kern_malloc.c revision 1.129 1 /* $NetBSD: kern_malloc.c,v 1.129 2010/04/05 07:16:13 he Exp $ */
2
3 /*
4 * Copyright (c) 1987, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
32 */
33
34 /*
35 * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.129 2010/04/05 07:16:13 he Exp $");
70
71 #include <sys/param.h>
72 #include <sys/proc.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/systm.h>
76 #include <sys/debug.h>
77 #include <sys/mutex.h>
78 #include <sys/lockdebug.h>
79
80 #include <uvm/uvm_extern.h>
81
82 static struct vm_map_kernel kmem_map_store;
83 struct vm_map *kmem_map = NULL;
84
85 #include "opt_kmempages.h"
86
87 #ifdef NKMEMCLUSTERS
88 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
89 #endif
90
91 /*
92 * Default number of pages in kmem_map. We attempt to calculate this
93 * at run-time, but allow it to be either patched or set in the kernel
94 * config file.
95 */
96 #ifndef NKMEMPAGES
97 #define NKMEMPAGES 0
98 #endif
99 int nkmempages = NKMEMPAGES;
100
101 /*
102 * Defaults for lower- and upper-bounds for the kmem_map page count.
103 * Can be overridden by kernel config options.
104 */
105 #ifndef NKMEMPAGES_MIN
106 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
107 #endif
108
109 #ifndef NKMEMPAGES_MAX
110 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
111 #endif
112
113 #include "opt_kmemstats.h"
114 #include "opt_malloclog.h"
115 #include "opt_malloc_debug.h"
116
117 #define MINALLOCSIZE (1 << MINBUCKET)
118 #define BUCKETINDX(size) \
119 ((size) <= (MINALLOCSIZE * 128) \
120 ? (size) <= (MINALLOCSIZE * 8) \
121 ? (size) <= (MINALLOCSIZE * 2) \
122 ? (size) <= (MINALLOCSIZE * 1) \
123 ? (MINBUCKET + 0) \
124 : (MINBUCKET + 1) \
125 : (size) <= (MINALLOCSIZE * 4) \
126 ? (MINBUCKET + 2) \
127 : (MINBUCKET + 3) \
128 : (size) <= (MINALLOCSIZE* 32) \
129 ? (size) <= (MINALLOCSIZE * 16) \
130 ? (MINBUCKET + 4) \
131 : (MINBUCKET + 5) \
132 : (size) <= (MINALLOCSIZE * 64) \
133 ? (MINBUCKET + 6) \
134 : (MINBUCKET + 7) \
135 : (size) <= (MINALLOCSIZE * 2048) \
136 ? (size) <= (MINALLOCSIZE * 512) \
137 ? (size) <= (MINALLOCSIZE * 256) \
138 ? (MINBUCKET + 8) \
139 : (MINBUCKET + 9) \
140 : (size) <= (MINALLOCSIZE * 1024) \
141 ? (MINBUCKET + 10) \
142 : (MINBUCKET + 11) \
143 : (size) <= (MINALLOCSIZE * 8192) \
144 ? (size) <= (MINALLOCSIZE * 4096) \
145 ? (MINBUCKET + 12) \
146 : (MINBUCKET + 13) \
147 : (size) <= (MINALLOCSIZE * 16384) \
148 ? (MINBUCKET + 14) \
149 : (MINBUCKET + 15))
150
151 /*
152 * Array of descriptors that describe the contents of each page
153 */
154 struct kmemusage {
155 short ku_indx; /* bucket index */
156 union {
157 u_short freecnt;/* for small allocations, free pieces in page */
158 u_short pagecnt;/* for large allocations, pages alloced */
159 } ku_un;
160 };
161 #define ku_freecnt ku_un.freecnt
162 #define ku_pagecnt ku_un.pagecnt
163
164 struct kmembuckets kmembuckets[MINBUCKET + 16];
165 struct kmemusage *kmemusage;
166 char *kmembase, *kmemlimit;
167
168 #ifdef DEBUG
169 static void *malloc_freecheck;
170 #endif
171
172 /*
173 * Turn virtual addresses into kmem map indicies
174 */
175 #define btokup(addr) (&kmemusage[((char *)(addr) - kmembase) >> PGSHIFT])
176
177 struct malloc_type *kmemstatistics;
178
179 #ifdef MALLOCLOG
180 #ifndef MALLOCLOGSIZE
181 #define MALLOCLOGSIZE 100000
182 #endif
183
184 struct malloclog {
185 void *addr;
186 long size;
187 struct malloc_type *type;
188 int action;
189 const char *file;
190 long line;
191 } malloclog[MALLOCLOGSIZE];
192
193 long malloclogptr;
194
195 /*
196 * Fuzz factor for neighbour address match this must be a mask of the lower
197 * bits we wish to ignore when comparing addresses
198 */
199 __uintptr_t malloclog_fuzz = 0x7FL;
200
201
202 static void
203 domlog(void *a, long size, struct malloc_type *type, int action,
204 const char *file, long line)
205 {
206
207 malloclog[malloclogptr].addr = a;
208 malloclog[malloclogptr].size = size;
209 malloclog[malloclogptr].type = type;
210 malloclog[malloclogptr].action = action;
211 malloclog[malloclogptr].file = file;
212 malloclog[malloclogptr].line = line;
213 malloclogptr++;
214 if (malloclogptr >= MALLOCLOGSIZE)
215 malloclogptr = 0;
216 }
217
218 #ifdef DIAGNOSTIC
219 static void
220 hitmlog(void *a)
221 {
222 struct malloclog *lp;
223 long l;
224
225 #define PRT do { \
226 lp = &malloclog[l]; \
227 if (lp->addr == a && lp->action) { \
228 printf("malloc log entry %ld:\n", l); \
229 printf("\taddr = %p\n", lp->addr); \
230 printf("\tsize = %ld\n", lp->size); \
231 printf("\ttype = %s\n", lp->type->ks_shortdesc); \
232 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
233 printf("\tfile = %s\n", lp->file); \
234 printf("\tline = %ld\n", lp->line); \
235 } \
236 } while (/* CONSTCOND */0)
237
238 /*
239 * Print fuzzy matched "neighbour" - look for the memory block that has
240 * been allocated below the address we are interested in. We look for a
241 * base address + size that is within malloclog_fuzz of our target
242 * address. If the base address and target address are the same then it is
243 * likely we have found a free (size is 0 in this case) so we won't report
244 * those, they will get reported by PRT anyway.
245 */
246 #define NPRT do { \
247 __uintptr_t fuzz_mask = ~(malloclog_fuzz); \
248 lp = &malloclog[l]; \
249 if ((__uintptr_t)lp->addr != (__uintptr_t)a && \
250 (((__uintptr_t)lp->addr + lp->size + malloclog_fuzz) & fuzz_mask) \
251 == ((__uintptr_t)a & fuzz_mask) && lp->action) { \
252 printf("neighbour malloc log entry %ld:\n", l); \
253 printf("\taddr = %p\n", lp->addr); \
254 printf("\tsize = %ld\n", lp->size); \
255 printf("\ttype = %s\n", lp->type->ks_shortdesc); \
256 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
257 printf("\tfile = %s\n", lp->file); \
258 printf("\tline = %ld\n", lp->line); \
259 } \
260 } while (/* CONSTCOND */0)
261
262 for (l = malloclogptr; l < MALLOCLOGSIZE; l++) {
263 PRT;
264 NPRT;
265 }
266
267
268 for (l = 0; l < malloclogptr; l++) {
269 PRT;
270 NPRT;
271 }
272
273 #undef PRT
274 }
275 #endif /* DIAGNOSTIC */
276 #endif /* MALLOCLOG */
277
278 #ifdef DIAGNOSTIC
279 /*
280 * This structure provides a set of masks to catch unaligned frees.
281 */
282 const long addrmask[] = { 0,
283 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
284 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
285 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
286 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
287 };
288
289 /*
290 * The WEIRD_ADDR is used as known text to copy into free objects so
291 * that modifications after frees can be detected.
292 */
293 #define WEIRD_ADDR ((uint32_t) 0xdeadbeef)
294 #ifdef DEBUG
295 #define MAX_COPY PAGE_SIZE
296 #else
297 #define MAX_COPY 32
298 #endif
299
300 /*
301 * Normally the freelist structure is used only to hold the list pointer
302 * for free objects. However, when running with diagnostics, the first
303 * 8/16 bytes of the structure is unused except for diagnostic information,
304 * and the free list pointer is at offset 8/16 in the structure. Since the
305 * first 8 bytes is the portion of the structure most often modified, this
306 * helps to detect memory reuse problems and avoid free list corruption.
307 */
308 struct freelist {
309 uint32_t spare0;
310 #ifdef _LP64
311 uint32_t spare1; /* explicit padding */
312 #endif
313 struct malloc_type *type;
314 void * next;
315 };
316 #else /* !DIAGNOSTIC */
317 struct freelist {
318 void * next;
319 };
320 #endif /* DIAGNOSTIC */
321
322 kmutex_t malloc_lock;
323
324 /*
325 * Allocate a block of memory
326 */
327 #ifdef MALLOCLOG
328 void *
329 _kern_malloc(unsigned long size, struct malloc_type *ksp, int flags,
330 const char *file, long line)
331 #else
332 void *
333 kern_malloc(unsigned long size, struct malloc_type *ksp, int flags)
334 #endif /* MALLOCLOG */
335 {
336 struct kmembuckets *kbp;
337 struct kmemusage *kup;
338 struct freelist *freep;
339 long indx, npg, allocsize;
340 char *va, *cp, *savedlist;
341 #ifdef DIAGNOSTIC
342 uint32_t *end, *lp;
343 int copysize;
344 #endif
345
346 #ifdef LOCKDEBUG
347 if ((flags & M_NOWAIT) == 0) {
348 ASSERT_SLEEPABLE();
349 }
350 #endif
351 #ifdef MALLOC_DEBUG
352 if (debug_malloc(size, ksp, flags, (void *) &va)) {
353 if (va != 0) {
354 FREECHECK_OUT(&malloc_freecheck, (void *)va);
355 }
356 return ((void *) va);
357 }
358 #endif
359 indx = BUCKETINDX(size);
360 kbp = &kmembuckets[indx];
361 mutex_spin_enter(&malloc_lock);
362 #ifdef KMEMSTATS
363 while (ksp->ks_memuse >= ksp->ks_limit) {
364 if (flags & M_NOWAIT) {
365 mutex_spin_exit(&malloc_lock);
366 return ((void *) NULL);
367 }
368 if (ksp->ks_limblocks < 65535)
369 ksp->ks_limblocks++;
370 mtsleep((void *)ksp, PSWP+2, ksp->ks_shortdesc, 0,
371 &malloc_lock);
372 }
373 ksp->ks_size |= 1 << indx;
374 ksp->ks_active[indx]++;
375 #endif
376 #ifdef DIAGNOSTIC
377 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
378 #endif
379 if (kbp->kb_next == NULL) {
380 int s;
381 kbp->kb_last = NULL;
382 if (size > MAXALLOCSAVE)
383 allocsize = round_page(size);
384 else
385 allocsize = 1 << indx;
386 npg = btoc(allocsize);
387 mutex_spin_exit(&malloc_lock);
388 s = splvm();
389 va = (void *) uvm_km_alloc(kmem_map,
390 (vsize_t)ctob(npg), 0,
391 ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
392 ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0) |
393 UVM_KMF_WIRED);
394 splx(s);
395 if (__predict_false(va == NULL)) {
396 /*
397 * Kmem_malloc() can return NULL, even if it can
398 * wait, if there is no map space available, because
399 * it can't fix that problem. Neither can we,
400 * right now. (We should release pages which
401 * are completely free and which are in kmembuckets
402 * with too many free elements.)
403 */
404 if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
405 panic("malloc: out of space in kmem_map");
406 return (NULL);
407 }
408 mutex_spin_enter(&malloc_lock);
409 #ifdef KMEMSTATS
410 kbp->kb_total += kbp->kb_elmpercl;
411 #endif
412 kup = btokup(va);
413 kup->ku_indx = indx;
414 if (allocsize > MAXALLOCSAVE) {
415 if (npg > 65535)
416 panic("malloc: allocation too large");
417 kup->ku_pagecnt = npg;
418 #ifdef KMEMSTATS
419 ksp->ks_memuse += allocsize;
420 #endif
421 goto out;
422 }
423 #ifdef KMEMSTATS
424 kup->ku_freecnt = kbp->kb_elmpercl;
425 kbp->kb_totalfree += kbp->kb_elmpercl;
426 #endif
427 /*
428 * Just in case we blocked while allocating memory,
429 * and someone else also allocated memory for this
430 * kmembucket, don't assume the list is still empty.
431 */
432 savedlist = kbp->kb_next;
433 kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
434 for (;;) {
435 freep = (struct freelist *)cp;
436 #ifdef DIAGNOSTIC
437 /*
438 * Copy in known text to detect modification
439 * after freeing.
440 */
441 end = (uint32_t *)&cp[copysize];
442 for (lp = (uint32_t *)cp; lp < end; lp++)
443 *lp = WEIRD_ADDR;
444 freep->type = M_FREE;
445 #endif /* DIAGNOSTIC */
446 if (cp <= va)
447 break;
448 cp -= allocsize;
449 freep->next = cp;
450 }
451 freep->next = savedlist;
452 if (savedlist == NULL)
453 kbp->kb_last = (void *)freep;
454 }
455 va = kbp->kb_next;
456 kbp->kb_next = ((struct freelist *)va)->next;
457 #ifdef DIAGNOSTIC
458 freep = (struct freelist *)va;
459 /* XXX potential to get garbage pointer here. */
460 if (kbp->kb_next) {
461 int rv;
462 vaddr_t addr = (vaddr_t)kbp->kb_next;
463
464 vm_map_lock(kmem_map);
465 rv = uvm_map_checkprot(kmem_map, addr,
466 addr + sizeof(struct freelist), VM_PROT_WRITE);
467 vm_map_unlock(kmem_map);
468
469 if (__predict_false(rv == 0)) {
470 printf("Data modified on freelist: "
471 "word %ld of object %p size %ld previous type %s "
472 "(invalid addr %p)\n",
473 (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
474 va, size, "foo", kbp->kb_next);
475 #ifdef MALLOCLOG
476 hitmlog(va);
477 #endif
478 kbp->kb_next = NULL;
479 }
480 }
481
482 /* Fill the fields that we've used with WEIRD_ADDR */
483 #ifdef _LP64
484 freep->type = (struct malloc_type *)
485 (WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32));
486 #else
487 freep->type = (struct malloc_type *) WEIRD_ADDR;
488 #endif
489 end = (uint32_t *)&freep->next +
490 (sizeof(freep->next) / sizeof(int32_t));
491 for (lp = (uint32_t *)&freep->next; lp < end; lp++)
492 *lp = WEIRD_ADDR;
493
494 /* and check that the data hasn't been modified. */
495 end = (uint32_t *)&va[copysize];
496 for (lp = (uint32_t *)va; lp < end; lp++) {
497 if (__predict_true(*lp == WEIRD_ADDR))
498 continue;
499 printf("Data modified on freelist: "
500 "word %ld of object %p size %ld previous type %s "
501 "(0x%x != 0x%x)\n",
502 (long)(lp - (uint32_t *)va), va, size,
503 "bar", *lp, WEIRD_ADDR);
504 #ifdef MALLOCLOG
505 hitmlog(va);
506 #endif
507 break;
508 }
509
510 freep->spare0 = 0;
511 #endif /* DIAGNOSTIC */
512 #ifdef KMEMSTATS
513 kup = btokup(va);
514 if (kup->ku_indx != indx)
515 panic("malloc: wrong bucket");
516 if (kup->ku_freecnt == 0)
517 panic("malloc: lost data");
518 kup->ku_freecnt--;
519 kbp->kb_totalfree--;
520 ksp->ks_memuse += 1 << indx;
521 out:
522 kbp->kb_calls++;
523 ksp->ks_inuse++;
524 ksp->ks_calls++;
525 if (ksp->ks_memuse > ksp->ks_maxused)
526 ksp->ks_maxused = ksp->ks_memuse;
527 #else
528 out:
529 #endif
530 #ifdef MALLOCLOG
531 domlog(va, size, ksp, 1, file, line);
532 #endif
533 mutex_spin_exit(&malloc_lock);
534 if ((flags & M_ZERO) != 0)
535 memset(va, 0, size);
536 FREECHECK_OUT(&malloc_freecheck, (void *)va);
537 return ((void *) va);
538 }
539
540 /*
541 * Free a block of memory allocated by malloc.
542 */
543 #ifdef MALLOCLOG
544 void
545 _kern_free(void *addr, struct malloc_type *ksp, const char *file, long line)
546 #else
547 void
548 kern_free(void *addr, struct malloc_type *ksp)
549 #endif /* MALLOCLOG */
550 {
551 struct kmembuckets *kbp;
552 struct kmemusage *kup;
553 struct freelist *freep;
554 long size;
555 #ifdef DIAGNOSTIC
556 void *cp;
557 int32_t *end, *lp;
558 long alloc, copysize;
559 #endif
560
561 FREECHECK_IN(&malloc_freecheck, addr);
562 #ifdef MALLOC_DEBUG
563 if (debug_free(addr, ksp))
564 return;
565 #endif
566
567 #ifdef DIAGNOSTIC
568 /*
569 * Ensure that we're free'ing something that we could
570 * have allocated in the first place. That is, check
571 * to see that the address is within kmem_map.
572 */
573 if (__predict_false((vaddr_t)addr < vm_map_min(kmem_map) ||
574 (vaddr_t)addr >= vm_map_max(kmem_map)))
575 panic("free: addr %p not within kmem_map", addr);
576 #endif
577
578 kup = btokup(addr);
579 size = 1 << kup->ku_indx;
580 kbp = &kmembuckets[kup->ku_indx];
581
582 LOCKDEBUG_MEM_CHECK(addr,
583 size <= MAXALLOCSAVE ? size : ctob(kup->ku_pagecnt));
584
585 mutex_spin_enter(&malloc_lock);
586 #ifdef MALLOCLOG
587 domlog(addr, 0, ksp, 2, file, line);
588 #endif
589 #ifdef DIAGNOSTIC
590 /*
591 * Check for returns of data that do not point to the
592 * beginning of the allocation.
593 */
594 if (size > PAGE_SIZE)
595 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
596 else
597 alloc = addrmask[kup->ku_indx];
598 if (((u_long)addr & alloc) != 0)
599 panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
600 addr, size, ksp->ks_shortdesc, alloc);
601 #endif /* DIAGNOSTIC */
602 if (size > MAXALLOCSAVE) {
603 uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt),
604 UVM_KMF_WIRED);
605 #ifdef KMEMSTATS
606 size = kup->ku_pagecnt << PGSHIFT;
607 ksp->ks_memuse -= size;
608 ksp->ks_active[kup->ku_indx]--;
609 kup->ku_indx = 0;
610 kup->ku_pagecnt = 0;
611 if (ksp->ks_memuse + size >= ksp->ks_limit &&
612 ksp->ks_memuse < ksp->ks_limit)
613 wakeup((void *)ksp);
614 #ifdef DIAGNOSTIC
615 if (ksp->ks_inuse == 0)
616 panic("free 1: inuse 0, probable double free");
617 #endif
618 ksp->ks_inuse--;
619 kbp->kb_total -= 1;
620 #endif
621 mutex_spin_exit(&malloc_lock);
622 return;
623 }
624 freep = (struct freelist *)addr;
625 #ifdef DIAGNOSTIC
626 /*
627 * Check for multiple frees. Use a quick check to see if
628 * it looks free before laboriously searching the freelist.
629 */
630 if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
631 for (cp = kbp->kb_next; cp;
632 cp = ((struct freelist *)cp)->next) {
633 if (addr != cp)
634 continue;
635 printf("multiply freed item %p\n", addr);
636 #ifdef MALLOCLOG
637 hitmlog(addr);
638 #endif
639 panic("free: duplicated free");
640 }
641 }
642
643 /*
644 * Copy in known text to detect modification after freeing
645 * and to make it look free. Also, save the type being freed
646 * so we can list likely culprit if modification is detected
647 * when the object is reallocated.
648 */
649 copysize = size < MAX_COPY ? size : MAX_COPY;
650 end = (int32_t *)&((char *)addr)[copysize];
651 for (lp = (int32_t *)addr; lp < end; lp++)
652 *lp = WEIRD_ADDR;
653 freep->type = ksp;
654 #endif /* DIAGNOSTIC */
655 #ifdef KMEMSTATS
656 kup->ku_freecnt++;
657 if (kup->ku_freecnt >= kbp->kb_elmpercl) {
658 if (kup->ku_freecnt > kbp->kb_elmpercl)
659 panic("free: multiple frees");
660 else if (kbp->kb_totalfree > kbp->kb_highwat)
661 kbp->kb_couldfree++;
662 }
663 kbp->kb_totalfree++;
664 ksp->ks_memuse -= size;
665 ksp->ks_active[kup->ku_indx]--;
666 if (ksp->ks_memuse + size >= ksp->ks_limit &&
667 ksp->ks_memuse < ksp->ks_limit)
668 wakeup((void *)ksp);
669 #ifdef DIAGNOSTIC
670 if (ksp->ks_inuse == 0)
671 panic("free 2: inuse 0, probable double free");
672 #endif
673 ksp->ks_inuse--;
674 #endif
675 if (kbp->kb_next == NULL)
676 kbp->kb_next = addr;
677 else
678 ((struct freelist *)kbp->kb_last)->next = addr;
679 freep->next = NULL;
680 kbp->kb_last = addr;
681 mutex_spin_exit(&malloc_lock);
682 }
683
684 /*
685 * Change the size of a block of memory.
686 */
687 void *
688 kern_realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp,
689 int flags)
690 {
691 struct kmemusage *kup;
692 unsigned long cursize;
693 void *newaddr;
694 #ifdef DIAGNOSTIC
695 long alloc;
696 #endif
697
698 /*
699 * realloc() with a NULL pointer is the same as malloc().
700 */
701 if (curaddr == NULL)
702 return (malloc(newsize, ksp, flags));
703
704 /*
705 * realloc() with zero size is the same as free().
706 */
707 if (newsize == 0) {
708 free(curaddr, ksp);
709 return (NULL);
710 }
711
712 #ifdef LOCKDEBUG
713 if ((flags & M_NOWAIT) == 0) {
714 ASSERT_SLEEPABLE();
715 }
716 #endif
717
718 /*
719 * Find out how large the old allocation was (and do some
720 * sanity checking).
721 */
722 kup = btokup(curaddr);
723 cursize = 1 << kup->ku_indx;
724
725 #ifdef DIAGNOSTIC
726 /*
727 * Check for returns of data that do not point to the
728 * beginning of the allocation.
729 */
730 if (cursize > PAGE_SIZE)
731 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
732 else
733 alloc = addrmask[kup->ku_indx];
734 if (((u_long)curaddr & alloc) != 0)
735 panic("realloc: "
736 "unaligned addr %p, size %ld, type %s, mask %ld\n",
737 curaddr, cursize, ksp->ks_shortdesc, alloc);
738 #endif /* DIAGNOSTIC */
739
740 if (cursize > MAXALLOCSAVE)
741 cursize = ctob(kup->ku_pagecnt);
742
743 /*
744 * If we already actually have as much as they want, we're done.
745 */
746 if (newsize <= cursize)
747 return (curaddr);
748
749 /*
750 * Can't satisfy the allocation with the existing block.
751 * Allocate a new one and copy the data.
752 */
753 newaddr = malloc(newsize, ksp, flags);
754 if (__predict_false(newaddr == NULL)) {
755 /*
756 * malloc() failed, because flags included M_NOWAIT.
757 * Return NULL to indicate that failure. The old
758 * pointer is still valid.
759 */
760 return (NULL);
761 }
762 memcpy(newaddr, curaddr, cursize);
763
764 /*
765 * We were successful: free the old allocation and return
766 * the new one.
767 */
768 free(curaddr, ksp);
769 return (newaddr);
770 }
771
772 /*
773 * Roundup size to the actual allocation size.
774 */
775 unsigned long
776 malloc_roundup(unsigned long size)
777 {
778
779 if (size > MAXALLOCSAVE)
780 return (roundup(size, PAGE_SIZE));
781 else
782 return (1 << BUCKETINDX(size));
783 }
784
785 /*
786 * Add a malloc type to the system.
787 */
788 void
789 malloc_type_attach(struct malloc_type *type)
790 {
791
792 if (nkmempages == 0)
793 panic("malloc_type_attach: nkmempages == 0");
794
795 if (type->ks_magic != M_MAGIC)
796 panic("malloc_type_attach: bad magic");
797
798 #ifdef DIAGNOSTIC
799 {
800 struct malloc_type *ksp;
801 for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
802 if (ksp == type)
803 panic("malloc_type_attach: already on list");
804 }
805 }
806 #endif
807
808 #ifdef KMEMSTATS
809 if (type->ks_limit == 0)
810 type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U;
811 #else
812 type->ks_limit = 0;
813 #endif
814
815 type->ks_next = kmemstatistics;
816 kmemstatistics = type;
817 }
818
819 /*
820 * Remove a malloc type from the system..
821 */
822 void
823 malloc_type_detach(struct malloc_type *type)
824 {
825 struct malloc_type *ksp;
826
827 #ifdef DIAGNOSTIC
828 if (type->ks_magic != M_MAGIC)
829 panic("malloc_type_detach: bad magic");
830 #endif
831
832 if (type == kmemstatistics)
833 kmemstatistics = type->ks_next;
834 else {
835 for (ksp = kmemstatistics; ksp->ks_next != NULL;
836 ksp = ksp->ks_next) {
837 if (ksp->ks_next == type) {
838 ksp->ks_next = type->ks_next;
839 break;
840 }
841 }
842 #ifdef DIAGNOSTIC
843 if (ksp->ks_next == NULL)
844 panic("malloc_type_detach: not on list");
845 #endif
846 }
847 type->ks_next = NULL;
848 }
849
850 /*
851 * Set the limit on a malloc type.
852 */
853 void
854 malloc_type_setlimit(struct malloc_type *type, u_long limit)
855 {
856 #ifdef KMEMSTATS
857 mutex_spin_enter(&malloc_lock);
858 type->ks_limit = limit;
859 mutex_spin_exit(&malloc_lock);
860 #endif
861 }
862
863 /*
864 * Compute the number of pages that kmem_map will map, that is,
865 * the size of the kernel malloc arena.
866 */
867 void
868 kmeminit_nkmempages(void)
869 {
870 int npages;
871
872 if (nkmempages != 0) {
873 /*
874 * It's already been set (by us being here before, or
875 * by patching or kernel config options), bail out now.
876 */
877 return;
878 }
879
880 npages = physmem;
881
882 if (npages > NKMEMPAGES_MAX)
883 npages = NKMEMPAGES_MAX;
884
885 if (npages < NKMEMPAGES_MIN)
886 npages = NKMEMPAGES_MIN;
887
888 nkmempages = npages;
889 }
890
891 /*
892 * Initialize the kernel memory allocator
893 */
894 void
895 kmeminit(void)
896 {
897 __link_set_decl(malloc_types, struct malloc_type);
898 struct malloc_type * const *ksp;
899 vaddr_t kmb, kml;
900 #ifdef KMEMSTATS
901 long indx;
902 #endif
903
904 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
905 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
906 #endif
907 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
908 ERROR!_kmeminit:_MAXALLOCSAVE_too_big
909 #endif
910 #if (MAXALLOCSAVE < NBPG)
911 ERROR!_kmeminit:_MAXALLOCSAVE_too_small
912 #endif
913
914 if (sizeof(struct freelist) > (1 << MINBUCKET))
915 panic("minbucket too small/struct freelist too big");
916
917 mutex_init(&malloc_lock, MUTEX_DEFAULT, IPL_VM);
918
919 /*
920 * Compute the number of kmem_map pages, if we have not
921 * done so already.
922 */
923 kmeminit_nkmempages();
924
925 kmemusage = (struct kmemusage *) uvm_km_alloc(kernel_map,
926 (vsize_t)(nkmempages * sizeof(struct kmemusage)), 0,
927 UVM_KMF_WIRED|UVM_KMF_ZERO);
928 kmb = 0;
929 kmem_map = uvm_km_suballoc(kernel_map, &kmb,
930 &kml, ((vsize_t)nkmempages << PAGE_SHIFT),
931 VM_MAP_INTRSAFE, false, &kmem_map_store);
932 uvm_km_vacache_init(kmem_map, "kvakmem", 0);
933 kmembase = (char *)kmb;
934 kmemlimit = (char *)kml;
935 #ifdef KMEMSTATS
936 for (indx = 0; indx < MINBUCKET + 16; indx++) {
937 if (1 << indx >= PAGE_SIZE)
938 kmembuckets[indx].kb_elmpercl = 1;
939 else
940 kmembuckets[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
941 kmembuckets[indx].kb_highwat =
942 5 * kmembuckets[indx].kb_elmpercl;
943 }
944 #endif
945
946 /* Attach all of the statically-linked malloc types. */
947 __link_set_foreach(ksp, malloc_types)
948 malloc_type_attach(*ksp);
949
950 #ifdef MALLOC_DEBUG
951 debug_malloc_init();
952 #endif
953 }
954
955 #ifdef DDB
956 #include <ddb/db_output.h>
957
958 /*
959 * Dump kmem statistics from ddb.
960 *
961 * usage: call dump_kmemstats
962 */
963 void dump_kmemstats(void);
964
965 void
966 dump_kmemstats(void)
967 {
968 #ifdef KMEMSTATS
969 struct malloc_type *ksp;
970
971 for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
972 if (ksp->ks_memuse == 0)
973 continue;
974 db_printf("%s%.*s %ld\n", ksp->ks_shortdesc,
975 (int)(20 - strlen(ksp->ks_shortdesc)),
976 " ",
977 ksp->ks_memuse);
978 }
979 #else
980 db_printf("Kmem stats are not being collected.\n");
981 #endif /* KMEMSTATS */
982 }
983 #endif /* DDB */
984
985
986 #if 0
987 /*
988 * Diagnostic messages about "Data modified on
989 * freelist" indicate a memory corruption, but
990 * they do not help tracking it down.
991 * This function can be called at various places
992 * to sanity check malloc's freelist and discover
993 * where does the corruption take place.
994 */
995 int
996 freelist_sanitycheck(void) {
997 int i,j;
998 struct kmembuckets *kbp;
999 struct freelist *freep;
1000 int rv = 0;
1001
1002 for (i = MINBUCKET; i <= MINBUCKET + 15; i++) {
1003 kbp = &kmembuckets[i];
1004 freep = (struct freelist *)kbp->kb_next;
1005 j = 0;
1006 while(freep) {
1007 vm_map_lock(kmem_map);
1008 rv = uvm_map_checkprot(kmem_map, (vaddr_t)freep,
1009 (vaddr_t)freep + sizeof(struct freelist),
1010 VM_PROT_WRITE);
1011 vm_map_unlock(kmem_map);
1012
1013 if ((rv == 0) || (*(int *)freep != WEIRD_ADDR)) {
1014 printf("bucket %i, chunck %d at %p modified\n",
1015 i, j, freep);
1016 return 1;
1017 }
1018 freep = (struct freelist *)freep->next;
1019 j++;
1020 }
1021 }
1022
1023 return 0;
1024 }
1025 #endif
1026