->ks_magic != M_MAGIC)
769 panic("malloc_type_attach: bad magic");
770
771 #ifdef DIAGNOSTIC
772 {
773 struct malloc_type *ksp;
774 for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
775 if (ksp == type)
776 panic("malloc_type_attach: already on list");
777 }
778 }
779 #endif
780
781 #ifdef KMEMSTATS
782 if (type->ks_limit == 0)
783 type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U;
784 #else
785 type->ks_limit = 0;
786 #endif
787
788 type->ks_next = kmemstatistics;
789 kmemstatistics = type;
790 }
791
792 /*
793 * Remove a malloc type from the system..
794 */
795 void
796 malloc_type_detach(struct malloc_type *type)
797 {
798 struct malloc_type *ksp;
799
800 #ifdef DIAGNOSTIC
801 if (type->ks_magic != M_MAGIC)
802 panic("malloc_type_detach: bad magic");
803 #endif
804
805 if (type == kmemstatistics)
806 kmemstatistics = type->ks_next;
807 else {
808 for (ksp = kmemstatistics; ksp->ks_next != NULL;
809 ksp = ksp->ks_next) {
810 if (ksp->ks_next == type) {
811 ksp->ks_next = type->ks_next;
812 break;
813 }
814 }
815 #ifdef DIAGNOSTIC
816 if (ksp->ks_next == NULL)
817 panic("malloc_type_detach: not on list");
818 #endif
819 }
820 type->ks_next = NULL;
821 }
822
823 /*
824 * Set the limit on a malloc type.
825 */
826 void
827 malloc_type_setlimit(struct malloc_type *type, u_long limit)
828 {
829 #ifdef KMEMSTATS
830 mutex_enter(&malloc_lock);
831 type->ks_limit = limit;
832 mutex_exit(&malloc_lock);
833 #endif
834 }
835
836 /*
837 * Compute the number of pages that kmem_map will map, that is,
838 * the size of the kernel malloc arena.
839 */
840 void
841 kmeminit_nkmempages(void)
842 {
843 int npages;
844
845 if (nkmempages != 0) {
846 /*
847 * It's already been set (by us being here before, or
848 * by patching or kernel config options), bail out now.
849 */
850 return;
851 }
852
853 npages = physmem;
854
855 if (npages > NKMEMPAGES_MAX)
856 npages = NKMEMPAGES_MAX;
857
858 if (npages < NKMEMPAGES_MIN)
859 npages = NKMEMPAGES_MIN;
860
861 nkmempages = npages;
862 }
863
864 /*
865 * Initialize the kernel memory allocator
866 */
867 void
868 kmeminit(void)
869 {
870 __link_set_decl(malloc_types, struct malloc_type);
871 struct malloc_type * const *ksp;
872 vaddr_t kmb, kml;
873 #ifdef KMEMSTATS
874 long indx;
875 #endif
876
877 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
878 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
879 #endif
880 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
881 ERROR!_kmeminit:_MAXALLOCSAVE_too_big
882 #endif
883 #if (MAXALLOCSAVE < NBPG)
884 ERROR!_kmeminit:_MAXALLOCSAVE_too_small
885 #endif
886
887 if (sizeof(struct freelist) > (1 << MINBUCKET))
888 panic("minbucket too small/struct freelist too big");
889
890 mutex_init(&malloc_lock, MUTEX_DRIVER, IPL_VM);
891
892 /*
893 * Compute the number of kmem_map pages, if we have not
894 * done so already.
895 */
896 kmeminit_nkmempages();
897
898 kmemusage = (struct kmemusage *) uvm_km_alloc(kernel_map,
899 (vsize_t)(nkmempages * sizeof(struct kmemusage)), 0,
900 UVM_KMF_WIRED|UVM_KMF_ZERO);
901 kmb = 0;
902 kmem_map = uvm_km_suballoc(kernel_map, &kmb,
903 &kml, ((vsize_t)nkmempages << PAGE_SHIFT),
904 VM_MAP_INTRSAFE, false, &kmem_map_store);
905 uvm_km_vacache_init(kmem_map, "kvakmem", 0);
906 kmembase = (char *)kmb;
907 kmemlimit = (char *)kml;
908 #ifdef KMEMSTATS
909 for (indx = 0; indx < MINBUCKET + 16; indx++) {
910 if (1 << indx >= PAGE_SIZE)
911 kmembuckets[indx].kb_elmpercl = 1;
912 else
913 kmembuckets[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
914 kmembuckets[indx].kb_highwat =
915 5 * kmembuckets[indx].kb_elmpercl;
916 }
917 #endif
918
919 /* Attach all of the statically-linked malloc types. */
920 __link_set_foreach(ksp, malloc_types)
921 malloc_type_attach(*ksp);
922
923 #ifdef MALLOC_DEBUG
924 debug_malloc_init();
925 #endif
926 }
927
928 #ifdef DDB
929 #include <ddb/db_output.h>
930
931 /*
932 * Dump kmem statistics from ddb.
933 *
934 * usage: call dump_kmemstats
935 */
936 void dump_kmemstats(void);
937
938 void
939 dump_kmemstats(void)
940 {
941 #ifdef KMEMSTATS
942 struct malloc_type *ksp;
943
944 for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
945 if (ksp->ks_memuse == 0)
946 continue;
947 db_printf("%s%.*s %ld\n", ksp->ks_shortdesc,
948 (int)(20 - strlen(ksp->ks_shortdesc)),
949 " ",
950 ksp->ks_memuse);
951 }
952 #else
953 db_printf("Kmem stats are not being collected.\n");
954 #endif /* KMEMSTATS */
955 }
956 #endif /* DDB */
957
958
959 #if 0
960 /*
961 * Diagnostic messages about "Data modified on
962 * freelist" indicate a memory corruption, but
963 * they do not help tracking it down.
964 * This function can be called at various places
965 * to sanity check malloc's freelist and discover
966 * where does the corruption take place.
967 */
968 int
969 freelist_sanitycheck(void) {
970 int i,j;
971 struct kmembuckets *kbp;
972 struct freelist *freep;
973 int rv = 0;
974
975 for (i = MINBUCKET; i <= MINBUCKET + 15; i++) {
976 kbp = &kmembuckets[i];
977 freep = (struct freelist *)kbp->kb_next;
978 j = 0;
979 while(freep) {
980 vm_map_lock(kmem_map);
981 rv = uvm_map_checkprot(kmem_map, (vaddr_t)freep,
982 (vaddr_t)freep + sizeof(struct freelist),
983 VM_PROT_WRITE);
984 vm_map_unlock(kmem_map);
985
986 if ((rv == 0) || (*(int *)freep != WEIRD_ADDR)) {
987 printf("bucket %i, chunck %d at %p modified\n",
988 i, j, freep);
989 return 1;
990 }
991 freep = (struct freelist *)freep->next;
992 j++;
993 }
994 }
995
996 return 0;
997 }
998 #endif
999