kern_malloc.c revision 1.20 1 /* $NetBSD: kern_malloc.c,v 1.20 1996/08/27 20:01:42 cgd Exp $ */
2
3 /*
4 * Copyright 1996 Christopher G. Demetriou. All rights reserved.
5 * Copyright (c) 1987, 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
37 */
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/map.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/systm.h>
45
46 #include <vm/vm.h>
47 #include <vm/vm_kern.h>
48
49 struct kmembuckets bucket[MINBUCKET + 16];
50 struct kmemstats kmemstats[M_LAST];
51 struct kmemusage *kmemusage;
52 char *kmembase, *kmemlimit;
53 char *memname[] = INITKMEMNAMES;
54
55 #ifdef DIAGNOSTIC
56 /*
57 * This structure provides a set of masks to catch unaligned frees.
58 */
59 long addrmask[] = { 0,
60 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
61 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
62 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
63 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
64 };
65
66 /*
67 * The WEIRD_ADDR is used as known text to copy into free objects so
68 * that modifications after frees can be detected.
69 */
70 #define WEIRD_ADDR ((unsigned) 0xdeadbeef)
71 #define MAX_COPY 32
72
73 /*
74 * Normally the freelist structure is used only to hold the list pointer
75 * for free objects. However, when running with diagnostics, the first
76 * 8 bytes of the structure is unused except for diagnostic information,
77 * and the free list pointer is at offst 8 in the structure. Since the
78 * first 8 bytes is the portion of the structure most often modified, this
79 * helps to detect memory reuse problems and avoid free list corruption.
80 */
81 struct freelist {
82 int32_t spare0;
83 int16_t type;
84 int16_t spare1;
85 caddr_t next;
86 };
87 #else /* !DIAGNOSTIC */
88 struct freelist {
89 caddr_t next;
90 };
91 #endif /* DIAGNOSTIC */
92
93 /*
94 * Allocate a block of memory
95 */
96 void *
97 malloc(size, type, flags)
98 unsigned long size;
99 int type, flags;
100 {
101 register struct kmembuckets *kbp;
102 register struct kmemusage *kup;
103 register struct freelist *freep;
104 long indx, npg, allocsize;
105 int s;
106 caddr_t va, cp, savedlist;
107 #ifdef DIAGNOSTIC
108 int32_t *end, *lp;
109 int copysize;
110 char *savedtype;
111 #endif
112 #ifdef KMEMSTATS
113 register struct kmemstats *ksp = &kmemstats[type];
114
115 if (((unsigned long)type) > M_LAST)
116 panic("malloc - bogus type");
117 #endif
118 indx = BUCKETINDX(size);
119 kbp = &bucket[indx];
120 s = splimp();
121 #ifdef KMEMSTATS
122 while (ksp->ks_memuse >= ksp->ks_limit) {
123 if (flags & M_NOWAIT) {
124 splx(s);
125 return ((void *) NULL);
126 }
127 if (ksp->ks_limblocks < 65535)
128 ksp->ks_limblocks++;
129 tsleep((caddr_t)ksp, PSWP+2, memname[type], 0);
130 }
131 ksp->ks_size |= 1 << indx;
132 #endif
133 #ifdef DIAGNOSTIC
134 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
135 #endif
136 if (kbp->kb_next == NULL) {
137 kbp->kb_last = NULL;
138 if (size > MAXALLOCSAVE)
139 allocsize = roundup(size, CLBYTES);
140 else
141 allocsize = 1 << indx;
142 npg = clrnd(btoc(allocsize));
143 va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg),
144 !(flags & M_NOWAIT));
145 if (va == NULL) {
146 /*
147 * Kmem_malloc() can return NULL, even if it can
148 * wait, if there is no map space avaiable, because
149 * it can't fix that problem. Neither can we,
150 * right now. (We should release pages which
151 * are completely free and which are in buckets
152 * with too many free elements.)
153 */
154 if ((flags & M_NOWAIT) == 0)
155 panic("malloc: out of space in kmem_map");
156 splx(s);
157 return ((void *) NULL);
158 }
159 #ifdef KMEMSTATS
160 kbp->kb_total += kbp->kb_elmpercl;
161 #endif
162 kup = btokup(va);
163 kup->ku_indx = indx;
164 if (allocsize > MAXALLOCSAVE) {
165 if (npg > 65535)
166 panic("malloc: allocation too large");
167 kup->ku_pagecnt = npg;
168 #ifdef KMEMSTATS
169 ksp->ks_memuse += allocsize;
170 #endif
171 goto out;
172 }
173 #ifdef KMEMSTATS
174 kup->ku_freecnt = kbp->kb_elmpercl;
175 kbp->kb_totalfree += kbp->kb_elmpercl;
176 #endif
177 /*
178 * Just in case we blocked while allocating memory,
179 * and someone else also allocated memory for this
180 * bucket, don't assume the list is still empty.
181 */
182 savedlist = kbp->kb_next;
183 kbp->kb_next = cp = va + (npg * NBPG) - allocsize;
184 for (;;) {
185 freep = (struct freelist *)cp;
186 #ifdef DIAGNOSTIC
187 /*
188 * Copy in known text to detect modification
189 * after freeing.
190 */
191 end = (int32_t *)&cp[copysize];
192 for (lp = (int32_t *)cp; lp < end; lp++)
193 *lp = WEIRD_ADDR;
194 freep->type = M_FREE;
195 #endif /* DIAGNOSTIC */
196 if (cp <= va)
197 break;
198 cp -= allocsize;
199 freep->next = cp;
200 }
201 freep->next = savedlist;
202 if (kbp->kb_last == NULL)
203 kbp->kb_last = (caddr_t)freep;
204 }
205 va = kbp->kb_next;
206 kbp->kb_next = ((struct freelist *)va)->next;
207 #ifdef DIAGNOSTIC
208 freep = (struct freelist *)va;
209 savedtype = (unsigned)freep->type < M_LAST ?
210 memname[freep->type] : "???";
211 if (kbp->kb_next &&
212 !kernacc(kbp->kb_next, sizeof(struct freelist), 0)) {
213 printf("%s %ld of object %p size %ld %s %s (invalid addr %p)\n",
214 "Data modified on freelist: word",
215 (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
216 va, size, "previous type", savedtype, kbp->kb_next);
217 kbp->kb_next = NULL;
218 }
219
220 /* Fill the fields that we've used with WEIRD_ADDR */
221 #if BYTE_ORDER == BIG_ENDIAN
222 freep->type = WEIRD_ADDR >> 16;
223 #endif
224 #if BYTE_ORDER == LITTLE_ENDIAN
225 freep->type = (short)WEIRD_ADDR;
226 #endif
227 end = (int32_t *)&freep->next +
228 (sizeof(freep->next) / sizeof(int32_t));
229 for (lp = (int32_t *)&freep->next; lp < end; lp++)
230 *lp = WEIRD_ADDR;
231
232 /* and check that the data hasn't been modified. */
233 end = (int32_t *)&va[copysize];
234 for (lp = (int32_t *)va; lp < end; lp++) {
235 if (*lp == WEIRD_ADDR)
236 continue;
237 printf("%s %ld of object %p size %ld %s %s (0x%x != 0x%x)\n",
238 "Data modified on freelist: word",
239 (long)(lp - (int32_t *)va), va, size, "previous type",
240 savedtype, *lp, WEIRD_ADDR);
241 break;
242 }
243
244 freep->spare0 = 0;
245 #endif /* DIAGNOSTIC */
246 #ifdef KMEMSTATS
247 kup = btokup(va);
248 if (kup->ku_indx != indx)
249 panic("malloc: wrong bucket");
250 if (kup->ku_freecnt == 0)
251 panic("malloc: lost data");
252 kup->ku_freecnt--;
253 kbp->kb_totalfree--;
254 ksp->ks_memuse += 1 << indx;
255 out:
256 kbp->kb_calls++;
257 ksp->ks_inuse++;
258 ksp->ks_calls++;
259 if (ksp->ks_memuse > ksp->ks_maxused)
260 ksp->ks_maxused = ksp->ks_memuse;
261 #else
262 out:
263 #endif
264 splx(s);
265 return ((void *) va);
266 }
267
268 /*
269 * Free a block of memory allocated by malloc.
270 */
271 void
272 free(addr, type)
273 void *addr;
274 int type;
275 {
276 register struct kmembuckets *kbp;
277 register struct kmemusage *kup;
278 register struct freelist *freep;
279 long size;
280 int s;
281 #ifdef DIAGNOSTIC
282 caddr_t cp;
283 int32_t *end, *lp;
284 long alloc, copysize;
285 #endif
286 #ifdef KMEMSTATS
287 register struct kmemstats *ksp = &kmemstats[type];
288 #endif
289
290 kup = btokup(addr);
291 size = 1 << kup->ku_indx;
292 kbp = &bucket[kup->ku_indx];
293 s = splimp();
294 #ifdef DIAGNOSTIC
295 /*
296 * Check for returns of data that do not point to the
297 * beginning of the allocation.
298 */
299 if (size > NBPG * CLSIZE)
300 alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
301 else
302 alloc = addrmask[kup->ku_indx];
303 if (((u_long)addr & alloc) != 0)
304 panic("free: unaligned addr %p, size %ld, type %s, mask %ld\n",
305 addr, size, memname[type], alloc);
306 #endif /* DIAGNOSTIC */
307 if (size > MAXALLOCSAVE) {
308 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
309 #ifdef KMEMSTATS
310 size = kup->ku_pagecnt << PGSHIFT;
311 ksp->ks_memuse -= size;
312 kup->ku_indx = 0;
313 kup->ku_pagecnt = 0;
314 if (ksp->ks_memuse + size >= ksp->ks_limit &&
315 ksp->ks_memuse < ksp->ks_limit)
316 wakeup((caddr_t)ksp);
317 ksp->ks_inuse--;
318 kbp->kb_total -= 1;
319 #endif
320 splx(s);
321 return;
322 }
323 freep = (struct freelist *)addr;
324 #ifdef DIAGNOSTIC
325 /*
326 * Check for multiple frees. Use a quick check to see if
327 * it looks free before laboriously searching the freelist.
328 */
329 if (freep->spare0 == WEIRD_ADDR) {
330 for (cp = kbp->kb_next; cp;
331 cp = ((struct freelist *)cp)->next) {
332 if (addr != cp)
333 continue;
334 printf("multiply freed item %p\n", addr);
335 panic("free: duplicated free");
336 }
337 }
338 /*
339 * Copy in known text to detect modification after freeing
340 * and to make it look free. Also, save the type being freed
341 * so we can list likely culprit if modification is detected
342 * when the object is reallocated.
343 */
344 copysize = size < MAX_COPY ? size : MAX_COPY;
345 end = (int32_t *)&((caddr_t)addr)[copysize];
346 for (lp = (int32_t *)addr; lp < end; lp++)
347 *lp = WEIRD_ADDR;
348 freep->type = type;
349 #endif /* DIAGNOSTIC */
350 #ifdef KMEMSTATS
351 kup->ku_freecnt++;
352 if (kup->ku_freecnt >= kbp->kb_elmpercl)
353 if (kup->ku_freecnt > kbp->kb_elmpercl)
354 panic("free: multiple frees");
355 else if (kbp->kb_totalfree > kbp->kb_highwat)
356 kbp->kb_couldfree++;
357 kbp->kb_totalfree++;
358 ksp->ks_memuse -= size;
359 if (ksp->ks_memuse + size >= ksp->ks_limit &&
360 ksp->ks_memuse < ksp->ks_limit)
361 wakeup((caddr_t)ksp);
362 ksp->ks_inuse--;
363 #endif
364 if (kbp->kb_next == NULL)
365 kbp->kb_next = addr;
366 else
367 ((struct freelist *)kbp->kb_last)->next = addr;
368 freep->next = NULL;
369 kbp->kb_last = addr;
370 splx(s);
371 }
372
373 /*
374 * Change the size of a block of memory.
375 */
376 void *
377 realloc(curaddr, newsize, type, flags)
378 void *curaddr;
379 unsigned long newsize;
380 int type, flags;
381 {
382 register struct kmemusage *kup;
383 long cursize;
384 void *newaddr;
385 #ifdef DIAGNOSTIC
386 long alloc;
387 #endif
388
389 /*
390 * Realloc() with a NULL pointer is the same as malloc().
391 */
392 if (curaddr == NULL)
393 return (malloc(newsize, type, flags));
394
395 /*
396 * Realloc() with zero size is the same as free().
397 */
398 if (newsize == 0) {
399 free(curaddr, type);
400 return (NULL);
401 }
402
403 /*
404 * Find out how large the old allocation was (and do some
405 * sanity checking).
406 */
407 kup = btokup(curaddr);
408 cursize = 1 << kup->ku_indx;
409
410 #ifdef DIAGNOSTIC
411 /*
412 * Check for returns of data that do not point to the
413 * beginning of the allocation.
414 */
415 if (cursize > NBPG * CLSIZE)
416 alloc = addrmask[BUCKETINDX(NBPG * CLSIZE)];
417 else
418 alloc = addrmask[kup->ku_indx];
419 if (((u_long)curaddr & alloc) != 0)
420 panic("realloc: unaligned addr %p, size %ld, type %s, mask %ld\n",
421 curaddr, cursize, memname[type], alloc);
422 #endif /* DIAGNOSTIC */
423
424 if (cursize > MAXALLOCSAVE)
425 cursize = ctob(kup->ku_pagecnt);
426
427 /*
428 * If we already actually have as much as they want, we're done.
429 */
430 if (newsize <= cursize)
431 return (curaddr);
432
433 /*
434 * Can't satisfy the allocation with the existing block.
435 * Allocate a new one and copy the data.
436 */
437 newaddr = malloc(newsize, type, flags);
438 if (newaddr == NULL) {
439 /*
440 * Malloc() failed, because flags included M_NOWAIT.
441 * Return NULL to indicate that failure. The old
442 * pointer is still valid.
443 */
444 return NULL;
445 }
446 bcopy(curaddr, newaddr, cursize);
447
448 /*
449 * We were successful: free the old allocation and return
450 * the new one.
451 */
452 free(curaddr, type);
453 return (newaddr);
454 }
455
456 /*
457 * Initialize the kernel memory allocator
458 */
459 void
460 kmeminit()
461 {
462 register long indx;
463 int npg;
464
465 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
466 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
467 #endif
468 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
469 ERROR!_kmeminit:_MAXALLOCSAVE_too_big
470 #endif
471 #if (MAXALLOCSAVE < CLBYTES)
472 ERROR!_kmeminit:_MAXALLOCSAVE_too_small
473 #endif
474
475 if (sizeof(struct freelist) > (1 << MINBUCKET))
476 panic("minbucket too small/struct freelist too big");
477
478 npg = VM_KMEM_SIZE/ NBPG;
479 kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
480 (vm_size_t)(npg * sizeof(struct kmemusage)));
481 kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
482 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * NBPG), FALSE);
483 #ifdef KMEMSTATS
484 for (indx = 0; indx < MINBUCKET + 16; indx++) {
485 if (1 << indx >= CLBYTES)
486 bucket[indx].kb_elmpercl = 1;
487 else
488 bucket[indx].kb_elmpercl = CLBYTES / (1 << indx);
489 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
490 }
491 for (indx = 0; indx < M_LAST; indx++)
492 kmemstats[indx].ks_limit = npg * NBPG * 6 / 10;
493 #endif
494 }
495