Home | History | Annotate | Line # | Download | only in kern
kern_malloc.c revision 1.121.2.1
      1 /*	$NetBSD: kern_malloc.c,v 1.121.2.1 2009/01/19 13:19:38 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1987, 1991, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)kern_malloc.c	8.4 (Berkeley) 5/20/95
     32  */
     33 
     34 /*
     35  * Copyright (c) 1996 Christopher G. Demetriou.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Berkeley and its contributors.
     49  * 4. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)kern_malloc.c	8.4 (Berkeley) 5/20/95
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.121.2.1 2009/01/19 13:19:38 skrll Exp $");
     70 
     71 #include <sys/param.h>
     72 #include <sys/proc.h>
     73 #include <sys/kernel.h>
     74 #include <sys/malloc.h>
     75 #include <sys/systm.h>
     76 #include <sys/debug.h>
     77 #include <sys/mutex.h>
     78 #include <sys/lockdebug.h>
     79 
     80 #include <uvm/uvm_extern.h>
     81 
     82 static struct vm_map_kernel kmem_map_store;
     83 struct vm_map *kmem_map = NULL;
     84 
     85 #include "opt_kmempages.h"
     86 
     87 #ifdef NKMEMCLUSTERS
     88 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
     89 #endif
     90 
     91 /*
     92  * Default number of pages in kmem_map.  We attempt to calculate this
     93  * at run-time, but allow it to be either patched or set in the kernel
     94  * config file.
     95  */
     96 #ifndef NKMEMPAGES
     97 #define	NKMEMPAGES	0
     98 #endif
     99 int	nkmempages = NKMEMPAGES;
    100 
    101 /*
    102  * Defaults for lower- and upper-bounds for the kmem_map page count.
    103  * Can be overridden by kernel config options.
    104  */
    105 #ifndef	NKMEMPAGES_MIN
    106 #define	NKMEMPAGES_MIN	NKMEMPAGES_MIN_DEFAULT
    107 #endif
    108 
    109 #ifndef NKMEMPAGES_MAX
    110 #define	NKMEMPAGES_MAX	NKMEMPAGES_MAX_DEFAULT
    111 #endif
    112 
    113 #include "opt_kmemstats.h"
    114 #include "opt_malloclog.h"
    115 #include "opt_malloc_debug.h"
    116 
    117 #define	MINALLOCSIZE	(1 << MINBUCKET)
    118 #define	BUCKETINDX(size) \
    119 	((size) <= (MINALLOCSIZE * 128) \
    120 		? (size) <= (MINALLOCSIZE * 8) \
    121 			? (size) <= (MINALLOCSIZE * 2) \
    122 				? (size) <= (MINALLOCSIZE * 1) \
    123 					? (MINBUCKET + 0) \
    124 					: (MINBUCKET + 1) \
    125 				: (size) <= (MINALLOCSIZE * 4) \
    126 					? (MINBUCKET + 2) \
    127 					: (MINBUCKET + 3) \
    128 			: (size) <= (MINALLOCSIZE* 32) \
    129 				? (size) <= (MINALLOCSIZE * 16) \
    130 					? (MINBUCKET + 4) \
    131 					: (MINBUCKET + 5) \
    132 				: (size) <= (MINALLOCSIZE * 64) \
    133 					? (MINBUCKET + 6) \
    134 					: (MINBUCKET + 7) \
    135 		: (size) <= (MINALLOCSIZE * 2048) \
    136 			? (size) <= (MINALLOCSIZE * 512) \
    137 				? (size) <= (MINALLOCSIZE * 256) \
    138 					? (MINBUCKET + 8) \
    139 					: (MINBUCKET + 9) \
    140 				: (size) <= (MINALLOCSIZE * 1024) \
    141 					? (MINBUCKET + 10) \
    142 					: (MINBUCKET + 11) \
    143 			: (size) <= (MINALLOCSIZE * 8192) \
    144 				? (size) <= (MINALLOCSIZE * 4096) \
    145 					? (MINBUCKET + 12) \
    146 					: (MINBUCKET + 13) \
    147 				: (size) <= (MINALLOCSIZE * 16384) \
    148 					? (MINBUCKET + 14) \
    149 					: (MINBUCKET + 15))
    150 
    151 /*
    152  * Array of descriptors that describe the contents of each page
    153  */
    154 struct kmemusage {
    155 	short ku_indx;		/* bucket index */
    156 	union {
    157 		u_short freecnt;/* for small allocations, free pieces in page */
    158 		u_short pagecnt;/* for large allocations, pages alloced */
    159 	} ku_un;
    160 };
    161 #define	ku_freecnt ku_un.freecnt
    162 #define	ku_pagecnt ku_un.pagecnt
    163 
    164 struct kmembuckets kmembuckets[MINBUCKET + 16];
    165 struct kmemusage *kmemusage;
    166 char *kmembase, *kmemlimit;
    167 
    168 #ifdef DEBUG
    169 static void *malloc_freecheck;
    170 #endif
    171 
    172 /*
    173  * Turn virtual addresses into kmem map indicies
    174  */
    175 #define	btokup(addr)	(&kmemusage[((char *)(addr) - kmembase) >> PGSHIFT])
    176 
    177 struct malloc_type *kmemstatistics;
    178 
    179 #ifdef MALLOCLOG
    180 #ifndef MALLOCLOGSIZE
    181 #define	MALLOCLOGSIZE	100000
    182 #endif
    183 
    184 struct malloclog {
    185 	void *addr;
    186 	long size;
    187 	struct malloc_type *type;
    188 	int action;
    189 	const char *file;
    190 	long line;
    191 } malloclog[MALLOCLOGSIZE];
    192 
    193 long	malloclogptr;
    194 
    195 /*
    196  * Fuzz factor for neighbour address match this must be a mask of the lower
    197  * bits we wish to ignore when comparing addresses
    198  */
    199 __uintptr_t malloclog_fuzz = 0x7FL;
    200 
    201 
    202 static void
    203 domlog(void *a, long size, struct malloc_type *type, int action,
    204     const char *file, long line)
    205 {
    206 
    207 	malloclog[malloclogptr].addr = a;
    208 	malloclog[malloclogptr].size = size;
    209 	malloclog[malloclogptr].type = type;
    210 	malloclog[malloclogptr].action = action;
    211 	malloclog[malloclogptr].file = file;
    212 	malloclog[malloclogptr].line = line;
    213 	malloclogptr++;
    214 	if (malloclogptr >= MALLOCLOGSIZE)
    215 		malloclogptr = 0;
    216 }
    217 
    218 static void
    219 hitmlog(void *a)
    220 {
    221 	struct malloclog *lp;
    222 	long l;
    223 
    224 #define	PRT do { \
    225 	lp = &malloclog[l]; \
    226 	if (lp->addr == a && lp->action) { \
    227 		printf("malloc log entry %ld:\n", l); \
    228 		printf("\taddr = %p\n", lp->addr); \
    229 		printf("\tsize = %ld\n", lp->size); \
    230 		printf("\ttype = %s\n", lp->type->ks_shortdesc); \
    231 		printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
    232 		printf("\tfile = %s\n", lp->file); \
    233 		printf("\tline = %ld\n", lp->line); \
    234 	} \
    235 } while (/* CONSTCOND */0)
    236 
    237 /*
    238  * Print fuzzy matched "neighbour" - look for the memory block that has
    239  * been allocated below the address we are interested in.  We look for a
    240  * base address + size that is within malloclog_fuzz of our target
    241  * address. If the base address and target address are the same then it is
    242  * likely we have found a free (size is 0 in this case) so we won't report
    243  * those, they will get reported by PRT anyway.
    244  */
    245 #define	NPRT do { \
    246 	__uintptr_t fuzz_mask = ~(malloclog_fuzz); \
    247 	lp = &malloclog[l]; \
    248 	if ((__uintptr_t)lp->addr != (__uintptr_t)a && \
    249 	    (((__uintptr_t)lp->addr + lp->size + malloclog_fuzz) & fuzz_mask) \
    250 	    == ((__uintptr_t)a & fuzz_mask) && lp->action) {		\
    251 		printf("neighbour malloc log entry %ld:\n", l); \
    252 		printf("\taddr = %p\n", lp->addr); \
    253 		printf("\tsize = %ld\n", lp->size); \
    254 		printf("\ttype = %s\n", lp->type->ks_shortdesc); \
    255 		printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
    256 		printf("\tfile = %s\n", lp->file); \
    257 		printf("\tline = %ld\n", lp->line); \
    258 	} \
    259 } while (/* CONSTCOND */0)
    260 
    261 	for (l = malloclogptr; l < MALLOCLOGSIZE; l++) {
    262 		PRT;
    263 		NPRT;
    264 	}
    265 
    266 
    267 	for (l = 0; l < malloclogptr; l++) {
    268 		PRT;
    269 		NPRT;
    270 	}
    271 
    272 #undef PRT
    273 }
    274 #endif /* MALLOCLOG */
    275 
    276 #ifdef DIAGNOSTIC
    277 /*
    278  * This structure provides a set of masks to catch unaligned frees.
    279  */
    280 const long addrmask[] = { 0,
    281 	0x00000001, 0x00000003, 0x00000007, 0x0000000f,
    282 	0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
    283 	0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
    284 	0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
    285 };
    286 
    287 /*
    288  * The WEIRD_ADDR is used as known text to copy into free objects so
    289  * that modifications after frees can be detected.
    290  */
    291 #define	WEIRD_ADDR	((uint32_t) 0xdeadbeef)
    292 #ifdef DEBUG
    293 #define	MAX_COPY	PAGE_SIZE
    294 #else
    295 #define	MAX_COPY	32
    296 #endif
    297 
    298 /*
    299  * Normally the freelist structure is used only to hold the list pointer
    300  * for free objects.  However, when running with diagnostics, the first
    301  * 8/16 bytes of the structure is unused except for diagnostic information,
    302  * and the free list pointer is at offset 8/16 in the structure.  Since the
    303  * first 8 bytes is the portion of the structure most often modified, this
    304  * helps to detect memory reuse problems and avoid free list corruption.
    305  */
    306 struct freelist {
    307 	uint32_t spare0;
    308 #ifdef _LP64
    309 	uint32_t spare1;		/* explicit padding */
    310 #endif
    311 	struct malloc_type *type;
    312 	void *	next;
    313 };
    314 #else /* !DIAGNOSTIC */
    315 struct freelist {
    316 	void *	next;
    317 };
    318 #endif /* DIAGNOSTIC */
    319 
    320 kmutex_t malloc_lock;
    321 
    322 /*
    323  * Allocate a block of memory
    324  */
    325 #ifdef MALLOCLOG
    326 void *
    327 _kern_malloc(unsigned long size, struct malloc_type *ksp, int flags,
    328     const char *file, long line)
    329 #else
    330 void *
    331 kern_malloc(unsigned long size, struct malloc_type *ksp, int flags)
    332 #endif /* MALLOCLOG */
    333 {
    334 	struct kmembuckets *kbp;
    335 	struct kmemusage *kup;
    336 	struct freelist *freep;
    337 	long indx, npg, allocsize;
    338 	char *va, *cp, *savedlist;
    339 #ifdef DIAGNOSTIC
    340 	uint32_t *end, *lp;
    341 	int copysize;
    342 #endif
    343 
    344 #ifdef LOCKDEBUG
    345 	if ((flags & M_NOWAIT) == 0) {
    346 		ASSERT_SLEEPABLE();
    347 	}
    348 #endif
    349 #ifdef MALLOC_DEBUG
    350 	if (debug_malloc(size, ksp, flags, (void *) &va)) {
    351 		if (va != 0) {
    352 			FREECHECK_OUT(&malloc_freecheck, (void *)va);
    353 		}
    354 		return ((void *) va);
    355 	}
    356 #endif
    357 	indx = BUCKETINDX(size);
    358 	kbp = &kmembuckets[indx];
    359 	mutex_spin_enter(&malloc_lock);
    360 #ifdef KMEMSTATS
    361 	while (ksp->ks_memuse >= ksp->ks_limit) {
    362 		if (flags & M_NOWAIT) {
    363 			mutex_spin_exit(&malloc_lock);
    364 			return ((void *) NULL);
    365 		}
    366 		if (ksp->ks_limblocks < 65535)
    367 			ksp->ks_limblocks++;
    368 		mtsleep((void *)ksp, PSWP+2, ksp->ks_shortdesc, 0,
    369 			&malloc_lock);
    370 	}
    371 	ksp->ks_size |= 1 << indx;
    372 #endif
    373 #ifdef DIAGNOSTIC
    374 	copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
    375 #endif
    376 	if (kbp->kb_next == NULL) {
    377 		int s;
    378 		kbp->kb_last = NULL;
    379 		if (size > MAXALLOCSAVE)
    380 			allocsize = round_page(size);
    381 		else
    382 			allocsize = 1 << indx;
    383 		npg = btoc(allocsize);
    384 		mutex_spin_exit(&malloc_lock);
    385 		s = splvm();
    386 		va = (void *) uvm_km_alloc(kmem_map,
    387 		    (vsize_t)ctob(npg), 0,
    388 		    ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
    389 		    ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0) |
    390 		    UVM_KMF_WIRED);
    391 		splx(s);
    392 		if (__predict_false(va == NULL)) {
    393 			/*
    394 			 * Kmem_malloc() can return NULL, even if it can
    395 			 * wait, if there is no map space available, because
    396 			 * it can't fix that problem.  Neither can we,
    397 			 * right now.  (We should release pages which
    398 			 * are completely free and which are in kmembuckets
    399 			 * with too many free elements.)
    400 			 */
    401 			if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
    402 				panic("malloc: out of space in kmem_map");
    403 			return (NULL);
    404 		}
    405 		mutex_spin_enter(&malloc_lock);
    406 #ifdef KMEMSTATS
    407 		kbp->kb_total += kbp->kb_elmpercl;
    408 #endif
    409 		kup = btokup(va);
    410 		kup->ku_indx = indx;
    411 		if (allocsize > MAXALLOCSAVE) {
    412 			if (npg > 65535)
    413 				panic("malloc: allocation too large");
    414 			kup->ku_pagecnt = npg;
    415 #ifdef KMEMSTATS
    416 			ksp->ks_memuse += allocsize;
    417 #endif
    418 			goto out;
    419 		}
    420 #ifdef KMEMSTATS
    421 		kup->ku_freecnt = kbp->kb_elmpercl;
    422 		kbp->kb_totalfree += kbp->kb_elmpercl;
    423 #endif
    424 		/*
    425 		 * Just in case we blocked while allocating memory,
    426 		 * and someone else also allocated memory for this
    427 		 * kmembucket, don't assume the list is still empty.
    428 		 */
    429 		savedlist = kbp->kb_next;
    430 		kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
    431 		for (;;) {
    432 			freep = (struct freelist *)cp;
    433 #ifdef DIAGNOSTIC
    434 			/*
    435 			 * Copy in known text to detect modification
    436 			 * after freeing.
    437 			 */
    438 			end = (uint32_t *)&cp[copysize];
    439 			for (lp = (uint32_t *)cp; lp < end; lp++)
    440 				*lp = WEIRD_ADDR;
    441 			freep->type = M_FREE;
    442 #endif /* DIAGNOSTIC */
    443 			if (cp <= va)
    444 				break;
    445 			cp -= allocsize;
    446 			freep->next = cp;
    447 		}
    448 		freep->next = savedlist;
    449 		if (savedlist == NULL)
    450 			kbp->kb_last = (void *)freep;
    451 	}
    452 	va = kbp->kb_next;
    453 	kbp->kb_next = ((struct freelist *)va)->next;
    454 #ifdef DIAGNOSTIC
    455 	freep = (struct freelist *)va;
    456 	/* XXX potential to get garbage pointer here. */
    457 	if (kbp->kb_next) {
    458 		int rv;
    459 		vaddr_t addr = (vaddr_t)kbp->kb_next;
    460 
    461 		vm_map_lock(kmem_map);
    462 		rv = uvm_map_checkprot(kmem_map, addr,
    463 		    addr + sizeof(struct freelist), VM_PROT_WRITE);
    464 		vm_map_unlock(kmem_map);
    465 
    466 		if (__predict_false(rv == 0)) {
    467 			printf("Data modified on freelist: "
    468 			    "word %ld of object %p size %ld previous type %s "
    469 			    "(invalid addr %p)\n",
    470 			    (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
    471 			    va, size, "foo", kbp->kb_next);
    472 #ifdef MALLOCLOG
    473 			hitmlog(va);
    474 #endif
    475 			kbp->kb_next = NULL;
    476 		}
    477 	}
    478 
    479 	/* Fill the fields that we've used with WEIRD_ADDR */
    480 #ifdef _LP64
    481 	freep->type = (struct malloc_type *)
    482 	    (WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32));
    483 #else
    484 	freep->type = (struct malloc_type *) WEIRD_ADDR;
    485 #endif
    486 	end = (uint32_t *)&freep->next +
    487 	    (sizeof(freep->next) / sizeof(int32_t));
    488 	for (lp = (uint32_t *)&freep->next; lp < end; lp++)
    489 		*lp = WEIRD_ADDR;
    490 
    491 	/* and check that the data hasn't been modified. */
    492 	end = (uint32_t *)&va[copysize];
    493 	for (lp = (uint32_t *)va; lp < end; lp++) {
    494 		if (__predict_true(*lp == WEIRD_ADDR))
    495 			continue;
    496 		printf("Data modified on freelist: "
    497 		    "word %ld of object %p size %ld previous type %s "
    498 		    "(0x%x != 0x%x)\n",
    499 		    (long)(lp - (uint32_t *)va), va, size,
    500 		    "bar", *lp, WEIRD_ADDR);
    501 #ifdef MALLOCLOG
    502 		hitmlog(va);
    503 #endif
    504 		break;
    505 	}
    506 
    507 	freep->spare0 = 0;
    508 #endif /* DIAGNOSTIC */
    509 #ifdef KMEMSTATS
    510 	kup = btokup(va);
    511 	if (kup->ku_indx != indx)
    512 		panic("malloc: wrong bucket");
    513 	if (kup->ku_freecnt == 0)
    514 		panic("malloc: lost data");
    515 	kup->ku_freecnt--;
    516 	kbp->kb_totalfree--;
    517 	ksp->ks_memuse += 1 << indx;
    518 out:
    519 	kbp->kb_calls++;
    520 	ksp->ks_inuse++;
    521 	ksp->ks_calls++;
    522 	if (ksp->ks_memuse > ksp->ks_maxused)
    523 		ksp->ks_maxused = ksp->ks_memuse;
    524 #else
    525 out:
    526 #endif
    527 #ifdef MALLOCLOG
    528 	domlog(va, size, ksp, 1, file, line);
    529 #endif
    530 	mutex_spin_exit(&malloc_lock);
    531 	if ((flags & M_ZERO) != 0)
    532 		memset(va, 0, size);
    533 	FREECHECK_OUT(&malloc_freecheck, (void *)va);
    534 	return ((void *) va);
    535 }
    536 
    537 /*
    538  * Free a block of memory allocated by malloc.
    539  */
    540 #ifdef MALLOCLOG
    541 void
    542 _kern_free(void *addr, struct malloc_type *ksp, const char *file, long line)
    543 #else
    544 void
    545 kern_free(void *addr, struct malloc_type *ksp)
    546 #endif /* MALLOCLOG */
    547 {
    548 	struct kmembuckets *kbp;
    549 	struct kmemusage *kup;
    550 	struct freelist *freep;
    551 	long size;
    552 #ifdef DIAGNOSTIC
    553 	void *cp;
    554 	int32_t *end, *lp;
    555 	long alloc, copysize;
    556 #endif
    557 
    558 	FREECHECK_IN(&malloc_freecheck, addr);
    559 #ifdef MALLOC_DEBUG
    560 	if (debug_free(addr, ksp))
    561 		return;
    562 #endif
    563 
    564 #ifdef DIAGNOSTIC
    565 	/*
    566 	 * Ensure that we're free'ing something that we could
    567 	 * have allocated in the first place.  That is, check
    568 	 * to see that the address is within kmem_map.
    569 	 */
    570 	if (__predict_false((vaddr_t)addr < vm_map_min(kmem_map) ||
    571 	    (vaddr_t)addr >= vm_map_max(kmem_map)))
    572 		panic("free: addr %p not within kmem_map", addr);
    573 #endif
    574 
    575 	kup = btokup(addr);
    576 	size = 1 << kup->ku_indx;
    577 	kbp = &kmembuckets[kup->ku_indx];
    578 
    579 	LOCKDEBUG_MEM_CHECK(addr,
    580 	    size <= MAXALLOCSAVE ? size : ctob(kup->ku_pagecnt));
    581 
    582 	mutex_spin_enter(&malloc_lock);
    583 #ifdef MALLOCLOG
    584 	domlog(addr, 0, ksp, 2, file, line);
    585 #endif
    586 #ifdef DIAGNOSTIC
    587 	/*
    588 	 * Check for returns of data that do not point to the
    589 	 * beginning of the allocation.
    590 	 */
    591 	if (size > PAGE_SIZE)
    592 		alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
    593 	else
    594 		alloc = addrmask[kup->ku_indx];
    595 	if (((u_long)addr & alloc) != 0)
    596 		panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
    597 		    addr, size, ksp->ks_shortdesc, alloc);
    598 #endif /* DIAGNOSTIC */
    599 	if (size > MAXALLOCSAVE) {
    600 		uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt),
    601 		    UVM_KMF_WIRED);
    602 #ifdef KMEMSTATS
    603 		size = kup->ku_pagecnt << PGSHIFT;
    604 		ksp->ks_memuse -= size;
    605 		kup->ku_indx = 0;
    606 		kup->ku_pagecnt = 0;
    607 		if (ksp->ks_memuse + size >= ksp->ks_limit &&
    608 		    ksp->ks_memuse < ksp->ks_limit)
    609 			wakeup((void *)ksp);
    610 #ifdef DIAGNOSTIC
    611 		if (ksp->ks_inuse == 0)
    612 			panic("free 1: inuse 0, probable double free");
    613 #endif
    614 		ksp->ks_inuse--;
    615 		kbp->kb_total -= 1;
    616 #endif
    617 		mutex_spin_exit(&malloc_lock);
    618 		return;
    619 	}
    620 	freep = (struct freelist *)addr;
    621 #ifdef DIAGNOSTIC
    622 	/*
    623 	 * Check for multiple frees. Use a quick check to see if
    624 	 * it looks free before laboriously searching the freelist.
    625 	 */
    626 	if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
    627 		for (cp = kbp->kb_next; cp;
    628 		    cp = ((struct freelist *)cp)->next) {
    629 			if (addr != cp)
    630 				continue;
    631 			printf("multiply freed item %p\n", addr);
    632 #ifdef MALLOCLOG
    633 			hitmlog(addr);
    634 #endif
    635 			panic("free: duplicated free");
    636 		}
    637 	}
    638 
    639 	/*
    640 	 * Copy in known text to detect modification after freeing
    641 	 * and to make it look free. Also, save the type being freed
    642 	 * so we can list likely culprit if modification is detected
    643 	 * when the object is reallocated.
    644 	 */
    645 	copysize = size < MAX_COPY ? size : MAX_COPY;
    646 	end = (int32_t *)&((char *)addr)[copysize];
    647 	for (lp = (int32_t *)addr; lp < end; lp++)
    648 		*lp = WEIRD_ADDR;
    649 	freep->type = ksp;
    650 #endif /* DIAGNOSTIC */
    651 #ifdef KMEMSTATS
    652 	kup->ku_freecnt++;
    653 	if (kup->ku_freecnt >= kbp->kb_elmpercl) {
    654 		if (kup->ku_freecnt > kbp->kb_elmpercl)
    655 			panic("free: multiple frees");
    656 		else if (kbp->kb_totalfree > kbp->kb_highwat)
    657 			kbp->kb_couldfree++;
    658 	}
    659 	kbp->kb_totalfree++;
    660 	ksp->ks_memuse -= size;
    661 	if (ksp->ks_memuse + size >= ksp->ks_limit &&
    662 	    ksp->ks_memuse < ksp->ks_limit)
    663 		wakeup((void *)ksp);
    664 #ifdef DIAGNOSTIC
    665 	if (ksp->ks_inuse == 0)
    666 		panic("free 2: inuse 0, probable double free");
    667 #endif
    668 	ksp->ks_inuse--;
    669 #endif
    670 	if (kbp->kb_next == NULL)
    671 		kbp->kb_next = addr;
    672 	else
    673 		((struct freelist *)kbp->kb_last)->next = addr;
    674 	freep->next = NULL;
    675 	kbp->kb_last = addr;
    676 	mutex_spin_exit(&malloc_lock);
    677 }
    678 
    679 /*
    680  * Change the size of a block of memory.
    681  */
    682 void *
    683 kern_realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp,
    684     int flags)
    685 {
    686 	struct kmemusage *kup;
    687 	unsigned long cursize;
    688 	void *newaddr;
    689 #ifdef DIAGNOSTIC
    690 	long alloc;
    691 #endif
    692 
    693 	/*
    694 	 * realloc() with a NULL pointer is the same as malloc().
    695 	 */
    696 	if (curaddr == NULL)
    697 		return (malloc(newsize, ksp, flags));
    698 
    699 	/*
    700 	 * realloc() with zero size is the same as free().
    701 	 */
    702 	if (newsize == 0) {
    703 		free(curaddr, ksp);
    704 		return (NULL);
    705 	}
    706 
    707 #ifdef LOCKDEBUG
    708 	if ((flags & M_NOWAIT) == 0) {
    709 		ASSERT_SLEEPABLE();
    710 	}
    711 #endif
    712 
    713 	/*
    714 	 * Find out how large the old allocation was (and do some
    715 	 * sanity checking).
    716 	 */
    717 	kup = btokup(curaddr);
    718 	cursize = 1 << kup->ku_indx;
    719 
    720 #ifdef DIAGNOSTIC
    721 	/*
    722 	 * Check for returns of data that do not point to the
    723 	 * beginning of the allocation.
    724 	 */
    725 	if (cursize > PAGE_SIZE)
    726 		alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
    727 	else
    728 		alloc = addrmask[kup->ku_indx];
    729 	if (((u_long)curaddr & alloc) != 0)
    730 		panic("realloc: "
    731 		    "unaligned addr %p, size %ld, type %s, mask %ld\n",
    732 		    curaddr, cursize, ksp->ks_shortdesc, alloc);
    733 #endif /* DIAGNOSTIC */
    734 
    735 	if (cursize > MAXALLOCSAVE)
    736 		cursize = ctob(kup->ku_pagecnt);
    737 
    738 	/*
    739 	 * If we already actually have as much as they want, we're done.
    740 	 */
    741 	if (newsize <= cursize)
    742 		return (curaddr);
    743 
    744 	/*
    745 	 * Can't satisfy the allocation with the existing block.
    746 	 * Allocate a new one and copy the data.
    747 	 */
    748 	newaddr = malloc(newsize, ksp, flags);
    749 	if (__predict_false(newaddr == NULL)) {
    750 		/*
    751 		 * malloc() failed, because flags included M_NOWAIT.
    752 		 * Return NULL to indicate that failure.  The old
    753 		 * pointer is still valid.
    754 		 */
    755 		return (NULL);
    756 	}
    757 	memcpy(newaddr, curaddr, cursize);
    758 
    759 	/*
    760 	 * We were successful: free the old allocation and return
    761 	 * the new one.
    762 	 */
    763 	free(curaddr, ksp);
    764 	return (newaddr);
    765 }
    766 
    767 /*
    768  * Roundup size to the actual allocation size.
    769  */
    770 unsigned long
    771 malloc_roundup(unsigned long size)
    772 {
    773 
    774 	if (size > MAXALLOCSAVE)
    775 		return (roundup(size, PAGE_SIZE));
    776 	else
    777 		return (1 << BUCKETINDX(size));
    778 }
    779 
    780 /*
    781  * Add a malloc type to the system.
    782  */
    783 void
    784 malloc_type_attach(struct malloc_type *type)
    785 {
    786 
    787 	if (nkmempages == 0)
    788 		panic("malloc_type_attach: nkmempages == 0");
    789 
    790 	if (type->ks_magic != M_MAGIC)
    791 		panic("malloc_type_attach: bad magic");
    792 
    793 #ifdef DIAGNOSTIC
    794 	{
    795 		struct malloc_type *ksp;
    796 		for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
    797 			if (ksp == type)
    798 				panic("malloc_type_attach: already on list");
    799 		}
    800 	}
    801 #endif
    802 
    803 #ifdef KMEMSTATS
    804 	if (type->ks_limit == 0)
    805 		type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U;
    806 #else
    807 	type->ks_limit = 0;
    808 #endif
    809 
    810 	type->ks_next = kmemstatistics;
    811 	kmemstatistics = type;
    812 }
    813 
    814 /*
    815  * Remove a malloc type from the system..
    816  */
    817 void
    818 malloc_type_detach(struct malloc_type *type)
    819 {
    820 	struct malloc_type *ksp;
    821 
    822 #ifdef DIAGNOSTIC
    823 	if (type->ks_magic != M_MAGIC)
    824 		panic("malloc_type_detach: bad magic");
    825 #endif
    826 
    827 	if (type == kmemstatistics)
    828 		kmemstatistics = type->ks_next;
    829 	else {
    830 		for (ksp = kmemstatistics; ksp->ks_next != NULL;
    831 		     ksp = ksp->ks_next) {
    832 			if (ksp->ks_next == type) {
    833 				ksp->ks_next = type->ks_next;
    834 				break;
    835 			}
    836 		}
    837 #ifdef DIAGNOSTIC
    838 		if (ksp->ks_next == NULL)
    839 			panic("malloc_type_detach: not on list");
    840 #endif
    841 	}
    842 	type->ks_next = NULL;
    843 }
    844 
    845 /*
    846  * Set the limit on a malloc type.
    847  */
    848 void
    849 malloc_type_setlimit(struct malloc_type *type, u_long limit)
    850 {
    851 #ifdef KMEMSTATS
    852 	mutex_spin_enter(&malloc_lock);
    853 	type->ks_limit = limit;
    854 	mutex_spin_exit(&malloc_lock);
    855 #endif
    856 }
    857 
    858 /*
    859  * Compute the number of pages that kmem_map will map, that is,
    860  * the size of the kernel malloc arena.
    861  */
    862 void
    863 kmeminit_nkmempages(void)
    864 {
    865 	int npages;
    866 
    867 	if (nkmempages != 0) {
    868 		/*
    869 		 * It's already been set (by us being here before, or
    870 		 * by patching or kernel config options), bail out now.
    871 		 */
    872 		return;
    873 	}
    874 
    875 	npages = physmem;
    876 
    877 	if (npages > NKMEMPAGES_MAX)
    878 		npages = NKMEMPAGES_MAX;
    879 
    880 	if (npages < NKMEMPAGES_MIN)
    881 		npages = NKMEMPAGES_MIN;
    882 
    883 	nkmempages = npages;
    884 }
    885 
    886 /*
    887  * Initialize the kernel memory allocator
    888  */
    889 void
    890 kmeminit(void)
    891 {
    892 	__link_set_decl(malloc_types, struct malloc_type);
    893 	struct malloc_type * const *ksp;
    894 	vaddr_t kmb, kml;
    895 #ifdef KMEMSTATS
    896 	long indx;
    897 #endif
    898 
    899 #if	((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
    900 		ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
    901 #endif
    902 #if	(MAXALLOCSAVE > MINALLOCSIZE * 32768)
    903 		ERROR!_kmeminit:_MAXALLOCSAVE_too_big
    904 #endif
    905 #if	(MAXALLOCSAVE < NBPG)
    906 		ERROR!_kmeminit:_MAXALLOCSAVE_too_small
    907 #endif
    908 
    909 	if (sizeof(struct freelist) > (1 << MINBUCKET))
    910 		panic("minbucket too small/struct freelist too big");
    911 
    912 	mutex_init(&malloc_lock, MUTEX_DEFAULT, IPL_VM);
    913 
    914 	/*
    915 	 * Compute the number of kmem_map pages, if we have not
    916 	 * done so already.
    917 	 */
    918 	kmeminit_nkmempages();
    919 
    920 	kmemusage = (struct kmemusage *) uvm_km_alloc(kernel_map,
    921 	    (vsize_t)(nkmempages * sizeof(struct kmemusage)), 0,
    922 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
    923 	kmb = 0;
    924 	kmem_map = uvm_km_suballoc(kernel_map, &kmb,
    925 	    &kml, ((vsize_t)nkmempages << PAGE_SHIFT),
    926 	    VM_MAP_INTRSAFE, false, &kmem_map_store);
    927 	uvm_km_vacache_init(kmem_map, "kvakmem", 0);
    928 	kmembase = (char *)kmb;
    929 	kmemlimit = (char *)kml;
    930 #ifdef KMEMSTATS
    931 	for (indx = 0; indx < MINBUCKET + 16; indx++) {
    932 		if (1 << indx >= PAGE_SIZE)
    933 			kmembuckets[indx].kb_elmpercl = 1;
    934 		else
    935 			kmembuckets[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
    936 		kmembuckets[indx].kb_highwat =
    937 			5 * kmembuckets[indx].kb_elmpercl;
    938 	}
    939 #endif
    940 
    941 	/* Attach all of the statically-linked malloc types. */
    942 	__link_set_foreach(ksp, malloc_types)
    943 		malloc_type_attach(*ksp);
    944 }
    945 
    946 #ifdef DDB
    947 #include <ddb/db_output.h>
    948 
    949 /*
    950  * Dump kmem statistics from ddb.
    951  *
    952  * usage: call dump_kmemstats
    953  */
    954 void	dump_kmemstats(void);
    955 
    956 void
    957 dump_kmemstats(void)
    958 {
    959 #ifdef KMEMSTATS
    960 	struct malloc_type *ksp;
    961 
    962 	for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
    963 		if (ksp->ks_memuse == 0)
    964 			continue;
    965 		db_printf("%s%.*s %ld\n", ksp->ks_shortdesc,
    966 		    (int)(20 - strlen(ksp->ks_shortdesc)),
    967 		    "                    ",
    968 		    ksp->ks_memuse);
    969 	}
    970 #else
    971 	db_printf("Kmem stats are not being collected.\n");
    972 #endif /* KMEMSTATS */
    973 }
    974 #endif /* DDB */
    975 
    976 
    977 #if 0
    978 /*
    979  * Diagnostic messages about "Data modified on
    980  * freelist" indicate a memory corruption, but
    981  * they do not help tracking it down.
    982  * This function can be called at various places
    983  * to sanity check malloc's freelist and discover
    984  * where does the corruption take place.
    985  */
    986 int
    987 freelist_sanitycheck(void) {
    988 	int i,j;
    989 	struct kmembuckets *kbp;
    990 	struct freelist *freep;
    991 	int rv = 0;
    992 
    993 	for (i = MINBUCKET; i <= MINBUCKET + 15; i++) {
    994 		kbp = &kmembuckets[i];
    995 		freep = (struct freelist *)kbp->kb_next;
    996 		j = 0;
    997 		while(freep) {
    998 			vm_map_lock(kmem_map);
    999 			rv = uvm_map_checkprot(kmem_map, (vaddr_t)freep,
   1000 			    (vaddr_t)freep + sizeof(struct freelist),
   1001 			    VM_PROT_WRITE);
   1002 			vm_map_unlock(kmem_map);
   1003 
   1004 			if ((rv == 0) || (*(int *)freep != WEIRD_ADDR)) {
   1005 				printf("bucket %i, chunck %d at %p modified\n",
   1006 				    i, j, freep);
   1007 				return 1;
   1008 			}
   1009 			freep = (struct freelist *)freep->next;
   1010 			j++;
   1011 		}
   1012 	}
   1013 
   1014 	return 0;
   1015 }
   1016 #endif
   1017