kern_malloc.c revision 1.133 1 /* $NetBSD: kern_malloc.c,v 1.133 2011/10/15 21:14:57 christos Exp $ */
2
3 /*
4 * Copyright (c) 1987, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
32 */
33
34 /*
35 * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.133 2011/10/15 21:14:57 christos Exp $");
70
71 #include <sys/param.h>
72 #include <sys/proc.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/systm.h>
76 #include <sys/debug.h>
77 #include <sys/mutex.h>
78 #include <sys/lockdebug.h>
79
80 #include <uvm/uvm_extern.h>
81
82 static struct vm_map_kernel kmem_map_store;
83 struct vm_map *kmem_map = NULL;
84
85 #include "opt_kmempages.h"
86
87 #ifdef NKMEMCLUSTERS
88 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
89 #endif
90
91 /*
92 * Default number of pages in kmem_map. We attempt to calculate this
93 * at run-time, but allow it to be either patched or set in the kernel
94 * config file.
95 */
96 #ifndef NKMEMPAGES
97 #define NKMEMPAGES 0
98 #endif
99 int nkmempages = NKMEMPAGES;
100
101 /*
102 * Defaults for lower- and upper-bounds for the kmem_map page count.
103 * Can be overridden by kernel config options.
104 */
105 #ifndef NKMEMPAGES_MIN
106 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
107 #endif
108
109 #ifndef NKMEMPAGES_MAX
110 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
111 #endif
112
113 #include "opt_kmemstats.h"
114 #include "opt_malloclog.h"
115 #include "opt_malloc_debug.h"
116
117 #define MINALLOCSIZE (1 << MINBUCKET)
118 #define BUCKETINDX(size) \
119 ((size) <= (MINALLOCSIZE * 128) \
120 ? (size) <= (MINALLOCSIZE * 8) \
121 ? (size) <= (MINALLOCSIZE * 2) \
122 ? (size) <= (MINALLOCSIZE * 1) \
123 ? (MINBUCKET + 0) \
124 : (MINBUCKET + 1) \
125 : (size) <= (MINALLOCSIZE * 4) \
126 ? (MINBUCKET + 2) \
127 : (MINBUCKET + 3) \
128 : (size) <= (MINALLOCSIZE* 32) \
129 ? (size) <= (MINALLOCSIZE * 16) \
130 ? (MINBUCKET + 4) \
131 : (MINBUCKET + 5) \
132 : (size) <= (MINALLOCSIZE * 64) \
133 ? (MINBUCKET + 6) \
134 : (MINBUCKET + 7) \
135 : (size) <= (MINALLOCSIZE * 2048) \
136 ? (size) <= (MINALLOCSIZE * 512) \
137 ? (size) <= (MINALLOCSIZE * 256) \
138 ? (MINBUCKET + 8) \
139 : (MINBUCKET + 9) \
140 : (size) <= (MINALLOCSIZE * 1024) \
141 ? (MINBUCKET + 10) \
142 : (MINBUCKET + 11) \
143 : (size) <= (MINALLOCSIZE * 8192) \
144 ? (size) <= (MINALLOCSIZE * 4096) \
145 ? (MINBUCKET + 12) \
146 : (MINBUCKET + 13) \
147 : (size) <= (MINALLOCSIZE * 16384) \
148 ? (MINBUCKET + 14) \
149 : (MINBUCKET + 15))
150
151 /*
152 * Array of descriptors that describe the contents of each page
153 */
154 struct kmemusage {
155 short ku_indx; /* bucket index */
156 union {
157 u_short freecnt;/* for small allocations, free pieces in page */
158 u_short pagecnt;/* for large allocations, pages alloced */
159 } ku_un;
160 };
161 #define ku_freecnt ku_un.freecnt
162 #define ku_pagecnt ku_un.pagecnt
163
164 struct kmembuckets kmembuckets[MINBUCKET + 16];
165 struct kmemusage *kmemusage;
166 char *kmembase, *kmemlimit;
167
168 #ifdef DEBUG
169 static void *malloc_freecheck;
170 #endif
171
172 /*
173 * Turn virtual addresses into kmem map indicies
174 */
175 #define btokup(addr) (&kmemusage[((char *)(addr) - kmembase) >> PGSHIFT])
176
177 struct malloc_type *kmemstatistics;
178
179 #ifdef MALLOCLOG
180 #ifndef MALLOCLOGSIZE
181 #define MALLOCLOGSIZE 100000
182 #endif
183
184 struct malloclog {
185 void *addr;
186 long size;
187 struct malloc_type *type;
188 int action;
189 const char *file;
190 long line;
191 } malloclog[MALLOCLOGSIZE];
192
193 long malloclogptr;
194
195 /*
196 * Fuzz factor for neighbour address match this must be a mask of the lower
197 * bits we wish to ignore when comparing addresses
198 */
199 __uintptr_t malloclog_fuzz = 0x7FL;
200
201
202 static void
203 domlog(void *a, long size, struct malloc_type *type, int action,
204 const char *file, long line)
205 {
206
207 malloclog[malloclogptr].addr = a;
208 malloclog[malloclogptr].size = size;
209 malloclog[malloclogptr].type = type;
210 malloclog[malloclogptr].action = action;
211 malloclog[malloclogptr].file = file;
212 malloclog[malloclogptr].line = line;
213 malloclogptr++;
214 if (malloclogptr >= MALLOCLOGSIZE)
215 malloclogptr = 0;
216 }
217
218 #ifdef DIAGNOSTIC
219 static void
220 hitmlog(void *a)
221 {
222 struct malloclog *lp;
223 long l;
224
225 #define PRT do { \
226 lp = &malloclog[l]; \
227 if (lp->addr == a && lp->action) { \
228 printf("malloc log entry %ld:\n", l); \
229 printf("\taddr = %p\n", lp->addr); \
230 printf("\tsize = %ld\n", lp->size); \
231 printf("\ttype = %s\n", lp->type->ks_shortdesc); \
232 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
233 printf("\tfile = %s\n", lp->file); \
234 printf("\tline = %ld\n", lp->line); \
235 } \
236 } while (/* CONSTCOND */0)
237
238 /*
239 * Print fuzzy matched "neighbour" - look for the memory block that has
240 * been allocated below the address we are interested in. We look for a
241 * base address + size that is within malloclog_fuzz of our target
242 * address. If the base address and target address are the same then it is
243 * likely we have found a free (size is 0 in this case) so we won't report
244 * those, they will get reported by PRT anyway.
245 */
246 #define NPRT do { \
247 __uintptr_t fuzz_mask = ~(malloclog_fuzz); \
248 lp = &malloclog[l]; \
249 if ((__uintptr_t)lp->addr != (__uintptr_t)a && \
250 (((__uintptr_t)lp->addr + lp->size + malloclog_fuzz) & fuzz_mask) \
251 == ((__uintptr_t)a & fuzz_mask) && lp->action) { \
252 printf("neighbour malloc log entry %ld:\n", l); \
253 printf("\taddr = %p\n", lp->addr); \
254 printf("\tsize = %ld\n", lp->size); \
255 printf("\ttype = %s\n", lp->type->ks_shortdesc); \
256 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
257 printf("\tfile = %s\n", lp->file); \
258 printf("\tline = %ld\n", lp->line); \
259 } \
260 } while (/* CONSTCOND */0)
261
262 for (l = malloclogptr; l < MALLOCLOGSIZE; l++) {
263 PRT;
264 NPRT;
265 }
266
267
268 for (l = 0; l < malloclogptr; l++) {
269 PRT;
270 NPRT;
271 }
272
273 #undef PRT
274 }
275 #endif /* DIAGNOSTIC */
276 #endif /* MALLOCLOG */
277
278 #ifdef DIAGNOSTIC
279 /*
280 * This structure provides a set of masks to catch unaligned frees.
281 */
282 const long addrmask[] = { 0,
283 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
284 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
285 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
286 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
287 };
288
289 /*
290 * The WEIRD_ADDR is used as known text to copy into free objects so
291 * that modifications after frees can be detected.
292 */
293 #define WEIRD_ADDR ((uint32_t) 0xdeadbeef)
294 #ifdef DEBUG
295 #define MAX_COPY PAGE_SIZE
296 #else
297 #define MAX_COPY 32
298 #endif
299
300 /*
301 * Normally the freelist structure is used only to hold the list pointer
302 * for free objects. However, when running with diagnostics, the first
303 * 8/16 bytes of the structure is unused except for diagnostic information,
304 * and the free list pointer is at offset 8/16 in the structure. Since the
305 * first 8 bytes is the portion of the structure most often modified, this
306 * helps to detect memory reuse problems and avoid free list corruption.
307 */
308 struct freelist {
309 uint32_t spare0;
310 #ifdef _LP64
311 uint32_t spare1; /* explicit padding */
312 #endif
313 struct malloc_type *type;
314 void * next;
315 };
316 #else /* !DIAGNOSTIC */
317 struct freelist {
318 void * next;
319 };
320 #endif /* DIAGNOSTIC */
321
322 kmutex_t malloc_lock;
323
324 /*
325 * Allocate a block of memory
326 */
327 #ifdef MALLOCLOG
328 void *
329 _kern_malloc(unsigned long size, struct malloc_type *ksp, int flags,
330 const char *file, long line)
331 #else
332 void *
333 kern_malloc(unsigned long size, struct malloc_type *ksp, int flags)
334 #endif /* MALLOCLOG */
335 {
336 struct kmembuckets *kbp;
337 struct kmemusage *kup;
338 struct freelist *freep;
339 long indx, npg, allocsize;
340 char *va, *cp, *savedlist;
341 #ifdef DIAGNOSTIC
342 uint32_t *end, *lp;
343 int copysize;
344 #endif
345
346 #ifdef LOCKDEBUG
347 if ((flags & M_NOWAIT) == 0) {
348 ASSERT_SLEEPABLE();
349 }
350 #endif
351 #ifdef MALLOC_DEBUG
352 if (debug_malloc(size, ksp, flags, (void *) &va)) {
353 if (va != 0) {
354 FREECHECK_OUT(&malloc_freecheck, (void *)va);
355 }
356 return ((void *) va);
357 }
358 #endif
359 indx = BUCKETINDX(size);
360 kbp = &kmembuckets[indx];
361 mutex_spin_enter(&malloc_lock);
362 #ifdef KMEMSTATS
363 while (ksp->ks_memuse >= ksp->ks_limit) {
364 if (flags & M_NOWAIT) {
365 mutex_spin_exit(&malloc_lock);
366 return (NULL);
367 }
368 if (ksp->ks_limblocks < 65535)
369 ksp->ks_limblocks++;
370 mtsleep((void *)ksp, PSWP+2, ksp->ks_shortdesc, 0,
371 &malloc_lock);
372 }
373 ksp->ks_size |= 1 << indx;
374 #ifdef DIAGNOSTIC
375 if (ksp->ks_active[indx - MINBUCKET] == UINT_MAX)
376 panic("too many allocations in bucket");
377 #endif
378 ksp->ks_active[indx - MINBUCKET]++;
379 #endif
380 #ifdef DIAGNOSTIC
381 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
382 #endif
383 if (kbp->kb_next == NULL) {
384 int s;
385 kbp->kb_last = NULL;
386 if (size > MAXALLOCSAVE)
387 allocsize = round_page(size);
388 else
389 allocsize = 1 << indx;
390 npg = btoc(allocsize);
391 mutex_spin_exit(&malloc_lock);
392 s = splvm();
393 va = (void *) uvm_km_alloc(kmem_map,
394 (vsize_t)ctob(npg), 0,
395 ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
396 ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0) |
397 UVM_KMF_WIRED);
398 splx(s);
399 if (__predict_false(va == NULL)) {
400 /*
401 * Kmem_malloc() can return NULL, even if it can
402 * wait, if there is no map space available, because
403 * it can't fix that problem. Neither can we,
404 * right now. (We should release pages which
405 * are completely free and which are in kmembuckets
406 * with too many free elements.)
407 */
408 if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
409 panic("malloc: out of space in kmem_map");
410 return (NULL);
411 }
412 mutex_spin_enter(&malloc_lock);
413 #ifdef KMEMSTATS
414 kbp->kb_total += kbp->kb_elmpercl;
415 #endif
416 kup = btokup(va);
417 kup->ku_indx = indx;
418 if (allocsize > MAXALLOCSAVE) {
419 if (npg > 65535)
420 panic("malloc: allocation too large");
421 kup->ku_pagecnt = npg;
422 #ifdef KMEMSTATS
423 ksp->ks_memuse += allocsize;
424 #endif
425 goto out;
426 }
427 #ifdef KMEMSTATS
428 kup->ku_freecnt = kbp->kb_elmpercl;
429 kbp->kb_totalfree += kbp->kb_elmpercl;
430 #endif
431 /*
432 * Just in case we blocked while allocating memory,
433 * and someone else also allocated memory for this
434 * kmembucket, don't assume the list is still empty.
435 */
436 savedlist = kbp->kb_next;
437 kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
438 for (;;) {
439 freep = (struct freelist *)cp;
440 #ifdef DIAGNOSTIC
441 /*
442 * Copy in known text to detect modification
443 * after freeing.
444 */
445 end = (uint32_t *)&cp[copysize];
446 for (lp = (uint32_t *)cp; lp < end; lp++)
447 *lp = WEIRD_ADDR;
448 freep->type = M_FREE;
449 #endif /* DIAGNOSTIC */
450 if (cp <= va)
451 break;
452 cp -= allocsize;
453 freep->next = cp;
454 }
455 freep->next = savedlist;
456 if (savedlist == NULL)
457 kbp->kb_last = (void *)freep;
458 }
459 va = kbp->kb_next;
460 kbp->kb_next = ((struct freelist *)va)->next;
461 #ifdef DIAGNOSTIC
462 freep = (struct freelist *)va;
463 /* XXX potential to get garbage pointer here. */
464 if (kbp->kb_next) {
465 int rv;
466 vaddr_t addr = (vaddr_t)kbp->kb_next;
467
468 vm_map_lock(kmem_map);
469 rv = uvm_map_checkprot(kmem_map, addr,
470 addr + sizeof(struct freelist), VM_PROT_WRITE);
471 vm_map_unlock(kmem_map);
472
473 if (__predict_false(rv == 0)) {
474 printf("Data modified on freelist: "
475 "word %ld of object %p size %ld previous type %s "
476 "(invalid addr %p)\n",
477 (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
478 va, size, "foo", kbp->kb_next);
479 #ifdef MALLOCLOG
480 hitmlog(va);
481 #endif
482 kbp->kb_next = NULL;
483 }
484 }
485
486 /* Fill the fields that we've used with WEIRD_ADDR */
487 #ifdef _LP64
488 freep->type = (struct malloc_type *)
489 (WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32));
490 #else
491 freep->type = (struct malloc_type *) WEIRD_ADDR;
492 #endif
493 end = (uint32_t *)&freep->next +
494 (sizeof(freep->next) / sizeof(int32_t));
495 for (lp = (uint32_t *)&freep->next; lp < end; lp++)
496 *lp = WEIRD_ADDR;
497
498 /* and check that the data hasn't been modified. */
499 end = (uint32_t *)&va[copysize];
500 for (lp = (uint32_t *)va; lp < end; lp++) {
501 if (__predict_true(*lp == WEIRD_ADDR))
502 continue;
503 printf("Data modified on freelist: "
504 "word %ld of object %p size %ld previous type %s "
505 "(0x%x != 0x%x)\n",
506 (long)(lp - (uint32_t *)va), va, size,
507 "bar", *lp, WEIRD_ADDR);
508 #ifdef MALLOCLOG
509 hitmlog(va);
510 #endif
511 break;
512 }
513
514 freep->spare0 = 0;
515 #endif /* DIAGNOSTIC */
516 #ifdef KMEMSTATS
517 kup = btokup(va);
518 if (kup->ku_indx != indx)
519 panic("malloc: wrong bucket");
520 if (kup->ku_freecnt == 0)
521 panic("malloc: lost data");
522 kup->ku_freecnt--;
523 kbp->kb_totalfree--;
524 ksp->ks_memuse += 1 << indx;
525 out:
526 kbp->kb_calls++;
527 ksp->ks_inuse++;
528 ksp->ks_calls++;
529 if (ksp->ks_memuse > ksp->ks_maxused)
530 ksp->ks_maxused = ksp->ks_memuse;
531 #else
532 out:
533 #endif
534 #ifdef MALLOCLOG
535 domlog(va, size, ksp, 1, file, line);
536 #endif
537 mutex_spin_exit(&malloc_lock);
538 if ((flags & M_ZERO) != 0)
539 memset(va, 0, size);
540 FREECHECK_OUT(&malloc_freecheck, (void *)va);
541 return ((void *) va);
542 }
543
544 /*
545 * Free a block of memory allocated by malloc.
546 */
547 #ifdef MALLOCLOG
548 void
549 _kern_free(void *addr, struct malloc_type *ksp, const char *file, long line)
550 #else
551 void
552 kern_free(void *addr, struct malloc_type *ksp)
553 #endif /* MALLOCLOG */
554 {
555 struct kmembuckets *kbp;
556 struct kmemusage *kup;
557 struct freelist *freep;
558 long size;
559 #ifdef DIAGNOSTIC
560 void *cp;
561 int32_t *end, *lp;
562 long alloc, copysize;
563 #endif
564
565 FREECHECK_IN(&malloc_freecheck, addr);
566 #ifdef MALLOC_DEBUG
567 if (debug_free(addr, ksp))
568 return;
569 #endif
570
571 #ifdef DIAGNOSTIC
572 /*
573 * Ensure that we're free'ing something that we could
574 * have allocated in the first place. That is, check
575 * to see that the address is within kmem_map.
576 */
577 if (__predict_false((vaddr_t)addr < vm_map_min(kmem_map) ||
578 (vaddr_t)addr >= vm_map_max(kmem_map)))
579 panic("free: addr %p not within kmem_map", addr);
580 #endif
581
582 kup = btokup(addr);
583 size = 1 << kup->ku_indx;
584 kbp = &kmembuckets[kup->ku_indx];
585
586 LOCKDEBUG_MEM_CHECK(addr,
587 size <= MAXALLOCSAVE ? size : ctob(kup->ku_pagecnt));
588
589 mutex_spin_enter(&malloc_lock);
590 #ifdef MALLOCLOG
591 domlog(addr, 0, ksp, 2, file, line);
592 #endif
593 #ifdef DIAGNOSTIC
594 /*
595 * Check for returns of data that do not point to the
596 * beginning of the allocation.
597 */
598 if (size > PAGE_SIZE)
599 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
600 else
601 alloc = addrmask[kup->ku_indx];
602 if (((u_long)addr & alloc) != 0)
603 panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
604 addr, size, ksp->ks_shortdesc, alloc);
605 #endif /* DIAGNOSTIC */
606 if (size > MAXALLOCSAVE) {
607 uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt),
608 UVM_KMF_WIRED);
609 #ifdef KMEMSTATS
610 size = kup->ku_pagecnt << PGSHIFT;
611 ksp->ks_memuse -= size;
612 #ifdef DIAGNOSTIC
613 if (ksp->ks_active[kup->ku_indx - MINBUCKET] == 0)
614 panic("no active allocation(1), probably double free");
615 #endif
616 ksp->ks_active[kup->ku_indx - MINBUCKET]--;
617 kup->ku_indx = 0;
618 kup->ku_pagecnt = 0;
619 if (ksp->ks_memuse + size >= ksp->ks_limit &&
620 ksp->ks_memuse < ksp->ks_limit)
621 wakeup((void *)ksp);
622 #ifdef DIAGNOSTIC
623 if (ksp->ks_inuse == 0)
624 panic("free 1: inuse 0, probable double free");
625 #endif
626 ksp->ks_inuse--;
627 kbp->kb_total -= 1;
628 #endif
629 mutex_spin_exit(&malloc_lock);
630 return;
631 }
632 freep = (struct freelist *)addr;
633 #ifdef DIAGNOSTIC
634 /*
635 * Check for multiple frees. Use a quick check to see if
636 * it looks free before laboriously searching the freelist.
637 */
638 if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
639 for (cp = kbp->kb_next; cp;
640 cp = ((struct freelist *)cp)->next) {
641 if (addr != cp)
642 continue;
643 printf("multiply freed item %p\n", addr);
644 #ifdef MALLOCLOG
645 hitmlog(addr);
646 #endif
647 panic("free: duplicated free");
648 }
649 }
650
651 /*
652 * Copy in known text to detect modification after freeing
653 * and to make it look free. Also, save the type being freed
654 * so we can list likely culprit if modification is detected
655 * when the object is reallocated.
656 */
657 copysize = size < MAX_COPY ? size : MAX_COPY;
658 end = (int32_t *)&((char *)addr)[copysize];
659 for (lp = (int32_t *)addr; lp < end; lp++)
660 *lp = WEIRD_ADDR;
661 freep->type = ksp;
662 #endif /* DIAGNOSTIC */
663 #ifdef KMEMSTATS
664 kup->ku_freecnt++;
665 if (kup->ku_freecnt >= kbp->kb_elmpercl) {
666 if (kup->ku_freecnt > kbp->kb_elmpercl)
667 panic("free: multiple frees");
668 else if (kbp->kb_totalfree > kbp->kb_highwat)
669 kbp->kb_couldfree++;
670 }
671 kbp->kb_totalfree++;
672 ksp->ks_memuse -= size;
673 #ifdef DIAGNOSTIC
674 if (ksp->ks_active[kup->ku_indx - MINBUCKET] == 0)
675 panic("no active allocation(2), probably double free");
676 #endif
677 ksp->ks_active[kup->ku_indx - MINBUCKET]--;
678 if (ksp->ks_memuse + size >= ksp->ks_limit &&
679 ksp->ks_memuse < ksp->ks_limit)
680 wakeup((void *)ksp);
681 #ifdef DIAGNOSTIC
682 if (ksp->ks_inuse == 0)
683 panic("free 2: inuse 0, probable double free");
684 #endif
685 ksp->ks_inuse--;
686 #endif
687 if (kbp->kb_next == NULL)
688 kbp->kb_next = addr;
689 else
690 ((struct freelist *)kbp->kb_last)->next = addr;
691 freep->next = NULL;
692 kbp->kb_last = addr;
693 mutex_spin_exit(&malloc_lock);
694 }
695
696 /*
697 * Change the size of a block of memory.
698 */
699 void *
700 kern_realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp,
701 int flags)
702 {
703 struct kmemusage *kup;
704 unsigned long cursize;
705 void *newaddr;
706 #ifdef DIAGNOSTIC
707 long alloc;
708 #endif
709
710 /*
711 * realloc() with a NULL pointer is the same as malloc().
712 */
713 if (curaddr == NULL)
714 return (malloc(newsize, ksp, flags));
715
716 /*
717 * realloc() with zero size is the same as free().
718 */
719 if (newsize == 0) {
720 free(curaddr, ksp);
721 return (NULL);
722 }
723
724 #ifdef LOCKDEBUG
725 if ((flags & M_NOWAIT) == 0) {
726 ASSERT_SLEEPABLE();
727 }
728 #endif
729
730 /*
731 * Find out how large the old allocation was (and do some
732 * sanity checking).
733 */
734 kup = btokup(curaddr);
735 cursize = 1 << kup->ku_indx;
736
737 #ifdef DIAGNOSTIC
738 /*
739 * Check for returns of data that do not point to the
740 * beginning of the allocation.
741 */
742 if (cursize > PAGE_SIZE)
743 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
744 else
745 alloc = addrmask[kup->ku_indx];
746 if (((u_long)curaddr & alloc) != 0)
747 panic("realloc: "
748 "unaligned addr %p, size %ld, type %s, mask %ld\n",
749 curaddr, cursize, ksp->ks_shortdesc, alloc);
750 #endif /* DIAGNOSTIC */
751
752 if (cursize > MAXALLOCSAVE)
753 cursize = ctob(kup->ku_pagecnt);
754
755 /*
756 * If we already actually have as much as they want, we're done.
757 */
758 if (newsize <= cursize)
759 return (curaddr);
760
761 /*
762 * Can't satisfy the allocation with the existing block.
763 * Allocate a new one and copy the data.
764 */
765 newaddr = malloc(newsize, ksp, flags);
766 if (__predict_false(newaddr == NULL)) {
767 /*
768 * malloc() failed, because flags included M_NOWAIT.
769 * Return NULL to indicate that failure. The old
770 * pointer is still valid.
771 */
772 return (NULL);
773 }
774 memcpy(newaddr, curaddr, cursize);
775
776 /*
777 * We were successful: free the old allocation and return
778 * the new one.
779 */
780 free(curaddr, ksp);
781 return (newaddr);
782 }
783
784 /*
785 * Roundup size to the actual allocation size.
786 */
787 unsigned long
788 malloc_roundup(unsigned long size)
789 {
790
791 if (size > MAXALLOCSAVE)
792 return (roundup(size, PAGE_SIZE));
793 else
794 return (1 << BUCKETINDX(size));
795 }
796
797 /*
798 * Add a malloc type to the system.
799 */
800 void
801 malloc_type_attach(struct malloc_type *type)
802 {
803
804 if (nkmempages == 0)
805 panic("malloc_type_attach: nkmempages == 0");
806
807 if (type->ks_magic != M_MAGIC)
808 panic("malloc_type_attach: bad magic");
809
810 #ifdef DIAGNOSTIC
811 {
812 struct malloc_type *ksp;
813 for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
814 if (ksp == type)
815 panic("%s: `%s' already on list", __func__,
816 type->ks_shortdesc);
817 }
818 }
819 #endif
820
821 #ifdef KMEMSTATS
822 if (type->ks_limit == 0)
823 type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U;
824 #else
825 type->ks_limit = 0;
826 #endif
827
828 type->ks_next = kmemstatistics;
829 kmemstatistics = type;
830 }
831
832 /*
833 * Remove a malloc type from the system..
834 */
835 void
836 malloc_type_detach(struct malloc_type *type)
837 {
838 struct malloc_type *ksp;
839
840 #ifdef DIAGNOSTIC
841 if (type->ks_magic != M_MAGIC)
842 panic("malloc_type_detach: bad magic");
843 #endif
844
845 if (type == kmemstatistics)
846 kmemstatistics = type->ks_next;
847 else {
848 for (ksp = kmemstatistics; ksp->ks_next != NULL;
849 ksp = ksp->ks_next) {
850 if (ksp->ks_next == type) {
851 ksp->ks_next = type->ks_next;
852 break;
853 }
854 }
855 #ifdef DIAGNOSTIC
856 if (ksp->ks_next == NULL)
857 panic("malloc_type_detach: not on list");
858 #endif
859 }
860 type->ks_next = NULL;
861 }
862
863 /*
864 * Set the limit on a malloc type.
865 */
866 void
867 malloc_type_setlimit(struct malloc_type *type, u_long limit)
868 {
869 #ifdef KMEMSTATS
870 mutex_spin_enter(&malloc_lock);
871 type->ks_limit = limit;
872 mutex_spin_exit(&malloc_lock);
873 #endif
874 }
875
876 /*
877 * Compute the number of pages that kmem_map will map, that is,
878 * the size of the kernel malloc arena.
879 */
880 void
881 kmeminit_nkmempages(void)
882 {
883 int npages;
884
885 if (nkmempages != 0) {
886 /*
887 * It's already been set (by us being here before, or
888 * by patching or kernel config options), bail out now.
889 */
890 return;
891 }
892
893 npages = physmem;
894
895 if (npages > NKMEMPAGES_MAX)
896 npages = NKMEMPAGES_MAX;
897
898 if (npages < NKMEMPAGES_MIN)
899 npages = NKMEMPAGES_MIN;
900
901 nkmempages = npages;
902 }
903
904 /*
905 * Initialize the kernel memory allocator
906 */
907 void
908 kmeminit(void)
909 {
910 __link_set_decl(malloc_types, struct malloc_type);
911 struct malloc_type * const *ksp;
912 vaddr_t kmb, kml;
913 #ifdef KMEMSTATS
914 long indx;
915 #endif
916
917 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
918 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
919 #endif
920 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
921 ERROR!_kmeminit:_MAXALLOCSAVE_too_big
922 #endif
923 #if (MAXALLOCSAVE < NBPG)
924 ERROR!_kmeminit:_MAXALLOCSAVE_too_small
925 #endif
926
927 if (sizeof(struct freelist) > (1 << MINBUCKET))
928 panic("minbucket too small/struct freelist too big");
929
930 mutex_init(&malloc_lock, MUTEX_DEFAULT, IPL_VM);
931
932 /*
933 * Compute the number of kmem_map pages, if we have not
934 * done so already.
935 */
936 kmeminit_nkmempages();
937
938 kmemusage = (struct kmemusage *) uvm_km_alloc(kernel_map,
939 (vsize_t)(nkmempages * sizeof(struct kmemusage)), 0,
940 UVM_KMF_WIRED|UVM_KMF_ZERO);
941 kmb = 0;
942 kmem_map = uvm_km_suballoc(kernel_map, &kmb,
943 &kml, ((vsize_t)nkmempages << PAGE_SHIFT),
944 VM_MAP_INTRSAFE, false, &kmem_map_store);
945 uvm_km_vacache_init(kmem_map, "kvakmem", 0);
946 kmembase = (char *)kmb;
947 kmemlimit = (char *)kml;
948 #ifdef KMEMSTATS
949 for (indx = 0; indx < MINBUCKET + 16; indx++) {
950 if (1 << indx >= PAGE_SIZE)
951 kmembuckets[indx].kb_elmpercl = 1;
952 else
953 kmembuckets[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
954 kmembuckets[indx].kb_highwat =
955 5 * kmembuckets[indx].kb_elmpercl;
956 }
957 #endif
958
959 /* Attach all of the statically-linked malloc types. */
960 __link_set_foreach(ksp, malloc_types)
961 malloc_type_attach(*ksp);
962
963 #ifdef MALLOC_DEBUG
964 debug_malloc_init();
965 #endif
966 }
967
968 #ifdef DDB
969 #include <ddb/db_output.h>
970
971 /*
972 * Dump kmem statistics from ddb.
973 *
974 * usage: call dump_kmemstats
975 */
976 void dump_kmemstats(void);
977
978 void
979 dump_kmemstats(void)
980 {
981 #ifdef KMEMSTATS
982 struct malloc_type *ksp;
983
984 for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
985 if (ksp->ks_memuse == 0)
986 continue;
987 db_printf("%s%.*s %ld\n", ksp->ks_shortdesc,
988 (int)(20 - strlen(ksp->ks_shortdesc)),
989 " ",
990 ksp->ks_memuse);
991 }
992 #else
993 db_printf("Kmem stats are not being collected.\n");
994 #endif /* KMEMSTATS */
995 }
996 #endif /* DDB */
997
998
999 #if 0
1000 /*
1001 * Diagnostic messages about "Data modified on
1002 * freelist" indicate a memory corruption, but
1003 * they do not help tracking it down.
1004 * This function can be called at various places
1005 * to sanity check malloc's freelist and discover
1006 * where does the corruption take place.
1007 */
1008 int
1009 freelist_sanitycheck(void) {
1010 int i,j;
1011 struct kmembuckets *kbp;
1012 struct freelist *freep;
1013 int rv = 0;
1014
1015 for (i = MINBUCKET; i <= MINBUCKET + 15; i++) {
1016 kbp = &kmembuckets[i];
1017 freep = (struct freelist *)kbp->kb_next;
1018 j = 0;
1019 while(freep) {
1020 vm_map_lock(kmem_map);
1021 rv = uvm_map_checkprot(kmem_map, (vaddr_t)freep,
1022 (vaddr_t)freep + sizeof(struct freelist),
1023 VM_PROT_WRITE);
1024 vm_map_unlock(kmem_map);
1025
1026 if ((rv == 0) || (*(int *)freep != WEIRD_ADDR)) {
1027 printf("bucket %i, chunck %d at %p modified\n",
1028 i, j, freep);
1029 return 1;
1030 }
1031 freep = (struct freelist *)freep->next;
1032 j++;
1033 }
1034 }
1035
1036 return 0;
1037 }
1038 #endif
1039