kern_malloc.c revision 1.119.4.3 1 /* $NetBSD: kern_malloc.c,v 1.119.4.3 2010/03/11 15:04:17 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1987, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
32 */
33
34 /*
35 * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.119.4.3 2010/03/11 15:04:17 yamt Exp $");
70
71 #include <sys/param.h>
72 #include <sys/proc.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/systm.h>
76 #include <sys/debug.h>
77 #include <sys/mutex.h>
78 #include <sys/lockdebug.h>
79
80 #include <uvm/uvm_extern.h>
81
82 static struct vm_map_kernel kmem_map_store;
83 struct vm_map *kmem_map = NULL;
84
85 #include "opt_kmempages.h"
86
87 #ifdef NKMEMCLUSTERS
88 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
89 #endif
90
91 /*
92 * Default number of pages in kmem_map. We attempt to calculate this
93 * at run-time, but allow it to be either patched or set in the kernel
94 * config file.
95 */
96 #ifndef NKMEMPAGES
97 #define NKMEMPAGES 0
98 #endif
99 int nkmempages = NKMEMPAGES;
100
101 /*
102 * Defaults for lower- and upper-bounds for the kmem_map page count.
103 * Can be overridden by kernel config options.
104 */
105 #ifndef NKMEMPAGES_MIN
106 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
107 #endif
108
109 #ifndef NKMEMPAGES_MAX
110 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
111 #endif
112
113 #include "opt_kmemstats.h"
114 #include "opt_malloclog.h"
115 #include "opt_malloc_debug.h"
116
117 #define MINALLOCSIZE (1 << MINBUCKET)
118 #define BUCKETINDX(size) \
119 ((size) <= (MINALLOCSIZE * 128) \
120 ? (size) <= (MINALLOCSIZE * 8) \
121 ? (size) <= (MINALLOCSIZE * 2) \
122 ? (size) <= (MINALLOCSIZE * 1) \
123 ? (MINBUCKET + 0) \
124 : (MINBUCKET + 1) \
125 : (size) <= (MINALLOCSIZE * 4) \
126 ? (MINBUCKET + 2) \
127 : (MINBUCKET + 3) \
128 : (size) <= (MINALLOCSIZE* 32) \
129 ? (size) <= (MINALLOCSIZE * 16) \
130 ? (MINBUCKET + 4) \
131 : (MINBUCKET + 5) \
132 : (size) <= (MINALLOCSIZE * 64) \
133 ? (MINBUCKET + 6) \
134 : (MINBUCKET + 7) \
135 : (size) <= (MINALLOCSIZE * 2048) \
136 ? (size) <= (MINALLOCSIZE * 512) \
137 ? (size) <= (MINALLOCSIZE * 256) \
138 ? (MINBUCKET + 8) \
139 : (MINBUCKET + 9) \
140 : (size) <= (MINALLOCSIZE * 1024) \
141 ? (MINBUCKET + 10) \
142 : (MINBUCKET + 11) \
143 : (size) <= (MINALLOCSIZE * 8192) \
144 ? (size) <= (MINALLOCSIZE * 4096) \
145 ? (MINBUCKET + 12) \
146 : (MINBUCKET + 13) \
147 : (size) <= (MINALLOCSIZE * 16384) \
148 ? (MINBUCKET + 14) \
149 : (MINBUCKET + 15))
150
151 /*
152 * Array of descriptors that describe the contents of each page
153 */
154 struct kmemusage {
155 short ku_indx; /* bucket index */
156 union {
157 u_short freecnt;/* for small allocations, free pieces in page */
158 u_short pagecnt;/* for large allocations, pages alloced */
159 } ku_un;
160 };
161 #define ku_freecnt ku_un.freecnt
162 #define ku_pagecnt ku_un.pagecnt
163
164 struct kmembuckets kmembuckets[MINBUCKET + 16];
165 struct kmemusage *kmemusage;
166 char *kmembase, *kmemlimit;
167
168 #ifdef DEBUG
169 static void *malloc_freecheck;
170 #endif
171
172 /*
173 * Turn virtual addresses into kmem map indicies
174 */
175 #define btokup(addr) (&kmemusage[((char *)(addr) - kmembase) >> PGSHIFT])
176
177 struct malloc_type *kmemstatistics;
178
179 #ifdef MALLOCLOG
180 #ifndef MALLOCLOGSIZE
181 #define MALLOCLOGSIZE 100000
182 #endif
183
184 struct malloclog {
185 void *addr;
186 long size;
187 struct malloc_type *type;
188 int action;
189 const char *file;
190 long line;
191 } malloclog[MALLOCLOGSIZE];
192
193 long malloclogptr;
194
195 /*
196 * Fuzz factor for neighbour address match this must be a mask of the lower
197 * bits we wish to ignore when comparing addresses
198 */
199 __uintptr_t malloclog_fuzz = 0x7FL;
200
201
202 static void
203 domlog(void *a, long size, struct malloc_type *type, int action,
204 const char *file, long line)
205 {
206
207 malloclog[malloclogptr].addr = a;
208 malloclog[malloclogptr].size = size;
209 malloclog[malloclogptr].type = type;
210 malloclog[malloclogptr].action = action;
211 malloclog[malloclogptr].file = file;
212 malloclog[malloclogptr].line = line;
213 malloclogptr++;
214 if (malloclogptr >= MALLOCLOGSIZE)
215 malloclogptr = 0;
216 }
217
218 #ifdef DIAGNOSTIC
219 static void
220 hitmlog(void *a)
221 {
222 struct malloclog *lp;
223 long l;
224
225 #define PRT do { \
226 lp = &malloclog[l]; \
227 if (lp->addr == a && lp->action) { \
228 printf("malloc log entry %ld:\n", l); \
229 printf("\taddr = %p\n", lp->addr); \
230 printf("\tsize = %ld\n", lp->size); \
231 printf("\ttype = %s\n", lp->type->ks_shortdesc); \
232 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
233 printf("\tfile = %s\n", lp->file); \
234 printf("\tline = %ld\n", lp->line); \
235 } \
236 } while (/* CONSTCOND */0)
237
238 /*
239 * Print fuzzy matched "neighbour" - look for the memory block that has
240 * been allocated below the address we are interested in. We look for a
241 * base address + size that is within malloclog_fuzz of our target
242 * address. If the base address and target address are the same then it is
243 * likely we have found a free (size is 0 in this case) so we won't report
244 * those, they will get reported by PRT anyway.
245 */
246 #define NPRT do { \
247 __uintptr_t fuzz_mask = ~(malloclog_fuzz); \
248 lp = &malloclog[l]; \
249 if ((__uintptr_t)lp->addr != (__uintptr_t)a && \
250 (((__uintptr_t)lp->addr + lp->size + malloclog_fuzz) & fuzz_mask) \
251 == ((__uintptr_t)a & fuzz_mask) && lp->action) { \
252 printf("neighbour malloc log entry %ld:\n", l); \
253 printf("\taddr = %p\n", lp->addr); \
254 printf("\tsize = %ld\n", lp->size); \
255 printf("\ttype = %s\n", lp->type->ks_shortdesc); \
256 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
257 printf("\tfile = %s\n", lp->file); \
258 printf("\tline = %ld\n", lp->line); \
259 } \
260 } while (/* CONSTCOND */0)
261
262 for (l = malloclogptr; l < MALLOCLOGSIZE; l++) {
263 PRT;
264 NPRT;
265 }
266
267
268 for (l = 0; l < malloclogptr; l++) {
269 PRT;
270 NPRT;
271 }
272
273 #undef PRT
274 }
275 #endif /* DIAGNOSTIC */
276 #endif /* MALLOCLOG */
277
278 #ifdef DIAGNOSTIC
279 /*
280 * This structure provides a set of masks to catch unaligned frees.
281 */
282 const long addrmask[] = { 0,
283 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
284 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
285 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
286 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
287 };
288
289 /*
290 * The WEIRD_ADDR is used as known text to copy into free objects so
291 * that modifications after frees can be detected.
292 */
293 #define WEIRD_ADDR ((uint32_t) 0xdeadbeef)
294 #ifdef DEBUG
295 #define MAX_COPY PAGE_SIZE
296 #else
297 #define MAX_COPY 32
298 #endif
299
300 /*
301 * Normally the freelist structure is used only to hold the list pointer
302 * for free objects. However, when running with diagnostics, the first
303 * 8/16 bytes of the structure is unused except for diagnostic information,
304 * and the free list pointer is at offset 8/16 in the structure. Since the
305 * first 8 bytes is the portion of the structure most often modified, this
306 * helps to detect memory reuse problems and avoid free list corruption.
307 */
308 struct freelist {
309 uint32_t spare0;
310 #ifdef _LP64
311 uint32_t spare1; /* explicit padding */
312 #endif
313 struct malloc_type *type;
314 void * next;
315 };
316 #else /* !DIAGNOSTIC */
317 struct freelist {
318 void * next;
319 };
320 #endif /* DIAGNOSTIC */
321
322 kmutex_t malloc_lock;
323
324 /*
325 * Allocate a block of memory
326 */
327 #ifdef MALLOCLOG
328 void *
329 _kern_malloc(unsigned long size, struct malloc_type *ksp, int flags,
330 const char *file, long line)
331 #else
332 void *
333 kern_malloc(unsigned long size, struct malloc_type *ksp, int flags)
334 #endif /* MALLOCLOG */
335 {
336 struct kmembuckets *kbp;
337 struct kmemusage *kup;
338 struct freelist *freep;
339 long indx, npg, allocsize;
340 char *va, *cp, *savedlist;
341 #ifdef DIAGNOSTIC
342 uint32_t *end, *lp;
343 int copysize;
344 #endif
345
346 #ifdef LOCKDEBUG
347 if ((flags & M_NOWAIT) == 0) {
348 ASSERT_SLEEPABLE();
349 }
350 #endif
351 #ifdef MALLOC_DEBUG
352 if (debug_malloc(size, ksp, flags, (void *) &va)) {
353 if (va != 0) {
354 FREECHECK_OUT(&malloc_freecheck, (void *)va);
355 }
356 return ((void *) va);
357 }
358 #endif
359 indx = BUCKETINDX(size);
360 kbp = &kmembuckets[indx];
361 mutex_spin_enter(&malloc_lock);
362 #ifdef KMEMSTATS
363 while (ksp->ks_memuse >= ksp->ks_limit) {
364 if (flags & M_NOWAIT) {
365 mutex_spin_exit(&malloc_lock);
366 return ((void *) NULL);
367 }
368 if (ksp->ks_limblocks < 65535)
369 ksp->ks_limblocks++;
370 mtsleep((void *)ksp, PSWP+2, ksp->ks_shortdesc, 0,
371 &malloc_lock);
372 }
373 ksp->ks_size |= 1 << indx;
374 #endif
375 #ifdef DIAGNOSTIC
376 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
377 #endif
378 if (kbp->kb_next == NULL) {
379 int s;
380 kbp->kb_last = NULL;
381 if (size > MAXALLOCSAVE)
382 allocsize = round_page(size);
383 else
384 allocsize = 1 << indx;
385 npg = btoc(allocsize);
386 mutex_spin_exit(&malloc_lock);
387 s = splvm();
388 va = (void *) uvm_km_alloc(kmem_map,
389 (vsize_t)ctob(npg), 0,
390 ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
391 ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0) |
392 UVM_KMF_WIRED);
393 splx(s);
394 if (__predict_false(va == NULL)) {
395 /*
396 * Kmem_malloc() can return NULL, even if it can
397 * wait, if there is no map space available, because
398 * it can't fix that problem. Neither can we,
399 * right now. (We should release pages which
400 * are completely free and which are in kmembuckets
401 * with too many free elements.)
402 */
403 if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
404 panic("malloc: out of space in kmem_map");
405 return (NULL);
406 }
407 mutex_spin_enter(&malloc_lock);
408 #ifdef KMEMSTATS
409 kbp->kb_total += kbp->kb_elmpercl;
410 #endif
411 kup = btokup(va);
412 kup->ku_indx = indx;
413 if (allocsize > MAXALLOCSAVE) {
414 if (npg > 65535)
415 panic("malloc: allocation too large");
416 kup->ku_pagecnt = npg;
417 #ifdef KMEMSTATS
418 ksp->ks_memuse += allocsize;
419 #endif
420 goto out;
421 }
422 #ifdef KMEMSTATS
423 kup->ku_freecnt = kbp->kb_elmpercl;
424 kbp->kb_totalfree += kbp->kb_elmpercl;
425 #endif
426 /*
427 * Just in case we blocked while allocating memory,
428 * and someone else also allocated memory for this
429 * kmembucket, don't assume the list is still empty.
430 */
431 savedlist = kbp->kb_next;
432 kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
433 for (;;) {
434 freep = (struct freelist *)cp;
435 #ifdef DIAGNOSTIC
436 /*
437 * Copy in known text to detect modification
438 * after freeing.
439 */
440 end = (uint32_t *)&cp[copysize];
441 for (lp = (uint32_t *)cp; lp < end; lp++)
442 *lp = WEIRD_ADDR;
443 freep->type = M_FREE;
444 #endif /* DIAGNOSTIC */
445 if (cp <= va)
446 break;
447 cp -= allocsize;
448 freep->next = cp;
449 }
450 freep->next = savedlist;
451 if (savedlist == NULL)
452 kbp->kb_last = (void *)freep;
453 }
454 va = kbp->kb_next;
455 kbp->kb_next = ((struct freelist *)va)->next;
456 #ifdef DIAGNOSTIC
457 freep = (struct freelist *)va;
458 /* XXX potential to get garbage pointer here. */
459 if (kbp->kb_next) {
460 int rv;
461 vaddr_t addr = (vaddr_t)kbp->kb_next;
462
463 vm_map_lock(kmem_map);
464 rv = uvm_map_checkprot(kmem_map, addr,
465 addr + sizeof(struct freelist), VM_PROT_WRITE);
466 vm_map_unlock(kmem_map);
467
468 if (__predict_false(rv == 0)) {
469 printf("Data modified on freelist: "
470 "word %ld of object %p size %ld previous type %s "
471 "(invalid addr %p)\n",
472 (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
473 va, size, "foo", kbp->kb_next);
474 #ifdef MALLOCLOG
475 hitmlog(va);
476 #endif
477 kbp->kb_next = NULL;
478 }
479 }
480
481 /* Fill the fields that we've used with WEIRD_ADDR */
482 #ifdef _LP64
483 freep->type = (struct malloc_type *)
484 (WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32));
485 #else
486 freep->type = (struct malloc_type *) WEIRD_ADDR;
487 #endif
488 end = (uint32_t *)&freep->next +
489 (sizeof(freep->next) / sizeof(int32_t));
490 for (lp = (uint32_t *)&freep->next; lp < end; lp++)
491 *lp = WEIRD_ADDR;
492
493 /* and check that the data hasn't been modified. */
494 end = (uint32_t *)&va[copysize];
495 for (lp = (uint32_t *)va; lp < end; lp++) {
496 if (__predict_true(*lp == WEIRD_ADDR))
497 continue;
498 printf("Data modified on freelist: "
499 "word %ld of object %p size %ld previous type %s "
500 "(0x%x != 0x%x)\n",
501 (long)(lp - (uint32_t *)va), va, size,
502 "bar", *lp, WEIRD_ADDR);
503 #ifdef MALLOCLOG
504 hitmlog(va);
505 #endif
506 break;
507 }
508
509 freep->spare0 = 0;
510 #endif /* DIAGNOSTIC */
511 #ifdef KMEMSTATS
512 kup = btokup(va);
513 if (kup->ku_indx != indx)
514 panic("malloc: wrong bucket");
515 if (kup->ku_freecnt == 0)
516 panic("malloc: lost data");
517 kup->ku_freecnt--;
518 kbp->kb_totalfree--;
519 ksp->ks_memuse += 1 << indx;
520 out:
521 kbp->kb_calls++;
522 ksp->ks_inuse++;
523 ksp->ks_calls++;
524 if (ksp->ks_memuse > ksp->ks_maxused)
525 ksp->ks_maxused = ksp->ks_memuse;
526 #else
527 out:
528 #endif
529 #ifdef MALLOCLOG
530 domlog(va, size, ksp, 1, file, line);
531 #endif
532 mutex_spin_exit(&malloc_lock);
533 if ((flags & M_ZERO) != 0)
534 memset(va, 0, size);
535 FREECHECK_OUT(&malloc_freecheck, (void *)va);
536 return ((void *) va);
537 }
538
539 /*
540 * Free a block of memory allocated by malloc.
541 */
542 #ifdef MALLOCLOG
543 void
544 _kern_free(void *addr, struct malloc_type *ksp, const char *file, long line)
545 #else
546 void
547 kern_free(void *addr, struct malloc_type *ksp)
548 #endif /* MALLOCLOG */
549 {
550 struct kmembuckets *kbp;
551 struct kmemusage *kup;
552 struct freelist *freep;
553 long size;
554 #ifdef DIAGNOSTIC
555 void *cp;
556 int32_t *end, *lp;
557 long alloc, copysize;
558 #endif
559
560 FREECHECK_IN(&malloc_freecheck, addr);
561 #ifdef MALLOC_DEBUG
562 if (debug_free(addr, ksp))
563 return;
564 #endif
565
566 #ifdef DIAGNOSTIC
567 /*
568 * Ensure that we're free'ing something that we could
569 * have allocated in the first place. That is, check
570 * to see that the address is within kmem_map.
571 */
572 if (__predict_false((vaddr_t)addr < vm_map_min(kmem_map) ||
573 (vaddr_t)addr >= vm_map_max(kmem_map)))
574 panic("free: addr %p not within kmem_map", addr);
575 #endif
576
577 kup = btokup(addr);
578 size = 1 << kup->ku_indx;
579 kbp = &kmembuckets[kup->ku_indx];
580
581 LOCKDEBUG_MEM_CHECK(addr,
582 size <= MAXALLOCSAVE ? size : ctob(kup->ku_pagecnt));
583
584 mutex_spin_enter(&malloc_lock);
585 #ifdef MALLOCLOG
586 domlog(addr, 0, ksp, 2, file, line);
587 #endif
588 #ifdef DIAGNOSTIC
589 /*
590 * Check for returns of data that do not point to the
591 * beginning of the allocation.
592 */
593 if (size > PAGE_SIZE)
594 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
595 else
596 alloc = addrmask[kup->ku_indx];
597 if (((u_long)addr & alloc) != 0)
598 panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
599 addr, size, ksp->ks_shortdesc, alloc);
600 #endif /* DIAGNOSTIC */
601 if (size > MAXALLOCSAVE) {
602 uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt),
603 UVM_KMF_WIRED);
604 #ifdef KMEMSTATS
605 size = kup->ku_pagecnt << PGSHIFT;
606 ksp->ks_memuse -= size;
607 kup->ku_indx = 0;
608 kup->ku_pagecnt = 0;
609 if (ksp->ks_memuse + size >= ksp->ks_limit &&
610 ksp->ks_memuse < ksp->ks_limit)
611 wakeup((void *)ksp);
612 #ifdef DIAGNOSTIC
613 if (ksp->ks_inuse == 0)
614 panic("free 1: inuse 0, probable double free");
615 #endif
616 ksp->ks_inuse--;
617 kbp->kb_total -= 1;
618 #endif
619 mutex_spin_exit(&malloc_lock);
620 return;
621 }
622 freep = (struct freelist *)addr;
623 #ifdef DIAGNOSTIC
624 /*
625 * Check for multiple frees. Use a quick check to see if
626 * it looks free before laboriously searching the freelist.
627 */
628 if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
629 for (cp = kbp->kb_next; cp;
630 cp = ((struct freelist *)cp)->next) {
631 if (addr != cp)
632 continue;
633 printf("multiply freed item %p\n", addr);
634 #ifdef MALLOCLOG
635 hitmlog(addr);
636 #endif
637 panic("free: duplicated free");
638 }
639 }
640
641 /*
642 * Copy in known text to detect modification after freeing
643 * and to make it look free. Also, save the type being freed
644 * so we can list likely culprit if modification is detected
645 * when the object is reallocated.
646 */
647 copysize = size < MAX_COPY ? size : MAX_COPY;
648 end = (int32_t *)&((char *)addr)[copysize];
649 for (lp = (int32_t *)addr; lp < end; lp++)
650 *lp = WEIRD_ADDR;
651 freep->type = ksp;
652 #endif /* DIAGNOSTIC */
653 #ifdef KMEMSTATS
654 kup->ku_freecnt++;
655 if (kup->ku_freecnt >= kbp->kb_elmpercl) {
656 if (kup->ku_freecnt > kbp->kb_elmpercl)
657 panic("free: multiple frees");
658 else if (kbp->kb_totalfree > kbp->kb_highwat)
659 kbp->kb_couldfree++;
660 }
661 kbp->kb_totalfree++;
662 ksp->ks_memuse -= size;
663 if (ksp->ks_memuse + size >= ksp->ks_limit &&
664 ksp->ks_memuse < ksp->ks_limit)
665 wakeup((void *)ksp);
666 #ifdef DIAGNOSTIC
667 if (ksp->ks_inuse == 0)
668 panic("free 2: inuse 0, probable double free");
669 #endif
670 ksp->ks_inuse--;
671 #endif
672 if (kbp->kb_next == NULL)
673 kbp->kb_next = addr;
674 else
675 ((struct freelist *)kbp->kb_last)->next = addr;
676 freep->next = NULL;
677 kbp->kb_last = addr;
678 mutex_spin_exit(&malloc_lock);
679 }
680
681 /*
682 * Change the size of a block of memory.
683 */
684 void *
685 kern_realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp,
686 int flags)
687 {
688 struct kmemusage *kup;
689 unsigned long cursize;
690 void *newaddr;
691 #ifdef DIAGNOSTIC
692 long alloc;
693 #endif
694
695 /*
696 * realloc() with a NULL pointer is the same as malloc().
697 */
698 if (curaddr == NULL)
699 return (malloc(newsize, ksp, flags));
700
701 /*
702 * realloc() with zero size is the same as free().
703 */
704 if (newsize == 0) {
705 free(curaddr, ksp);
706 return (NULL);
707 }
708
709 #ifdef LOCKDEBUG
710 if ((flags & M_NOWAIT) == 0) {
711 ASSERT_SLEEPABLE();
712 }
713 #endif
714
715 /*
716 * Find out how large the old allocation was (and do some
717 * sanity checking).
718 */
719 kup = btokup(curaddr);
720 cursize = 1 << kup->ku_indx;
721
722 #ifdef DIAGNOSTIC
723 /*
724 * Check for returns of data that do not point to the
725 * beginning of the allocation.
726 */
727 if (cursize > PAGE_SIZE)
728 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
729 else
730 alloc = addrmask[kup->ku_indx];
731 if (((u_long)curaddr & alloc) != 0)
732 panic("realloc: "
733 "unaligned addr %p, size %ld, type %s, mask %ld\n",
734 curaddr, cursize, ksp->ks_shortdesc, alloc);
735 #endif /* DIAGNOSTIC */
736
737 if (cursize > MAXALLOCSAVE)
738 cursize = ctob(kup->ku_pagecnt);
739
740 /*
741 * If we already actually have as much as they want, we're done.
742 */
743 if (newsize <= cursize)
744 return (curaddr);
745
746 /*
747 * Can't satisfy the allocation with the existing block.
748 * Allocate a new one and copy the data.
749 */
750 newaddr = malloc(newsize, ksp, flags);
751 if (__predict_false(newaddr == NULL)) {
752 /*
753 * malloc() failed, because flags included M_NOWAIT.
754 * Return NULL to indicate that failure. The old
755 * pointer is still valid.
756 */
757 return (NULL);
758 }
759 memcpy(newaddr, curaddr, cursize);
760
761 /*
762 * We were successful: free the old allocation and return
763 * the new one.
764 */
765 free(curaddr, ksp);
766 return (newaddr);
767 }
768
769 /*
770 * Roundup size to the actual allocation size.
771 */
772 unsigned long
773 malloc_roundup(unsigned long size)
774 {
775
776 if (size > MAXALLOCSAVE)
777 return (roundup(size, PAGE_SIZE));
778 else
779 return (1 << BUCKETINDX(size));
780 }
781
782 /*
783 * Add a malloc type to the system.
784 */
785 void
786 malloc_type_attach(struct malloc_type *type)
787 {
788
789 if (nkmempages == 0)
790 panic("malloc_type_attach: nkmempages == 0");
791
792 if (type->ks_magic != M_MAGIC)
793 panic("malloc_type_attach: bad magic");
794
795 #ifdef DIAGNOSTIC
796 {
797 struct malloc_type *ksp;
798 for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
799 if (ksp == type)
800 panic("malloc_type_attach: already on list");
801 }
802 }
803 #endif
804
805 #ifdef KMEMSTATS
806 if (type->ks_limit == 0)
807 type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U;
808 #else
809 type->ks_limit = 0;
810 #endif
811
812 type->ks_next = kmemstatistics;
813 kmemstatistics = type;
814 }
815
816 /*
817 * Remove a malloc type from the system..
818 */
819 void
820 malloc_type_detach(struct malloc_type *type)
821 {
822 struct malloc_type *ksp;
823
824 #ifdef DIAGNOSTIC
825 if (type->ks_magic != M_MAGIC)
826 panic("malloc_type_detach: bad magic");
827 #endif
828
829 if (type == kmemstatistics)
830 kmemstatistics = type->ks_next;
831 else {
832 for (ksp = kmemstatistics; ksp->ks_next != NULL;
833 ksp = ksp->ks_next) {
834 if (ksp->ks_next == type) {
835 ksp->ks_next = type->ks_next;
836 break;
837 }
838 }
839 #ifdef DIAGNOSTIC
840 if (ksp->ks_next == NULL)
841 panic("malloc_type_detach: not on list");
842 #endif
843 }
844 type->ks_next = NULL;
845 }
846
847 /*
848 * Set the limit on a malloc type.
849 */
850 void
851 malloc_type_setlimit(struct malloc_type *type, u_long limit)
852 {
853 #ifdef KMEMSTATS
854 mutex_spin_enter(&malloc_lock);
855 type->ks_limit = limit;
856 mutex_spin_exit(&malloc_lock);
857 #endif
858 }
859
860 /*
861 * Compute the number of pages that kmem_map will map, that is,
862 * the size of the kernel malloc arena.
863 */
864 void
865 kmeminit_nkmempages(void)
866 {
867 int npages;
868
869 if (nkmempages != 0) {
870 /*
871 * It's already been set (by us being here before, or
872 * by patching or kernel config options), bail out now.
873 */
874 return;
875 }
876
877 npages = physmem;
878
879 if (npages > NKMEMPAGES_MAX)
880 npages = NKMEMPAGES_MAX;
881
882 if (npages < NKMEMPAGES_MIN)
883 npages = NKMEMPAGES_MIN;
884
885 nkmempages = npages;
886 }
887
888 /*
889 * Initialize the kernel memory allocator
890 */
891 void
892 kmeminit(void)
893 {
894 __link_set_decl(malloc_types, struct malloc_type);
895 struct malloc_type * const *ksp;
896 vaddr_t kmb, kml;
897 #ifdef KMEMSTATS
898 long indx;
899 #endif
900
901 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
902 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
903 #endif
904 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
905 ERROR!_kmeminit:_MAXALLOCSAVE_too_big
906 #endif
907 #if (MAXALLOCSAVE < NBPG)
908 ERROR!_kmeminit:_MAXALLOCSAVE_too_small
909 #endif
910
911 if (sizeof(struct freelist) > (1 << MINBUCKET))
912 panic("minbucket too small/struct freelist too big");
913
914 mutex_init(&malloc_lock, MUTEX_DEFAULT, IPL_VM);
915
916 /*
917 * Compute the number of kmem_map pages, if we have not
918 * done so already.
919 */
920 kmeminit_nkmempages();
921
922 kmemusage = (struct kmemusage *) uvm_km_alloc(kernel_map,
923 (vsize_t)(nkmempages * sizeof(struct kmemusage)), 0,
924 UVM_KMF_WIRED|UVM_KMF_ZERO);
925 kmb = 0;
926 kmem_map = uvm_km_suballoc(kernel_map, &kmb,
927 &kml, ((vsize_t)nkmempages << PAGE_SHIFT),
928 VM_MAP_INTRSAFE, false, &kmem_map_store);
929 uvm_km_vacache_init(kmem_map, "kvakmem", 0);
930 kmembase = (char *)kmb;
931 kmemlimit = (char *)kml;
932 #ifdef KMEMSTATS
933 for (indx = 0; indx < MINBUCKET + 16; indx++) {
934 if (1 << indx >= PAGE_SIZE)
935 kmembuckets[indx].kb_elmpercl = 1;
936 else
937 kmembuckets[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
938 kmembuckets[indx].kb_highwat =
939 5 * kmembuckets[indx].kb_elmpercl;
940 }
941 #endif
942
943 /* Attach all of the statically-linked malloc types. */
944 __link_set_foreach(ksp, malloc_types)
945 malloc_type_attach(*ksp);
946
947 #ifdef MALLOC_DEBUG
948 debug_malloc_init();
949 #endif
950 }
951
952 #ifdef DDB
953 #include <ddb/db_output.h>
954
955 /*
956 * Dump kmem statistics from ddb.
957 *
958 * usage: call dump_kmemstats
959 */
960 void dump_kmemstats(void);
961
962 void
963 dump_kmemstats(void)
964 {
965 #ifdef KMEMSTATS
966 struct malloc_type *ksp;
967
968 for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
969 if (ksp->ks_memuse == 0)
970 continue;
971 db_printf("%s%.*s %ld\n", ksp->ks_shortdesc,
972 (int)(20 - strlen(ksp->ks_shortdesc)),
973 " ",
974 ksp->ks_memuse);
975 }
976 #else
977 db_printf("Kmem stats are not being collected.\n");
978 #endif /* KMEMSTATS */
979 }
980 #endif /* DDB */
981
982
983 #if 0
984 /*
985 * Diagnostic messages about "Data modified on
986 * freelist" indicate a memory corruption, but
987 * they do not help tracking it down.
988 * This function can be called at various places
989 * to sanity check malloc's freelist and discover
990 * where does the corruption take place.
991 */
992 int
993 freelist_sanitycheck(void) {
994 int i,j;
995 struct kmembuckets *kbp;
996 struct freelist *freep;
997 int rv = 0;
998
999 for (i = MINBUCKET; i <= MINBUCKET + 15; i++) {
1000 kbp = &kmembuckets[i];
1001 freep = (struct freelist *)kbp->kb_next;
1002 j = 0;
1003 while(freep) {
1004 vm_map_lock(kmem_map);
1005 rv = uvm_map_checkprot(kmem_map, (vaddr_t)freep,
1006 (vaddr_t)freep + sizeof(struct freelist),
1007 VM_PROT_WRITE);
1008 vm_map_unlock(kmem_map);
1009
1010 if ((rv == 0) || (*(int *)freep != WEIRD_ADDR)) {
1011 printf("bucket %i, chunck %d at %p modified\n",
1012 i, j, freep);
1013 return 1;
1014 }
1015 freep = (struct freelist *)freep->next;
1016 j++;
1017 }
1018 }
1019
1020 return 0;
1021 }
1022 #endif
1023